Getting Started with Competitive Programming
Prof. Neeldhara Misra
Discipline of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 28

Graph Foundations - Module 4 (Diamond Inheritance)

(Refer Slide Time: 0:11)

Getting Started

witH

z2==

COMPENTNIVE PROGRAMMING:
A Course on NPTEL

[ Diamond Inheritance 4 Round 1C 2012 — Code Jam 2012 ]

Week 5 - Module 4 » BFS and DFS

Welcome to the final module of the fifth week in Getting Started with Competitive
Programming. So, we continue to look at the applications of graph traversals specifically BFS

DFS, and our final example is going to be a problem called Diamond Inheritance. This appeared
in Round 1C of the 2012 edition of Google Code Jam.

And one of the reasons we picked this problem was because it gives us an opportunity to work
with directed graphs, which I think is interesting. It is good to know that the traversals work out
pretty much the same when you are working with directed graphs. But there are also some
subtleties that crop up and that are good to be aware of. So, alright, let us get started by looking
at the problem statement.

(Refer Slide Time: 00:56)

The following example class diagram illustrates the property of
diamond inheritance. There are four classes: A, B, Cand D.

)
o
N \ (/

&

An arrow pointing from X to Y indicates that
class X inherits from class Y.

You are asked to help diagnose class diagrams to
identify instances of diamond inheritance.



We are told that we need to help diagnose class diagrams to identify instances of diamond
inheritance. Now, if you have done object-oriented programming, you might have already
encountered this phrase, Diamond inheritance. Some places would more colorfully call it the
deadly diamond of death. And the reason is that this is essentially an instance of an ambiguity
that occurs when you have basically messed up inheritances that look something like this.

So, if you have not done any object-oriented programming, and all of this sounds strange, then
do not worry about it. But for those who are familiar with notions of inheritance in that context,
basically, suppose you have four classes with two classes inheriting from a common class. So, let
us say for instance, that B and C inherit from A and then class D inherits from both B and C.
That is also the diagrammatic notation here.

So, we see that an arrow pointing from X to Y, for example, from D to C indicates that D inherits
from B. So, we have that D inherited from B and C, and B and C inherited from A. So, suppose
you have a method in class A that is overwritten differently by B and C, then when D inherits
from B and C, what version should it use? It becomes somewhat ambiguous. And this is why you
are probably interested in knowing if you land up in this sort of situation.

Now, if the class and method kind of terminology does not make sense, then do not worry about
it. You could just think of this as a situation where you have four nodes or vertices. And
wherever they are connected in this very particular way, then we say that we have an instance of
diamond inheritance. And this is what we are required to detect. But it does not have to be just
four vertices. So in the problem statement, they go on to tell us what exactly we are looking for
in slightly more formal, more precise terms.

(Refer Slide Time: 03:08)

An inheritance path from X to Y is defined as
a sequence of classes

X,Cp,Cy.Cs,...,C,Y

where X inherits from C},
C;inherits from C;; for1 £i<n—1,
& C, inherits from Y.

o> o> o> o >0

So, let us take a look at what we really mean when we want to say that there is diamond
inheritance. So, first, let us talk about an inheritance path. So, an inheritance path from X to Y is
defined as a sequence of classes, X, C,, C,, and so on up to C, and then followed by Y, where X
inherits from C,, C; inherits from C; + 1 for all ‘i’ between 1 and n - 1. And finally, C, inherits
from Y.



So, this might remind you of the notion of a path that we talked about when we were discussing
the notion of connectivity in the second module. And there a path was simply a sequence of
vertices, such that every pair of consecutive vertices has had an edge between them.

And now this is pretty much the same idea. You would just have to think of your classes as being
vertices of a directed graph, and you add an edge between two vertices if the corresponding
classes are such that one inherits from another, and you make sure that the orientation respects
the direction of the inheritance.

Now in this graph, an inheritance path is simply a sequence of vertices so that the consecutive
vertices have a directed edge going between them connecting the vertex that appears earlier in
the sequence with the vertex that appears later in the sequence. So, you can map this notion of an
inheritance path as applied to classes to a directed path in the graph that you derive from these
classes.

(Refer Slide Time: 04:44)

A class diagram is said to contain a diamond inheritance if
there exists a pair of classes X and Y such that
there are at least two different inheritance paths from X to Y.

So, we say that a class diagram has a diamond inheritance if there exists a pair of classes X and
Y, such that there are at least two different inheritance paths from X to Y. That is the definition of
a diamond inheritance. So, essentially, it does not have to be literally a diamond on four classes,
it could be a longer chain in some sense. But as long as you have two classes X and Y so that
there are two different paths from X to Y, then you have an instance of diamond inheritance.

