Viscous Fluid Flow
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Module - 02
Steady One-dimensional Rectilinear Flows
Lecture - 05
Example Problems

Hello everyone. So, in the last few lectures of this module, we have solved some exact
solutions of Navier-Stokes equations. You know the assumptions and how to write the
ordinary differential equation from the partial differential equations and invoking the
boundary conditions, how you can derive the velocity distribution and the volumetric flow

rate.

So, today we will solve some example problems from the knowledge of whatever you have

already carried out in this lecture.
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Exact Solutions of Navier-Stokes Equations
Two viscous, incompressible, immiscible fiuids of different viscosity and density flow in separate
layers between two infinite paralle! plates. The flow is driven by a constant favourable pressure
gradient, Derive the expressions for the velocity profiles in the two layers and find the volume
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So, let us take the first problem, two viscous incompressible, immiscible fluids of different
viscosity and density flow in separate layers between two infinite parallel plates. The flow
is driven by a constant favorable pressure gradient. Derive the expressions for the velocity

profiles in the two layers and find the volume flow rate per unit width.



This is the problem; so we have two parallel plates; stationary parallel plates, where you
have velocity is 0. And two layers; one is fluid A, whose viscosity is ua, and fluid B, whose
viscosity is ps. For convenience, we have taken the axis from this interface of these two
layers. So, y is measured from this interface and x is the axial direction and these are the
height of these layers Ha and Hg.

So, you can see this is a similar problem which we have already solved in two layers quite
flow; but in this particular case, a top boundary is stationary, velocity is 0. And we have
taken the axis in the interface of these two layers. So, we will start from the ordinary

differential equation.

For this particular case you know, what is the ordinary differential equation, obviously it
is a pressure-driven flow. So, you can write the ordinary differential equation neglecting
the gravity as

d’u, 1 0p
dy? — p, 0x

ap .
£ is a constant rate.

So, for this fluid A layer, you can write the velocity distribution, which is y in between -H

to 0. So, this you can write as

duy, 10p

Qo) T

And

1 dp ,
Uy = ma)’ + C14Y + Cy
So, we have the boundary conditions at y is equal to -Ha, u is equal to 0. So, you can see

if you put it here, you will get



So, you can express it as

So now, if you put it in this expression of this velocity distribution in the fluid a domain;

SO you can write

1 o\ ..,
us = 5 (= 52) (=) + G+ H)

Now, similarly let us find the velocity distribution in layer fluid B.
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So, in the range of y 0 to Hg, we have the equation

d’ug 1 dp
dy?  ppox

So, integrating twice, you will get



Again we have the boundary condition at y is equal to Hg, ug is equal to 0. So, from this

expression, you can write

Hg dp
Cp = — <C1BHB +ma>
Then you can write
1 dp
Up = m(—a_j) (H —y*) + Cip(y — Hp)

Now, we need two boundary conditions. For this, we will use the interface conditions. So,
at the interface you know that velocity is continuous as well as shear stress is continuous.
So, from these two conditions, we will be able to find these two constants. So, at the

interface of two layers ok, velocity is continuous and shear stress is also continuous.

So, if velocity is continuous, then you can write. So, this is at y is equal to 0 right; at the

interface means, at y is equal to 0. So, we can write
Ugly=0 = Ugly=0

So, at y is equal to 0; you will get C2a is equals to Cog. And if shear stress is continuous,

then you can write

TA|y=0 = TB|y=o

duy dug
Ma—— = Wp——
4 dy y:O B dy y:O
HaCig = HpCip
HZ op Hg op

CiyHy ———=—-C -
1A T o Ox BYE T o X

So, now you can write



10p wgHj — waHp

M7 20x (ugHy + MaHp) i
2 2
c _Ma :la_P upHj — uaHj
Y g M 20x (ugHa + waHp)pp

And if you put in the corresponding velocity distribution, you will get the velocity

distribution in two-fluid layers.
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So, after putting the expression of these constants in the velocity distribution, let us write
the final velocity distribution in two different layers. So, in fluid A domain, where y varies

from -Ha to O; fluid velocity is ua which is

u(y) =5—

[( UAHA ugH3
2IJA

—— (O +H )l
IJ-BHA + pyHg 4

Similarly, in fluid B layer, where y varies between 0 and Hg; we can write the velocity

distribution ug as

1
24p

HAHB ugHj

ug(y) =
B HBHA + pyuHp

0
~(-7%) [(Hé - - HB)]



