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Module - 02
Steady One-dimensional Rectilinear Flows
Lecture - 01
Plane Couette Flow

Hello, everyone. So, in the last module using the Reynolds transport theorem we derived
the continuity equation and Navier-Stokes equation. In today’s lecture, we will try to find
the analytical solution of Navier-Stokes equations for the simplified problem and simple
geometry.

(Refer Slide Time: 00:56)

Navier-Stokes Equations

In Cartesian coordinates (1,¥,7) c
Cortiruity eguatios Laminae, ncomeressitiv fow with constant Ausg propertie
da v dw
a + ;1 + = =0 7 i
.1

1 — tomgonent momentum eguition
du o ; du A ﬁb‘) dp [(Pu Fu i i*u)
Pl=tu—dr—tw— |2l b —d — |4 g
“lde & Ty Ta & '-x\nh' dy? r.’:-J P '
£ L o Companents of wSCOUS Stress 12ns0r
¥y — tomgoneat maomenium equition for iscompeentitie Newtonin Suid

(’dv (L T A S LT .
b U P W | 8 = @ [ s s | $ - - ¥
P & dx dy dr) dy "(ﬁx‘ dy? .?J‘J Pl = ';‘
&
1 - companent mamentum egquition - Ty ® 0"
['du e W > dp {'d’w c)"w‘&"w‘) : A
| —tu—stv—tw—)=——4pl—+ —+— ]+ 00 ~ = 2 —
L T ™ P Y I PR PR T i lakr .
[ dll]
Vaeticity wetor = Ty =ty = ”(ﬁ; z )
weFxu, \
(I’l‘ w
v Tu=Tg=H T’_)
v M du  dw dw v a9,

L= ——— A e )
R T T R " I (i

e U ® = “(Ih + 0—;)
You can see that in the last class we derived the continuity equation for Cartesian
coordinate. So, this is the continuity equation for laminar incompressible flow with

constant fluid properties. This is the X - momentum equation,
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this is the temporal term, p is the density of the fluid and you can see this is the convective

term which is non-linear. This is the pressure gradient term, W is the viscosity of the fluid

and this is the viscous term and this is the gravity term and which is known as the body

force term.

So, similarly, we derived the y-component of momentum equation and z-component of

momentum equation.
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So, you can see these equations are coupled and non-linear. You can also find the

components of viscous stress tensor for an incompressible Newtonian fluid. So, these are

the normal stresses and these are the shear stresses. Also, you can find the vorticity

component. So, this is the vorticity factor curl of the velocity vector and these are the

components of this vorticity w,, w, and w,.
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Exact Solutions of Navier-Stokes Equations

A solution of differential equation is said to be exact if it satisfies the equation at every point in
the interior of the flow domain and the prescribed boundary conditions at its surface.

Only a very limited class of exact solutions exists for fiow problems.

Most of these are limited to laminas, one- and two-dimensional flows, with constant fiuid

properties and a simple geometry, ~

Steady One-dimensional Fow:
One-dimensional rectilinear flow, u = u!\'), r=0w=0
Fully deve

flow between two infinite paralle! nlates,,
Fully developed shear driven flow between two infinite paralle! plates.

Axisymmetric rectilinear flow, 1t = v,(r), v = 0,05 = 0
Fully developed flow through circular pipe,
Axisymmetric torsional flow v = va(r), 1, =00, =0,

Fully developed flow between rotating cylinder,

Transient One-dimensional Flow:
u=ulyt) Flow near a plate suddenly set in mation
Steady Two-dimensional Flow:

u=u(y.z)

Flow inside rectangular/elliptical/triangular duct.

So, what is the exact solution of Navier-Stoke equations? So, that we can see that a solution

of a differential equation is said to be exact if it satisfies the equation at every point in the

interior of the flow domain and the prescribed boundary conditions at its surface.



As we told that only a very limited class of exact solutions exist for flow problems and
most of these are limited to laminar one and two-dimensional flows with constant

properties and simple geometry.

So, you can see that we can have the analytical solution for steady one-dimensional flow.
So, we can have a one-dimensional rectilinear flow. So, it represents the flow in the
Cartesian coordinate where axial velocity u is a function of y and other velocity

components v and w are 0.

So, the examples are fully developed flow between two infinite parallel plates; which is
known as plane Poiseuille flow fully developed shear driven flow between two infinite
parallel plates which is known as plane Couette flow. We can also have the axisymmetric

rectilinear flow; what is axisymmetric flow?