In the language of graphs, essentially, you are looking for two vertices, X and Y so that there are
two different paths that connect X and Y. And these are paths in this directed graph. So, just to
make sure that we are on the same page, let us actually take a look at one of the examples given
in the sample input.

(Refer Slide Time: 05:36)




So, the format of the sample input is such that the first line tells you how many classes there are.
So, in this case, there are five classes. And then this is followed by as many lines as there are
classes. So, you can see that you have five lines. On the ‘i’th line, the first number tells you how
many classes does the ‘class 1’ inherit from. So, for example, the first class here inherits from
two other classes.

And then the next two numbers on that line tell you the IDs of the two classes, or in general,
there is going to be as many numbers as there are classes that you inherit from. And each of these
would correspond to the IDs of the classes that you inherit from. So, that was a bit of a mouthful.
So, let us just walk through this example. We see that the first class inherits from 2 and 3, so we
have those arrows there to the classes 2, and 3.

The second line corresponding to the second class has just one inheritance, and that is from class
4. So, we have an arrow from 2 to 4. And then the third line corresponding to the third class
again has one inheritance. And that is from class 5. And then we have the fourth class also
inheriting from 5 and 5 has no inheritances. So, 5 does not have any edges going out of it. So,
what sort of an instance is this?

Does this have ‘diamond inheritance’ or does it not? Well, I mean, you may not see a direct
diamond on four vertices. But as we said before, it could be a more indirect diamond structure.
So, if you can spot that diamond structure, then you would say the answer is yes. Otherwise, you
would probably not be so sure. So, if you need a moment here, please feel free to pause and
ponder for a second before you commit your answer.

Alright, so you can probably see here that there are choices of X and Y for which we can say that
there are two distinct paths between X and Y going from X to Y. So, let us say that X, for
instance, is 1, and Y is 5. So, you have the path 1 2 4 5 on the one hand, and then 1 3 5 on the
other. So, these are two paths going from X to Y that are different from each other. And that is
why you would say that in this case, you do have a diamond inheritance.

Now let us talk a little bit about what does it mean for the two paths between X and Y to be
different? I think there are two natural interpretations of the word ‘different’ as given in the
problem statement.

(Refer Slide Time: 08:16)

Does “different” mean Does “different” mean

a) completely disjoint a) completely disjoint

(other than X § Y), (other than X & Y),
or ¥
b) differing on at least one vertex b) differing on at least one vertex

(other than X & Y)? (other than X & Y)?



So, the first interpretation could be that these two parts are completely disjoint from each other.
And the other could be that they differ on at least one vertex other than the endpoints. Of course,
when I said completely disjoint, once again, you exclude the endpoints because these two paths,
of course, start and end at the same vertices, namely X and Y. So, let us just argue that it does not
really matter which interpretation you go with, they actually amount to the same thing in the
following sense.

So, first of all, if you have two paths that happened to be completely disjoint, except for the
endpoints, then, of course, you do have two paths that differ on at least one vertex because, well,
of course, they differ on all vertices, and there is at least one vertex other than X and Y. So, if
you have two paths that are different in the first sense, then they are also different in the second
sense.

On the other hand, suppose you have two paths that are different in the second sense, they differ
on at least one vertex, then I would argue that you can find X and Y, maybe not necessarily the
same X and Y. But you can find, you know, probably a different diamond of the first kind that is
different in the stronger sense of being completely disjoint.

(Refer Slide Time: 09:30)

- -
e > o> o » > @ )

And the way to see this is that well, let us take a look at the two paths that differ on, you know, at
least one vertex. So, here are two paths that are overlapping at a couple of vertices, and are at
least different in a few places as well. And X and Y are the two red vertices at the extreme ends.
So, basically, what you could do is jot down the list of vertices on these two paths that are
guaranteed to differ at at-least one vertex, and essentially you pursue these paths simultaneously.

It is possible that the first few vertices are also common. So, you just make a note of the first
time that you see two different vertices on the two paths. And then you make a note of the first
time that, once again, the paths converge. So, for instance, here, the yellow vertex in the middle
is the first time that these two paths end up having a common vertex. And the red vertex is
essentially where we started and the paths immediately diverged.

It is possible that after the red vertex, you had a little bit of a common thread for some time, in
which case, we would push the red vertex forward until the path began to diverge. And notice
that it must diverge at least once because we know that they are different at, at least one vertex.
So, in this example, choosing the left red vertex and the yellow vertex in the middle as our new
choices for X and Y, we get a diamond inheritance.