So, now, you can see here, what velocity distribution we are found; now at the interface
obviously, the gradient will change and at the interface the velocity is continuous as well
as shear stress is continuous. So, how will draw the velocity profile? So, here you can see
that obviously for this particular case you can see that velocity distribution will look like
this.

So, some gradient will be there at the interface. So, this will be 64, ok. And at the wall, it
is 0. And if you draw from in fluid B; so there will be some velocity distribution maybe
like this, the velocity distribution will look like this and here you can see the tangent will

be this one and this is 0g.

So, obviously it depends on how the velocity will look like depending on 04 is greater than
O or Oa is less than Og; it depends on the viscosity pa and ps. So, if ps is less than pa,
obviously you may get the velocity distribution like this.

Now, let us take a special case, where you have the same height of the two layers; that
means Ha is equal to Hg. So, in this particular case, special case, where Ha is equal to Hg

is equal to H; then you can write the velocity profile

1 op\ [ Ha — Mp 1
=—(==X) |(H? — y2 H H
us (y) ZuA( ax> _( y)+uA+uB v+ A)_

1 0D\ [,.,2 o, Ha—Up ]
us) = 3 (=50 |0 =% + R HG + 1)

So, you can see that the velocity distribution is given for the equal height of the layers.

Now, if pg is less than pa. Then at the interface, shear stress is continuous.
So, ta is equal to ts. So,

_dug
_MB dy

Ha W

y=0 y=0

So, now, you can see from here that, if pg is less than pa; then obviously

duy
dy

du
> B
dy

y=0 y=0



So, from here you can see

dy

dy
dug =0

duA

y=0

So, this is the representation at that interface of the gradient, so that is nothing but tan 6g
is less than tan Ba. So, hence 05 is less than 6a. So, obviously, if ps is less than pa; velocity
distribution will look like this, such that at the interface 6g will be less than 6a. So, now,
let us find the volume flow rate per unit width.
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So, we know the velocity distribution. So, we can integrate it at a particular cross-section

and we can find the volume flow rate per unit width. So,

=upA= [, ,udA

Q 0 Hp
— = udy+f ugdy
W f_HA A . B

So, if you put the velocity distribution here ua and ug and if you do the integration and
putting the limits, you will get

_ ( 6p) Il <HA + Hg) 4= 1 (HA HB) <HAH§ - HBHi>l
ox Ha MUB 4\ M HpHy + HaHg



Now, if you take as a special case, where you have a single fluid layer, let us say Ha is
equal to H; then obviously you will get the volume flow rate same as for the plane
Poiseuille flow, where the distance between two parallel plates is H. So, a special case
where you have a single fluid layer, where we can put Ha is equal to 0 and Hg is equal to
H.

Then you will get a single fluid layer and it is a representation of plane Poiseuille flow,
where y is measured from the bottom plate and x is the axial direction and this is H. So, if

you put Ha is equal to 0 here and Hs is equal to H, then

Q ( op\[1H* 1( H?
w=(-5) [57 2 (‘7)”]

- 55
~12u\ 0x
So, you can see, this is the same expression as you will get for the plane Poiseuille flow,

3
where the distance between two parallel plates is H, and it is il (— O_p).
12u ox
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Under the influence of gravity a viscous liquid flows down a stationary vertical wall, forming a
thin film of constant thickness, H, An upflow of air next to the film exerts an upward constant
shear stress 1, on the surface of the liquid layer. The pressure in the flow is uniform. Derive
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Now, let us take another example problem. Under the influence of gravity, a viscous liquid
flows down a stationary vertical wall, forming a thin film of constant thickness, H. An up-

flow of air next to the film exerts an upward constant shear stress 1o, on the surface of the



liquid layer. The pressure in the flow is uniform. Derive a the film velocity u as a function

of y and b the shear stress 1o that would result in a zero net volume flow rate in the film.

