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Hello, today we are going to start a new module, the micro mechanics of lamina. Let us first 

understand the background and significance of the micromechanics of lamina and the 

importance of studying micromechanics of lamina.  Now, a lamina is heterogeneous, consists 

of fibers and the matrix and it is also orthotropic. 

Introduction: 

Therefore, the mechanics of lamina could actually be studied in two different scales namely 

the macromechanics of lamina and micromechanics of lamina. So, in the previous module we 

have studied the macromechanics in details wherein a lamina is represented by means of its 

average properties that means average elastic constants and average strength properties and we 

understood how to develop the stress and relationship based on those average stiffnesses. 

Then we discussed the strength failure theories based on the average strength properties, but in 

macromechanics of lamina, the interactions of the fiber and the matrix have never been 

addressed. So, in micromechanics, these interactions of fiber and the matrix is actually taken 

into account. Like macromechanical analysis, we have duly considered the direction 
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dependencies of the strength and the stiffnesses. But one important question that how these 

strengths and the stiffnesses of a lamina are influenced by the corresponding strengths and 

stiffnesses of the constituents fibers and the matrix is actually not answered in  macromechanics 

of lamina.  
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So, in micromechanics this is addressed, that means in micromechanics, we try to estimate the 

properties of a lamina in terms of the properties of the constituent fibers and the matrix. For 

example, suppose in macromechanics, we have a glass epoxy lamina where the glass fibers are 

60% and 40% is epoxy. We can test the lamina it in a uniaxial tensile testing and find out the 

stresses and strains. Plotting the stresses and strains we can determine the Young’s modulus 

that is the longitudinal Young’s modulus and we can also determine the longitudinal tensile 

strength of the particular lamina. Now that is true for a given lamina where the percentage of 

glass fiber is 60% and that of epoxy is 40%. Suppose we want to know if the relative 

proportions are different that means suppose the glass fiber 50% and epoxy percent is 50%. 

Well we can again make another lamina, test it and get the longitudinal Young’s modulus as 

well as the ultimate tensile strength. Therefore, for each different relative proportion of the 

constituents we can measure, but this is time consuming. Similarly, we can do for the other 

properties also. In micromechanical analysis certain relations are developed by which we can 

determine the properties of lamina in terms of the properties of the fibers and the matrix and 

their relative proportion. These properties are subsequently used for the macromechanical 
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analysis of the laminate. Therefore, in a way these micromechanical procedures actually add 

to the macromechanical analysis of composites.  

Note that this micromechanical analysis of lamina has nothing to do with that the study at the 

molecular level or at the micro level. It is actually just to distinguish between the 

macromechanical analysis where the interactions of the fibers and the matrix are not considered 

but in micromechanical analysis of lamina these interactions are considered.  That is the 

micromechanical analysis of lamina and it has nothing to do with at the micromechanical 

scales. Now when these relationships in micromechanical procedures are developed by which 

the properties of a lamina could be determined in terms of the fiber and matrix properties and 

the relative proportions, the efficacies of those established relations are decided by how well 

those predicted properties do agree with the experimentally measured properties. Now given 

the fact that there are key assumptions made in micromechanical analysis, which many times 

do not match with the actual lamina when tested and therefore put limitations on the 

micromechanical predictions.  For example, the assumption of perfect bonding, it is assumed 

there is a perfect bonding bonding between the fibers and the matrix also it is assumed that the 

matrix is void free.  

Therefore, before using these micromechanical procedures for design and analysis of 

composite laminates, they should be carefully validated with the experimentally measured 

values and then only those relations could be actually used with confidence. 
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With reference to an orthotropic lamina (1 and 2 are the principal material directions) there are 

four elastic moduli viz., E1 the longitudinal Young’s modulus, E2, the transverse Young’s 

modulus, ν12, the in plane Poisson’s ratio and G12, the shear modulus.  