In the axisymmetric, the velocity in theta direction is 0 and the gradient of any velocity
component or pressure in the direction of theta is 0. So, v- is a function of r and vy is 0. So,
we can have the solution for fully developed flow through a circular pipe which is known
as Hagen Poiseuille flow and we can also have an axisymmetric torsional flow where vy is
a function of r only and v; and v, are 0. So, the example is a fully developed flow between

the rotating cylinder.

We can also have the tangent one-dimensional flow where velocity u is a function of one
space coordinate and time flow near a plate suddenly set in motion is an example of this
tangent one-dimensional flow and steady two-dimensional flow where velocity is a
function of two spatial coordinates y and z. So, the examples are flowing inside rectangular

or elliptical or triangular duct with uniform cross-section.
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Entrance and Fully-developed Region
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So, now let us consider flow inside two infinite parallel plates. At inlet, we have uniform
velocity inlet and you know that when it comes into contact with the parallel plates

obviously, there will be the formation of boundary layer.

Due to the viscous effect you can see that these hydrogen boundary layers will start
developing in near to the plate region and the thickness of the boundary layer will grow
gradually. And, outside this boundary layer near to the central region, the flow will be

inviscid and there will be no viscous effect.

So, you can see here this is the flow inside two parallel plates where inlet velocity is u with
uniform velocity, it is entering and you can see the thickness of this boundary layer is
gradually growing and this region where the viscous effect is not there that region is known
as inviscid flow region. And, velocity is a function of x, y inside the boundary layer and
outside obviously, it is constant.

And, this is known as core region velocity and you can see this core velocity will increase
at the different axial locations as you have the boundary layer near to the wall. After a
certain distance, you can see these boundary layers will merge in the central region and

after that, there will be no change of the velocity profile in the flow direction.

So, these region is known as fully developed region, where the velocity profile remains

the same. It does not vary in the flow direction and if x is the axial direction then in this



case y is measured from the axis and u is function of y only ok. And, you can see if the
distance between two parallel plates is 2H, then these maximum hydrodynamic boundary

layer thickness will be H ok.

And, this region is known as hydrodynamic entrance region where the thickness of the

hydrodynamic boundary layer increases and up to the point where it merges.
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Entrance and Fully-developed Region
Entrance region is characterized by the following features: ...

The y -velocity component does ot vanish, 1 = 0,
— )
g—ﬂ’ %1' ,

The streamlines are not parallel.
" 1 M T I{I' . 3 e e N-- y
Pressure decreases with axial direction, = < 0. s A
[} -

jlili’f

Core velocity, U, increases with axial ditection X

Velocity boundary layer thickness, &, Is within half height of the channel, § < H

Fully developed region is characterized by the following features:
The y wvelocity component vanishes, v =0,
The streamlines are parallel,

y -anin s - - U
The axial velocity, u, Is invariant with the axial direction X, = =0
or -

Ry . dp
Pressure decreases with axial direction, e <0,
[

Velocity boundary layer thickness, §, is equal to the half height of the channel, 5_= H.

So, you can see here the entrance region is characterized by the following features. The y-
velocity component does not vanish; that means, v not equal to 0, in the hydrodynamic
entrance region. The streamlines are not parallel. Core velocity, uc, increases with axial
direction x. So, this is the uc it increases to maintain the conservation of mass at every

cross-section.

Pressure decreases with axial direction which means, dp/dx is less than 0; that means, the
flow takes place from high-pressure region to low pressure region. Velocity boundary
layer thickness delta is within half-height of the channel; that means, in the hydrodynamic

entrance region & will be less than H.

A fully developed region is characterized by the following features. So, you know that this
is the fully developed region. The y-velocity component vanishes and v is equal to O in the

fully developed region. The streamlines are parallel. The axial velocity u is invariant with

the axial direction x; that means, Z—Z will be 0, because these velocity profiles u is a function



of y only and it does not change in the direction of the flow. So, Z—Z will be 0 in the fully

developed region.

Pressure decreases with axial direction; that means, Z—Zwill be less than 0 and velocity

boundary layer thickness & is equal to the half-height of the channel; that means, & will be
H. So, in the fully developed region, as the parallel plates are separated by a distance 2H,

so, hydrodynamic boundary layer thickness will be H in the fully developed region.
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Steady, One-dimensional Rectilinear Flows

Continuity equation: seady, laming moressible fullv-developed f]

du‘+dv ay 7
e e s to o
jx dy {z w0 2().0
0 s o, 2% -0
0 iy sl o, Zh o
2L .0
az
wa O
D -0  } e
4 =
Y e
=0
; il afe e S

Now, let us consider steady one-dimensional rectilinear flow and now, we will simplify

the continuity equation and Navier-Stoke equation, so that we can have the exact solutions.