So, here you can see, this is the thin liquid film of thickness H and x is in the downward
direction, y is measured perpendicular to this vertical plate. And in the airside, it is told in
the question that, it exerts upward constant shear stress is to. S0, at the interface, the to is
acting in the upward direction and gravity obviously is acting in the positive x-direction in

this case. So, this is g.

So, we have to find the velocity distribution inside the film as well as the shear stress 1o
that would result in a zero net volume flow rate in the film. So, you have to find the 1o
value, such that at any location in the liquid, net volume flow rate will be 0. So, we will
start from the ordinary differential equation; you can see in this particular case, it is
gravity-driven flow, there is no imposed pressure gradient.

And what are the boundary conditions, at y is equal to 0, it is a stationary plate; so u is
equal to 0 and at the interface, you have the shear stress which is actually equal to -to. At

the fluid layer, it will be equal to minus the imposed shear stress from the air side.

So, in this particular case, it is a balance between the viscous force and the gravity force.

So, it will be

p
u(y) = — + Cy + G,

2u

Aty is equal to 0, these are the boundary condition; at u is equal to 0, so that will give C»
is equal to 0.

And at y is equal to H, the shear stress in the fluid side will be equal to -1.. So, we can

write



HE e ="
So,
(—&+ C1> = -1,
So,
6= =22+ 292 (1, + pgh)

So, final velocity distribution,

1
u(y) = lpg (T_?
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So, this is the velocity distribution. Now, let us calculate the volume flow rate first; then
we will put the volume flow rate at 0 and we will find the value of shear stress t.. So, the

volume flow rate per unit width Q/W we can write as

Q=0



pgH® tT,H* _ 0
3 2

_ 2pgH

To 3
Due to gravity there will be a viscous force and that viscous force will be balanced by the

shear stress on the wall and the net volume flow rate will be 0. Now, let us consider the

next problem.
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An oll filled barge has developed a narrow longitudinal crack in its side which extends a distance
W in a direction perpendicular to this plane. Oil leaks out the crack and being less dense than
water, runs up the side of barge inciined at an angle 4 from the vertical in a thin layer of constant
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viscosity is very much greater than that of the water, Calculate the value of the volumetric flow
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An oil-filled barge has developed a narrow longitudinal crack in its side which extends a
distance W in a direction perpendicular to this plane. Oil leaks out the crack and being less
dense than water runs up the side of the barge inclined at an angle 6 from the vertical in a
thin layer of constant thickness h.

Upon reaching the air-water interface, it flows laterally away from the barge. The oil
viscosity is very much greater than that of the water. Calculate the value of volume flow
rate Q from the barge. So, you can see this is the oil-filled barge; so there is a crack and
from this crack, this oil is flowing inside. And as water is here, it is forming a thin film of
thickness h and this oil is going up and here the air is there; so it is flowing over this water

in this direction.



So, this plate you can see, it is having this angle 6 with the vertical direction. So, we need
to find what is the Q or volume flow rate of this oil, and the gravity is in this direction. So,
you can see, we can take the x-axis along this direction, and y we can measure

perpendicular to this direction.

So, we will have two components of this g. So, one is this direction and another is in this
direction. So, obviously you can see, this will be 6 and you will get gcos6 in the negative
x-direction and in the positive y-direction you will get gsin. Now, obviously from the y

component momentum equation, you can write

dp g
P pg sin

This is the hydrostatic pressure.

From the x momentum equation, you will get

0=-2 o4+t
=~ Tax P9 Mdy2

Now, if you consider at y is equal to H at the interface; so obviously you can see that you

will get water is stationery. And at this, you will get

dp B p
Ev Pwy COS

So, we can denote pa, po as 0il density and pw oil water and p is the oil viscosity. So, from

here you can see this we can denote as pw. So, from here if z—z is acting at the interface and
it will be imposed inside; because g—z is just constant, so it will be just imposed inside. So,
Z_ZWHI be the same inside the oil this, inside the thin film.