Similarly, we have five strength parameters as longitudinal tensile strength (σ1T) u, longitudinal 

compression strength (σ1C)u, transverse tensile strength (σ2T) u then transverse compression 

strength (σ2C) u and in plane shear strength (τ12)u . They are not equal because the strengths 

are also direction dependent.  

Then we have two coefficients of thermal expansions that is longitudinal coefficient of thermal 

expansion α1 and transverse coefficient of thermal expansion as α2. Then we also have two 

coefficients of moisture expansion that is β1, the longitudinal coefficient of moisture expansion 

and β2, the transverse coefficient of moisture expansion.  

So, altogether there are thirteen parameters in a unidirectional orthotropic lamina and out of 

that four engineering constants, five strength parameters, two coefficients of thermal 

expansions and two coefficients of moisture expansions. Now these thirteen parameters could 

actually be determined by conducting some tests like compression, tension, hygsroscopic, 

thermal test and we can obtain those parameters.  

These are all average properties of an orthotropic lamina. These parameters are actually 

functions of several variables such as the corresponding properties of the fibers and the matrix 

and the relative proportion. For example, the longitudinal Young’s modulus E1 of the lamina 

is definitely influenced by the Young’s modulus of the fiber Young’s modulus of the matrix 

and the relative proportion. 

If the fiber volume fraction is 50% and matrix is 50%, will get some value of longitudinal 

Young’s modulus. Suppose the fiber is 60% and the matrix is 40% there will be some other 

value. Therefore, for all these properties of a lamina are decided by the corresponding 

properties of the fiber and those of the matrix and their relative proportion.  

These parameters could be determined by conducting experiments. 
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But experiments are actually expensive and time consuming especially more so in the case of 

orthotropic lamina because the number of parameters are more unlike isotropic materials where 

we have two engineering constants, Young’s modulus Poisson ratio and two strength 

parameters that means tensile strength and shear strength or in some cases where tensile and 

compression strings are different three strength parameters.  But in the case of an orthotropic 

material we need four engineering constants E1 E2 ν12 G12 and five strength parameters and 

then two coefficients of thermal expansion and two coefficients of moisture expansion. So, 

determination of all these 13 parameters by conducting experiments and that to when the 

relative proportion of the constituents change is actually time consuming and expensive. 

Therefore, it is always desirable to have a reliable prediction method to determine the properties 

of a lamina in terms of the properties of its constituents and the relative proportion. So, that is 

how the justification of studying the micro mechanical analysis wherein the objective is 

actually to develop a relationship as Pc =f (Pf, Pm, Vf, Vm, S, A). 

Where P stands for properties, V for volume fraction (suffix, c for composites, f for fiber, m for 

matrix), S is the shape parameters (shape of the fibers, may be circular or some other shapes) 

and A is the arrangement (how they are arranged regularly space or not). Properties could be 

any of these thirteen properties discussed.  

So, the objectives of the micromechanical analysis is actually to develop a relationship where 

the properties of the lamina could actually be obtained as a function of the corresponding 

properties of the fiber and the matrix and the relative proportion.  
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Different Approaches: 

In micromechanical analysis, objective remaining the same there are several approaches like  

● Mechanics of material approach – based on simplified assumptions of uniform stresses 

and strains. It is simple and it is reported that this approach provides a good estimate of 

the longitudinal properties whereas they do not agree well with the experimentally 

measured values for transverse properties. 

● Numerical approach – like finite element method, finite difference method or boundary 

element methods provide a very good predictions of the properties of lamina in terms 

of the properties of the fiber and the matrix. However, they do not provide any close 

form solutions and therefore for each specific case separate numerical simulation is 

required and it is also time consuming;  

● Elasticity approach –based on the classical theory of elasticity where the equations of 

equilibrium, compatibility conditions and the boundary conditions are used to arrive at 

a close form solution. However, the geometry is simplified and assumptions are made 

in terms of geometry and therefore sometimes important interactions between the fibers 

and the matrix are not considered and they do not agree well with the experimentally 

measured values. 