So, first, we are assuming that it is a steady laminar incompressible fully developed flow.
So, you can see that we are considering one-dimensional rectilinear flow. And in the third

direction let us say that in the z-direction it is infinite and w velocity is 0 and the gradient
of any quantity in the direction of z is 0 ok. So, % of any quantity is O as it is infinite in

the z-direction.

Now, as it is a fully developed flow so, we have z—z is 0. Velocity profile u does not change

in the direction of the flow. So obviously, you can see that we have g—’; is 0 and also ‘;—VZV IS

0, ok. So, from this continuity equation, you can see we have this is 0, as it is fully



developed flow, this is 0. So, we have Z—; is equal to O; that means if you integrate it v will

be constant ok.

And, as you are considering let us say that flow between two parallel plates so, these are
non-porous plates. So, if these are non-porous, then v will be 0 at the plate. So, if you can
see that if v is 0 at the plate and let us say y is measured from here, so, obviously, if v is 0
at the plates then integration constant will be 0 and v will be 0 everywhere inside the flow

domain ok.

And, now we can see that del of del z of any quantity is 0. So, that means, we have Z—Z is0

and we have ‘;—Z is equal to 0; because the third direction is infinite and the gradient of any

quantity is 0 in the z direction. So, obviously, u is not a function of x, u is not function of
z. So, that means, u is function of y only and at as it is a steady flow, so obviously, it is not
function of time. So, u is a function of y only.

Now, let us consider the x component of the momentum equation, and let us simplify this

equation invoking the assumptions.
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Steady, One-dimensional Rectilinear Flows
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So, you can see that it is a steady flow. So, Z—Z is 0 because it is a steady flow it is a fully

developed flow so, this is 0. We have seen that v is 0, w is 0. So, you can see left hand side



ou . o%u. . Ou. 9%u .
all terms are 0 and as S 0 everywhere so, s 0; Pl 0 everywhere so, Py also will

be 0 and already we have shown that u is a function of y only.

So, now these partial derivatives we can write as ordinary derivative keeping that z—z maybe

it is constant. So, we can write

0= 0,
- ax uayz pgx

gx Is the component of the g in the x direction. So, we can have the governing equation to
find the velocity profile

’u 1 <6p )
ayz - “. ax pgx
So, in most of the flows, we get that Z_z is constant. So, this is the pressure gradient is

constant except the pulsatile flow. So, in the right-hand side you can see this will be
constant so, you can integrate this governing equation and satisfy the boundary condition

to get the velocity profile.

Once you find the velocity profile then you will be able to calculate the shear stress. In this
particular case, when we consider flow inside two infinite parallel plates we will have one
non-zero shear stress that is tyx because in this case u is a function of y only and the other

components of velocity is v and w are 0.
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Steady, One-dimensional Rectilinear Flows
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So, we have shear stress component

_ <0v+6u>
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So, in this particular case v is 0. So,

ou
Tyx = .u@

Similarly, vorticity you can write one component will be non-zero,

_ v Jdu
Y2 = 5% " ay
So, this is 0. So,
_ u
w, = ay

So, if you can find the velocity distribution u then obviously, you will be able to calculate

the shear stress and the vorticity component.

Now, to find the volume flow rate at a particular cross-section then you can find Q as

Q=J,uly)dA



So, once you integrate then you will be able to find the volume flow rate at a particular

cross-section.
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Steady, One-dimensional Rectilinear Flows
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Now, for this particular case when we are considering flow inside two infinite parallel
plates let us simplify y and z-component of momentum equations. So, you can see this is

the y component of the momentum equation
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as it is a steady flow % is 0; as v is 0, left side all the terms are 0 and we have obviously,

v is 0 so, all these terms are 0 in the viscous term.
So, we will have only

dp

ay = pgy

So, obviously, this is nothing but the hydrostatic pressure right. And, similarly, in the z-

component of momentum equation
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1—‘;" is 0 as it is steady state w is 0, so, these terms are 0. The viscous term is also 0 as w is

0. So, you will get

ap_
aZ _ng

So, this is also hydrostatic pressure as w is equal to 0.
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Steady, One-dimensional Rectilinear Flows
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So, now we know that pressure is function of x, y and z. So, we can write

dp dp dp
dp —&dx+a—ydy+£dz

So, we can write

d
dp = a—zdx + pgydy + pg,dz

So, this is constant let us assume. So, if it is not versatile flow, then obviously, Z—z will be

constant inside pipe flow. So, you can see now if you integrate it keeping % IS constant,

we can write p as



9]

p
p=&x+pgyy+pg22+c

Where c is the integration constant. So, using this expression you will be able to find the
pressure distribution inside the flow field. So, this is the expression for pressure.
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Plane Couette Flow
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Now, let us consider plane Couette flow which is known as shear-driven flow. So, flow
inside two parallel plates where one plate is moving with respect to the other. So, we are
assuming steady laminar incompressible fully developed flow and we are assuming for
this particular case as we are considering plane Couette flow, pressure gradient and gravity

in the direction of the flow are 0 and it is shear driven flow due to movement of plates.