In the first sense, we get a pair of paths that are different in the sense that they are completely
disjoint, except for the endpoints, just by the way that we chose them. So, it does not really
matter which of these definitions you work with. And for the most part, we will try to be looking
for paths that are completely disjoint internally apart from X and Y because that is just going to
be generally more convenient.

Alright, so how are we going to solve this problem? So, essentially, we are looking for
something that looks like a cycle in the underlying undirected graph. But in the oriented sense, it
is essentially the union of two paths that start and end at the same vertex. So, well, let us think
about performing, for instance, a DFS.

(Refer Slide Time: 11:46 & 12:24)

vector<vii> AL;
vi dfs_num;

dfs( u) {
printf(" Sd'", u);

dfs_num[u] = VISITED;
Perform a DFS. ( &[v, wl : AL[ul)
(dfs_num([v] == UNVISITED)
(: dfs(v);
'

if not...? @

Suppose you “ping” a visited vertex.

And let us think about what happens when you visit one vertex more than once. Does that tell us
something about the potential existence of two different paths? Well, this is meant to be a bit of a
hint. So, if you like, please feel free to pause here. And think about if a vertex being visited more
than once by, in fact, either a DFS or BFS traversal is something that could help you detect
instances of diamond inheritance. Come back once you are ready, and you have given this a
thought.

Alright, so just to make this a little more specific, let us go back to the DFS code that we have
been working with. And basically, the question I am asking is, suppose you encounter a vertex,
which you have already visited. So, in particular, you are looking up the neighbors of the current
vertex. And let us say the first neighbor that you find is a vertex that is already been visited
before.

So, what does this mean for us? For DFS, of course, it just means that this is a vertex to be
avoided. So, it is just going to move on. But for the problem that we are solving right now, this
vertex is an interesting vertex because, well, because it was visited, we know that there is already
some way of reaching this vertex from the route. And the fact that we are approaching it again,
probably means that there was a different route for arriving at this vertex as well and maybe this
is a sign that there is some diamond inheritance.

Now there are two questions that are pertinent at this point. First of all, can we be sure that there
is indeed an instance of diamond inheritance if a vertex is visited more than once? And the



second thing is, is it possible that there is some diamond inheritance somewhere, but perhaps it
does not get identified in this way? So, perhaps if you do encounter this situation, you can be
very sure that yes, we do have a diamond inheritance.

But if you do not encounter this situation, perhaps there was some instance of diamond
inheritance, but you missed it. So, you have to kind of convince yourself in both directions. So,
again, I think this is a more elaborate version of the hint and again, if you want to think about
things, this would be a good time to pause. When we come back, we are going to actually try and
argue both of these aspects of what we are trying to claim here.

(Refer Slide Time: 14:21)
Visited vertex

Jource vertex p
o> o> > © > O )
If DFS pings a vertex more than once,

there IS some Diamond Inheritance.

Current vertex

Alright, so let us do this one step at a time. My first claim is that if the DFS traversal finds some
vertex more than once, then there is in fact an instance of diamond inheritance somewhere in this
graph. So let us see why. So, since we are considering a vertex that was visited by DFS more
than once, let us just consider the scene when it is being visited the second time.

So, this means that it was already a visited vertex, and somebody is approaching it again through
the DFS traversal. Of course, DFS will kind of ignore this, but we just want to detect this and see
if there is something that we can conclude from here. So, let the red vertex denote the visited
vertex and let the pink vertex denote the current vertex, which has essentially approached the
visited vertex. And as I said in the original DFS implementation, DFS is just going to ignore this
vertex and move on.

But we want to freeze time here and think about what happens. So, since the read vertex is a
visited vertex, it must be the case that there was some path to this vertex from the source. That is
why it was visited in the first place. So, we got here somehow, and this path could have been a
more, it could have been a more tree-like structure in terms of how the actual traversal played

out. But from whatever that structure was, you can extract a path that is fairly straightforward to
check.

So, I leave that to you to, sort of, confirm offline. But basically, the point is that there is a path
from the source vertex to the visited vertex. Now similarly, this is also true for the current vertex.
The current vertex is just being visited. And therefore there is some path from the source vertex
to the current vertex as well. Now, these paths may not be different in the sense of being
completely disjoint.



So, for instance, this path could look something like this where there is some overlap with the
path from the source vertex to the other visited vertex as you can see here. But because of what
we have already argued, as long as we have two paths that are different, and we know these paths
to be different because they at least differ on, for instance, the pink vertex and the vertex that is
the parent of the red vertex. We know that these vertices cannot possibly be the same.