● Variational approach – is based on the energy principle like principle of minimum 

potential energy and it provides upper and lower bounds on the properties of the lamina. 
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● Semi-empirical methods – there are a number of semi-empirical relations and one of 

the important and very well correlated is Halpin-Tsai method which actually overcomes 

some of the drawbacks or limitations of the theoretical approaches.  

Halpin-Tsai method is many times used to predict the properties of lamina in terms of the 

properties of the fibers and the matrix and it correlates better with experimental results 

compared to the theoretical approaches. 
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Important Terminologies: 

Some of the important terminologies and notations which will be used throughout this 

micromechanical analysis are discussed below. w is the mass of the composite, v represents the 

volume and ρ as usual stands for the density.  

, , mass of composite,fiber and matrix respectively
, , volumeof composite,fiber and matrix respectively
, , densityof composite,fiber and matrix respectively

c f m

c f m

c f m

w w w
v v v
ρ ρ ρ

→

→

→  

Then fiber volume fraction and matrix volume fractions are defined as 

,
, 1

,

f
f

c
c f m f m

m
m

c

v
Fiber volume fraction V

v
Now v v v V V

vMatrix volume fraction V
v


= 

 = + → + =
=
  

Mass fractions are also defined as 
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,
, 1

,

f
f

c
c f m f m

m
m

c

w
Mass fractionof fiber W

w
Now w w w W W

wMass fractionof matrix W
w


= 

 = + → + =
=
  
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Using the definition of density, the relationship between the mass fraction and volume fraction 

in terms of density could be established as 

; ; fc m
c m f

c m f

ww w
v v v

ρ ρ ρ= = =
 

f f f f f f
f f

c c c c c c

w v v
W V

w v v
ρ ρ ρ
ρ ρ ρ

 
= = = = 

   

m m m m m m
m m

c c c c c c

w v vW V
w v v

ρ ρ ρ
ρ ρ ρ

 
= = = = 

   

f
f f

c

m
m m

c

W V

W V

ρ
ρ
ρ
ρ

=
→

=

 

Using these, the density of the composite in terms of the density of the fiber and the density of 

the matrix could be established as 
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1

c f m

c c f f m m

f m
c f f m m

c f m

w w w
v v v

W WV V or

ρ ρ ρ

ρ ρ ρ
ρ ρ ρ

= +

⇒ = +

⇒ = + = +
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In micromechanical analysis it is assumed that there is no void but because of the 

manufacturing inaccuracies sometimes there may be a voids in the in the matrix and the 

presence of void leads to erroneous calculation of density. If the presence of void is not 

considered and if the volume of the void is not negligible, in that case the density calculated 

theoretically without considering the void volume will be definitely different from the density 

which is actually measured experimentally. In addition, the presence of voids results in 

degradation of some of the matrix dominated properties like shear stiffness and shear strength 

compressive strength transverse tensile strength fatigue resistance and moisture resistance of 

the composites and it is reported that for each 1% increase in the void content sometimes the 

degradation of these matrix dominated properties may vary between 2 - 10%. 

Therefore, if the void volume is not negligible in that case it should be taken into account in 

the micromechanical analysis of the composites. So, therefore it is also important to know the 

void volume fraction.  

 

 

198



(Refer Slide Time: 21:32) 

 
 

So, analogous to the fiber and matrix volume fraction the void volume fraction is defined as 

the ratio of the void volume to the volume of the composite as follows.  

v

cc

ct

v volumeof void
 experimentally measured density of composite
 theoretical density of composite

  
ρ
ρ

→
→
→  

, ;v
v c f m v

c

vVoid volume fraction V where v v v v
v

= = + +
 

In calculating the density, 

c
f m v c

cc c c c ct cc
v

c cc ct cc ct
f m c

ct

v ct cc
v

c ct

wv v v v
w w wv

wv v v

vV
v

ρ ρ ρ
ρ ρ ρ ρ

ρ

ρ ρ
ρ

+ + = =
 −

→ = − =  
 + = =

 −
= =  

   

So, we get a relation where the void volume fraction Vv could be related to the theoretical 

density and experimentally measured density. 
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So, how to determine the volume fraction suppose we have a lamina we want to determine 

what is the volume fraction of the fiber. So, this could be determined using burning or 

dissolving the lamina in the acid. First a sample of the lamina is weighed and wc is the weight 

of the lamina. Then the density of the composite is actually measured by liquid displacement 

method First, we measure the weight of the composite in air and then we measure the weight 

of the composite immersed in water and then using the density of water we can find out what 

is the density of the composite ρc. as follows. 