. d . .
So, obviously i value we can put it here as -pwgcos6. So, we can write

dz_u:_pw_pog cos 0
dy? Mo




So, now this ordinary differential equation, you integrate twice; find the velocity
distribution inside the thin film and from there, we can calculate the volume flow rate. So,

if you integrate twice, you will get velocity distribution

(pw - po)

8vy>+C C
21 gcosty®+Cy +(;

uly) = -

And boundary conditions are at y is equal to 0, it is a stationary plate, so u is equal to 0.

So, from here you will get C: is equal to 0. And at y is equal to H; you can see here it is
written that the oil viscosity is very much greater than that of the water. So, using that and
at the interface obviously, the shear stress du/dy will be 0; that we have already discussed

earlier. So, du/dy is O; so

= Pw=P) oson

Ho
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So, now if you put these constants in this expression, we will get

(Pw — Po)g cos O (h y)

Ho 2

u(y) =

Now,



Q_ H
W—foudy

_ (bw = po)g cos b l y
Ho 2

_ (pw —po)g cos b H*
3l
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A viscous oil leaks at 2 volumetric flow { to the atmosphere through a crack of height &, onto a
horizontal surface, where It continues to flow horizontally but with diminishing thickness hi(x),
The crack width W in the direction normal to the plane of the flow is much greater than k..
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Now, let us consider another problem, viscous oil leaks at a volumetric flow Q to the
atmosphere through a crack of height ho onto a horizontal surface, where it continues to
flow horizontally, but with diminishing thickness h which is a function of x. The crack
width W in the direction normal to the plane of the flow is much greater than ho. Assuming
that the initial thickness of the layer at x equal to O is equal to ho, derive an expression of
h(x).

So, you can see a viscous oil it is leaking into the atmosphere through this crack. And the
initial height of this liquid is ho and y is measured from the bottom and x is in this axial
direction and obviously, the plate is stationary. So, u is equal to 0; but the thickness is a

function of x from here.

So, you can see, if you measure x from here. So, at x equal to 0, you can put h is equal to
ho. So, h is measured from this place. So, at the interface how you can see the flow as half



of the plane Poiseuille flow. So, if you have a plane Poiseuille flow of height h; then

obviously at h/2 this is the interface and the shear stress we can put as 0.

So, we have a constant pressure gradient. So,

dp _

So, g isacting in this direction and the pressure if you integrate it, you will get atmospheric
pressure. So, this is your pa, then you can write

P =Pqt+pg(h—y)
So, from here you can see that

dp  dh

ox ~ P9ux
So, the velocity distribution in this layer will be the same as that in the lower half of the
plane Poiseuille flow in a channel of height 2h, where there is O shear stress at the mid-

distance h above the lower surface, ok. So, we can write for plane Poiseuille flow, we

know the volume flow rate, plane Poiseuille flow of a channel of height H.

So, we know that

Q _ (_ap>

W 12u\ ax

So, now, this thickness we are considering as half-width of the or half-thickness of the
plane Poiseuille flow. So, obviously in this case then H will be of 2H and volume flow
rate, obviously, it is it will be half.

So, for this problem, we can write

1 (2h)3< ap) _ pgh*dh

Q
w 2 12u 0x 3u dx

So, h is function of x, so dh/dx. So, now using this expression, you can integrate it and

after putting this boundary condition at x is equal to 0, the height is ho.



So, you can find the, this height in as a function of x. If you rearrange it, so you will get

3
an="2 4

pgw
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Now, if you integrate it

h o PGW
ht —h* 3uxQ
4 pg w
12ux Q
h(x)=h [1 - —

So, in today’s lecture, we have solved several problems, where we used the knowledge of
this exact solution of Navier Stokes equations, which we have already learned in this
module. We have seen how the engineering problems can be solved using the knowledge
of this Viscous Fluid Flow. You can solve several problems from any viscous fluid flow

book, which we have already referred to in this course.

Thank you.