So, since these are two different paths from the source vertex, the vertex in blue to the visited
vertex, which is the vertex in red, we know from our previous argument that we can from here
actually derive a pair of paths, which are in fact completely internally disjoint. So, therefore, we
do have an instance of diamond inheritance. So, that works.

(Refer Slide Time: 17:17)

If there is a path from u to v, then v is visited in
the DFS originating at u.

If there is Diamond Inheritance between X and Y,
a DFS from X will visit Y more than once. e » o » @ » @

U Y%
Now, is it true that if there is some instance of diamond inheritance somewhere, then there is
some DFS, which is going to catch hold of it using this strategy that we have just described? So,
in particular, we claim that if there is an instance of diamond inheritance between the vertices X
and Y, then if we were to start a DFS from X, then this DFS traversal will, in fact, visit Y more
than once for sure. So, to see this, let us prove an auxiliary fact first.

In a directed graph, if you have a path from U to V, then V is going to be visited in the DFS that
originates at U. This might sound like a reasonably obvious thing to say. But let us just be sure
by arguing this a little bit formally. So, suppose not. Right. So, suppose there is a path from U to
V. But V is not a visited vertex in the DFS starting at U. Then, well, let us look at this path from
Uto V.

And let us identify the last vertex on this path that was visited. So, this is well defined, because U
is definitely a visited vertex. That is where it all started. And let us just try and pinpoint the last
vertex on this path that was visited. Well, whatever that last vertex is, it is not V because we are
assuming that V was not visited for the sake of contradiction. So, that last vertex is lying
somewhere in the middle of this path.

But now notice that the way DFS works is that it is going to approach every out neighbor of this
vertex, which was presumably the last visited vertex on this path. And at that point, it would
have certainly approached the vertex, which was the very next vertex on this path. And therefore
the next vertex would have also been visited contradicting our choice of, you know, the last
visited vertex. So, if this argument went by a little bit too quickly then there is a link in the
description of this video, which has a write-up of the proof of this fact that every reachable



vertex is in fact visited. And you could take a look at that as well. But why are we interested in
this fact?

(Refer Slide Time: 19:29)

X Y

Well, remember, what we are given is the fact that there is some diamond inheritance between X
and Y. And we want to argue that Y has been found twice by the DFS starting at X, at least
twice. So, what does it mean that X and Y are witnessing diamond inheritance? It means because
of what we showed earlier, we could just assume that there are two internally vertex disjoint
paths between X and Y. So, here are these two paths, for example.

And now let us just look at the vertices that appear just before Y on these paths. Right. So, these
are the two pink vertices. Notice that these two pink vertices are reachable from X, therefore they
are going to be visited by the DFS traversal starting at X. But if they are visited, then whenever
both of these vertices are visited at whatever times, they are going to try and approach Y. Now at
this point, Y may or may not be a visited vertex. Let us say that the pink vertex is visited, let us
say that the pink vertex that is on the top path is visited first.

And when it approaches Y, perhaps Y is not a visited vertex, or maybe it is being visited already,
it does not really matter. The point is that because both of these pink vertices are visited vertices
in the DFS traversal starting from X, both of them will witness at least one ping to Y. So, this
proves the fact that if there is a diamond inheritance between X and Y, then for sure, you are
going to approach Y more than once in the DFS traversal starting at X.

(Refer Slide Time: 21:08)

Solution: Q

Run a DFS from every vertex
(our “guess” for X) o

+
I there is Diamond Inheritance between X and Y, o\ !

—_ heck if tex i
a DFS from X will visit Y more than once. checi It some vertex1s

reached more than once. h

So, this is the statement that we just proved. And this also motivates our solution. So, how would
we basically take advantage of the facts that we have just shown and wrap it up in an algorithm
that will help us identify diamond inheritance?



Well, what we could do is, essentially, guess all possible choices of X. We do not know where
the diamond inheritance might originate. So, we simply try all possible vertices. But having
fixated on a vertex, essentially, we run a DFS starting from that vertex and watch out for whether
this event happens that some other vertex is approached twice, is reached twice, by the DFS
traversal. It does not have to be exactly two times, of course, what is important is that it is
reached more than once. That is what we want to watch out for.

And notice that this guessing of X is really required. You cannot just start a DFS at your favorite
vertex and, you know, if this did not happen, no other vertex got approached more than once, you
just call it a day and say that there is no diamond inheritance, that will not work. And I want to
flag this and emphasize it because in our example, so far, it has basically not really mattered
where we start our BFS or DFS, we just say started at some vertex and, you know, be done with
it.