,
c

c
c w i

c i 3
w

w  weight of composite
w where w  weight of composite immersed in water

w w
ρ  density of water (1000 kg/m )

ρ ρ
 →
 

= → −  →   

In case the composite is light and it does not sink in the water therefore in order to determine 

its weight in the water we provide a sinker and weight of the sinker is actually taken into 

account while finding our density using this formula. Then the once the density is determined 

the composite is burnt or dissolved in acid and it is only left with the fibers. The fibers are 

weighed and the weight of the fiber is wf. Therefore, if we know what is the weight of the 

matrix wm and from these relations we can find out the volume fraction of the fiber and the 

volume fraction of the matrix. That is how given a sample lamina we could actually determine 

that the volume fraction of the fiber in the lamina.  
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Representative Volume Element 

Representative volume element (RVE) is the smallest region representing the lamina by 

materials and its constituents by volume and is an important concept. It is small volume from 

the lamina which represents the lamina by its material consisting of both fiber and the matrix 

with true volume fraction. Suppose the overall volume fraction of the lamina is 60% therefore 

the representative volume element must be such that the fiber volume to the volume of the 

representative volume is actually 60%. Now choice of scale of the volume is very important 

because it must truly represent the lamina. Many a times, one single fiber surrounded by matrix 

does the purpose but many a times more than one fibers are required depending upon how 

regularly the fibers are spaced. 

Figure shows a RVE for a lamina where the fibers are equally spaced. Fiber spacing and lamina 

thickness are important dimensions in a representative volume element. Referring to the Fig., 

suppose in the in the thickness direction, all the layers are similar the fibers are equally spaced 

and distributed uniformly across the thickness direction. 

Therefore, we can take only one fiber surrounded by matrix such that the ratio of the volume 

of the fiber to the volume of the RVE actually represents the fiber volume fraction of the 

lamina. Now it is further simplified by considering fiber which is actually of circular cross 

section to be of rectangular cross section instead of circular without changing the fiber volume 

fraction. 
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Therefore, in such a simplified RVE where the fibers are continuous, length of the fiber, length 

of the matrix and length of the composite is same. Height of the fiber, height of the composite 

and height of the matrix is also same.  
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As shown in the Fig., heights of the fiber, matrix and the composite are equal and 

f m ch h h h= = =  

Lengths of the fiber, matrix and the composite are equal and 

f m cL L L L= = =  

and say 

,
,

,

f f

m m

c c

Area of fiber A t h
Area of matrix A t h
Area of composite A t h

= ⋅

= ⋅
= ⋅  

Now the volume of the fiber, matrix and composite are 

,
,

,

f f

m m

c c

Volumeof fiber v L t h
Volumeof matrix v L t h
Volumeof composite v L t h

= ⋅ ⋅

= ⋅ ⋅
= ⋅ ⋅  

And the fiber volume fraction is 

202



f f f f
f

c f c c

v L t h t A
V

v L t h t A
⋅ ⋅

= = = =
⋅ ⋅  

f
f

c

t
V

t
=

 

The matrix volume fraction is 

1m
m f

c

tV V
t

= = −
 

So, having understood the volume fraction and the RVE, irrespective of what approach is used 

in micro mechanical analysis there are certain key assumptions which are actually made in 

micro mechanical analysis as 

o Perfect bonding between fibre and matrix – perfect bonding means that at any point of 

time when the lamina is loaded fibers and matrix do not get deboned from each other. 

o Elastic moduli, diameter and space between fibbers are uniform – fibers are uniformly 

spaced and all the fibers of the same material, same size and shape. 

o Fibbers are homogenous, continuous and parallel – fibers are single material 

homogeneous and they are continuous. No fibers are broken and they are parallel. 

o Fibbers and matrix are isotropic and follow Hooke’s law – they are linearly elastic 

therefore they obey Hooke’s law. 

o Fibres possess uniform strength – strength of the fibers are uniform which may not be 

true actually when we have large number of fibers, the strengths actually vary 

statistically. 

o Composite is free from voids – If there is very small number of voids this is a reasonable 

assumption. However if the number of the voids are significant which may be because 

of the manufacturing effects then we have to consider voids. 
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Now having understood the approaches and the key assumptions in micromechanics let discuss 

how some of these stiffnesses and strengths are actually determined using micromechanics.  

Let us start with mechanics of material approach which is the most simple among all these 

approaches.  
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Mechanics of Materials Approach: Determination of longitudinal Young’s modulus E1  

Considering an RVE, where a tensile load Fc is applied along principal material direction (1) 

that is a longitudinal direction 1 as shown in Fig..  and all the assumptions as already mentioned 

hold good for this analysis. So, if Fc is the total load applied along direction 1, the load will be 

shared by the fiber (Ff) and the matrix (Fm). 

:
:
:
, , : , ,
, , : , ,
, , : '

c

f

m

c f m

c f m

c f m

F Uniaxial load on RVE
F Load shareof fiber
F Load shareof matrix

Stress in composite  fiber and  matrix  respectively
Strain in composite  fiber and  matrix  respectively

E E E Young s modul

σ σ σ

ε ε ε

, ,
, , : , ,c f m

us for composite  fiber and  matrix  respectively
A A A Area of  composite  fiber and  matrix  respectively  
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Now, 

c f m

c c f f m m

F F F
A A Aσ σ σ

= +

⇒ = +  

Using Hooke’s law, 

c c c f f f m m mE A E A E Aε ε ε⇒ = +  
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Because of perfect bonding, under this load the extension along 1 is same in the matrix, fiber 

and composites ie. δc = δf = δm. Now because their initial lengths (L) are also same, therefore 

the strains are same. 

, c f mNow  for perfect bonding ε ε ε= =
 

f m
c f m

c c

A AE E E
A A

= +
 

Now, for this simplified representative volume element Af / Ac = Vf , the volume fraction of the 

fiber and Am / Ac = Vm , the volume fraction of the matrix. Ec is nothing but in this case the 

Young’s modulus of the composite along direction 1 because the load is applied along direction 

1 in this case. Therefore, 

1 f f m mE E V E V= +  

 So, a relation between the longitudinal Young’s modulus (E1) of the composite lamina in terms 

of the Young’s modulus of the fiber (Ef) and the Young’s modulus of the matrix (Em) and the 

relative proportion could be established and it could be clearly seen that as the volume fraction 

increases, E1 increases. Now, in general the Young’s modulus of fiber is far higher compared 

to that of the matrix. So, the change in Young’s modulus of the matrix does not have much 

influence on E1 . Change in Young’s modulus of the matrix actually is insignificant until or 

unless the fiber volume fraction is very near to zero. Therefore, Em does not influence E1 and 

therefore E1 is actually a fiber dominated property. 
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Fibers are very strong and stiff therefore the proportion of the load carried by the fiber to the 

load total load Ff / Fc could be written as 

f f f f f f f
f

c c c c c c c

F A E A E
V

F A E A E
σ ε
σ ε

= = =
 

f f f
f f

c c f f m m

F E E
V V

F E E V E V
= =

+
 

Thus, Ff / Fc is a function of Ef / Ec and the volume fraction Vf. Naturally for a given Young’s 

modulus of fiber if the volume fraction is more the more load is carried by the fibers. 