But here, you really have to initiate your DFS from every possible vertex. I mean, just to really
emphasize that it would not work if you just started from your favorite vertex. Let us go back to
the example that we had, where we did have diamond inheritance, this was one of the sample
inputs. And now imagine starting your DFS at vertex 5, for instance. You are not going to be able
to detect this diamond inheritance here, because the DFS from 5 will simply make no progress.
There are no neighbors going out of 5, and therefore the DFS will really not do any work.

So, it is really important that you try every single vertex. But once you do that, everything that
we have argued so far essentially amounts to proof of correctness for the approach that we are
just proposing here. So, with all of that said, I think we are ready to take a look at the
implementation.

(Refer Slide Time: 23:25)

vector<vector<pair<int, >>> AL; solve( n){

notvisited;
HELNE

i=1; i<=n; i++){
dfs(int u){
notvisited[u] = 0;

( &lv,w] & AL[u]){
(notvisited[v]){
dfs(v);

}

notvisited.assign(n+1,1);

dfs(i);




So, let us go to the standard DFS that we have. So, the first few lines are exactly identical to
what we normally do. But what is new here is this else block where we say that look if this is not
the first time that we are seeing you, then that means that we have found what we want. So, let us
just return and let us make a note of this fact. And the way we do this is or at least the way that I
have done it in this implementation is to change the status of a global flag variable.

So, we reset ‘flag’ to false, and then basically, this is the outer loop where we are guessing X,
and we said that we will run a DFS starting at every vertex. So, that is the ‘for’ loop here right on
the top. It is basically trying to run a DFS starting from ‘i’ with ‘i’ ranging from 1 to n. And of
course, before you run DFS, make sure that you clean up your visited array so that it is all fresh
and ready to use.

And when you come out of DFS, you just check the flag variable. If the flag variable has been
set to false that means that you actually found an instance of diamond inheritance and you can
return as much. You can say well yes, you did find diamond inheritance. But if this was never
triggered, and you tried a DFS starting from every single vertex, then at that point, when you
come out of the outer for loop, if you actually survived the whole thing, and you did not return
control from inside the for loop, then outside the for loop, you can say, well, there is no diamond
inheritance in this instance.

And you can say that with confidence because of everything that we have just argued. So, as
usual, this being a Google Code Jam problem, the overall input is going to have a bunch of test
cases. So, you want to be careful about remembering to reset your flag variable as you go from
one test case to the next one.

Not doing this will obviously lead to inaccurate answers. And I am speaking from experience.
So, make sure that you reset your flag variable properly. I am not showing you the part of the
code that does the input-output because that is by now fairly routine. But if you want to take a
look at the entire code that actually works, then you can find it in the usual place at the official
repository for these lectures.

And once again, all of this code is in C++. So, if you are able to rewrite it in your favorite
language, please do that. And please do submit a pull request. So, with that, we have come to an
end of our exploration of applications of BFS DFS traversals. And I hope that you enjoyed this.
A quick parting comment is in order. So, all the examples that we saw this week, I think by just
looking at the problem statement, the graph formulation, basically, was really quite transparent.

In the problems of bipartiteness and covering you were literally given a graph as a part of the
problem statement and you just had to work with that quite directly. And here, although there
was some language with respect to classes, inheritance, and so on, it was really quite clear that
this is screaming for a graph formulation. So, this was quite, quite evident. Sometimes the
interesting thing about BFS DFS applications and with some of the other things that we will see
in the weeks to come, interesting thing is that the graph formulation itself is not so obvious.



So, you might be given a problem with permutations, or there might be some random story about
something that looks like it has nothing to do with graphs. And yet, the whole problem can be
solved quite nicely by just finding the appropriate graph modeling. So, you will find a few
practice problems in the extras section on the course website, which give you a couple of
examples where I think the graph model is a little less obvious.

But since this was the first week that we were talking about graph algorithms, I felt that was
okay to focus on problems where you do not have the additional burden of modeling a strange
situation as a graph. That does require some imagination and creativity. And we will have plenty
of opportunities to see that play out as we go over examples in the coming weeks. So, I hope that
you are all excited to be doing more problems based on graphs and I hope that you had a good
time with BFS and DFS.

So, please let us know what you thought through either the comments on this YouTube video or
by letting us know on the Discord community. You could join the conversation there or on the
Google Groups mailing list, especially if you are watching this during the active run of a course.
Thank you very much, and we will see you back next week. Bye for now!