Figure shows the plot between  Ff / Fc and  Ef / Em for different Vf and it could be seen that for 

a given ratio of Ef / Em it increases with Vf   and for a given Vf , as Ef increases, more load is 

carried by the fibers. 
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Mechanics of Materials Approach: Determination of longitudinal Young’s modulus E2  

Considering the same RVE, but the load is applied along direction 2 that means it is the 

transverse direction. So, subjected to a tensile load along direction 2 suppose, 

, , : , ,
, , : , ,
, , ,:
, , :

  ,

c f m

c f m

c f m

c f m

Strain in composite  fiber and  matrix  respectively
Stress in composite  fiber and  matrix  respectively

E E E Yo
Transverseextension in composite fiber  matrix respectively

ε ε ε

σ σ σ

∆ ∆ ∆

' , ,
, , : , ,c f m

ung s modulus for composite  fiber and  matrix  respectively
t t t Thickness of  composite  fiber and  matrix  respectively  
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We apply tensile load along 2 therefore the extension in the directions 2 for the composites 

fiber and the matrix are  

c f m∆ = ∆ + ∆  
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So, now we can write that because it is loaded in the direction 2. So, an ε c is the strain. So, by 

the definition of the strain along direction 2 strain along direction 2 of the composite is nothing 

but the change in length by initial length. Similarly, for the mat fiber it is the change in length 

Δf that means the extension along direction 2 to the initial length similarly for the matrix it is 

change in length around direction 2 by the initial length along direction 2.  

Referring to the fig., and using the definition of strains  Δc = εc tc , Δf = εf tf and Δm = εm tm. 

c f m

c c f f m m

        
  t t tε ε ε

∆ = ∆ + ∆

⇒ = +  

Now again we the assumption that fiber matrix and the composites all obey actually Hooke's 

law therefore the strains could be written in terms of the stresses as 

fc m
c f m

c f m

t t t
E E E

σσ σ
⇒ = +

 

Now along direction 2 the stresses are considered to be equal ie. c f mσ σ σ= =
 This is 

reasonable only when the fibers are regularly spaced along the thickness. If the fibers are not 
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regularly spaced along the thickness in that case it will not be same and the stresses will be 

shared by the fiber and the matrix. 

1 1 1f m

c f c m c

t t
E E t E t

⇒ = +
 

Now this Ec is nothing but E2 because this is the Young’s modulus of the lamina in the direction 

2.Referring to the RVE in Fig., tf / tc = Vf , the volume fraction of the fiber and tm / tc = Vm , the 

volume fraction of the matrix. So, 

2

1 f m

f m

V V
E E E

= +
 

This is the relation between the transverse Young’s modulus of the lamina in terms of the 

Young’s modulus of the fiber and the Young’s modulus of the matrix and the relative 

proportion. So, using mechanics of material approach we could establish the relationship where 

the longitudinal Young’s Modulus and transverse Young’s modulus in terms of the Young’s 

modulus of the fiber and the Young’s modulus of the matrix and the relative proportion.  
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There are practical limitations on the maximum value of volume fraction. Now depending upon 

the packing arrangement of the fibers suppose the fibers are regularly spaced in a square array 

as shown in Fig. Suppose in a square array ‘s’ is the fiber spacing and ‘d’ is the diameter of the 

fiber. So, in an RVE of  square where length of the fiber length of the matrix and the length of 

the composites are same, the fiber volume fraction is 
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2

2

44 ;f
f

d VdV
s s

π

π
= → =

 

In the limit, the two adjacent fibers may touch each other when d = s and the maximum fiber 

volume fraction is 

78.54%fs d V≥ → =
 

Similarly, in the case of a hexagonal array (as shown in Fig.), in the limit is that d = s when the 

two adjacent fibers touch each other and the maximum volume fraction is 

2 3

90.69%

f

f

Vd
s
s d V

π
=

≥ → =
 

However, it is not possible to to realize this kind of volume fraction because the fibers touching 

each other means that that there is not sufficient wetting of the fibers by the matrix as the matrix 

actually binds the fibers. This is the theoretical maximum and not possible to use in structural 

composites. 
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