So, in general, we are considering two infinite parallel plates separated by a distance H, x
is the axial direction and y is measured from the bottom plate and let us consider that
bottom plate is moving with a constant velocity Uy and the upper plate is moving with a

constant velocity Uz, where t represents top and b represents bottom.

So, in general, first we will find the velocity distribution and the shear stress distribution
and then we will calculate the volume flow rate. So, as we have seen that % is 0 and gx is

0. So, whatever governing equation we have derived you can see that

0%u 1<6p
dy* wu

& - ng>



So, these are 0 for this particular case. So, we have the governing equation

0%u 0
dy?
Now, integrating this equation what you will get?

au_c
ay_ 1

And again if you integrate you will get u which is function of y as
u(y) =Gy + G

Now, let us find these integration constants C;, C, invoking the boundary conditions. So,

we have the velocities known at bottom and top plates.

So, what are the boundary conditions boundary conditions? So, we have at y is equal to 0

u is equal to Up. So, at y is equal to O if you put is u is equal to Uy, this will give
C,=U,
And at y is equal to H we have u is equal to U:. So, this will give
U, = C,H + U,
So, that will give

U = Up

C. =
1 H

So, now if we put the values of C; and C, we will get the velocity profile as

U — U,
H

u(y) = y+U,
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Plane Couette Flow
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Now, let us find the volumetric flow rate. So, we can find
Q=/,ul)dA

So, let us consider that W is the width of the plates. So, in the z-direction say let us say
that we have the width W which is very long and we are considering one elemental strip

dy at a distance y from the bottom plate.

So, you can see if you consider these elemental flow areas so, you will get dA as elemental

flow area as Wdy. So, now, we can write

H
Q= j ulWdy
0

So, let us calculate the volumetric flow rate per unit width; that means, Q/W. So, it will be

_JH(Ut_Ub +U)d
= . H y p|ay

Qe
W

—Ut_UbH2+UH
- H 2 b

H
= U + Ub)?



So, average velocity now you can calculate. So,

Q U +U,
HW 2

Uw =

So, now, let us calculate the shear stress. So, we have

So, you can see that tyx is constant because U;, U,,, H and u are constant. So, this is constant

inside the flow domain.

So, we have found the velocity profile, the volumetric flow rate and the shear stress, if you
see the expression for velocity profile you can see it is a linear profile and velocity will
vary from Uy from the bottom plate to Ut at the top plate and shear stress is constant. So,
you can see that this is your variation of velocity as a function of y and shear stress will be

constant.

Now, we will consider four different cases. The first case we will consider that the bottom
plate is stationary and the upper plate is moving with a constant velocity u.

(Refer Slide Time: 28:43)

Plane Couette Flow
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So, this is the special case where bottom plate is stationary u is equal to 0 and upper plate

is moving with a constant velocity U. So, we can see whatever expression we have for



velocity distribution, shear stress and the volumetric flow rate just let us put Uz is equal to

U and Uy is equal to 0. Then we will get the velocity profile u(y) so,

) = Uy

So, it will vary from 0 at the bottom plate to U at the upper plate. So, this is the velocity

profile.

Now, if you calculate the shear stress tyx it will be

_w
Tyx = I,
And
Q UH
w2
And
U
Ugy = E

So, now if we want to calculate the force required to move the upper plate of length L,

then you can see that if you have an upper plate of width W.

So, let us say that this is W, top view we are seeing and at a distance x if you take one
elemental strip of distance dx then the area elemental area dA will be just Wdx over the
plate. So, obviously, F you can calculate as

L,uU

F=[,Tyly-ndA :fo FWalx

F
w H
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Plane Couette Flow
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Now, let us consider the 2" case where both the plates are moving with the same velocity
in the same direction ok. So, that means, Ut and Uy is equal to U. So, now, we are
considering Ut is equal to U, Uy is equal to U. So, this is known as plug flow because from

here you can see that your velocity uy; if you put u here so, this will become 0.

So, it will be just u and tyx obviously, from this expression you can see it will be 0. Q/W
will be from this expression you can see it will be Uy and uay obviously, it will be U. So,
you can see that the fluid will have the motion as a solid body because the whole fluid will
move with a constant velocity U and hence there will be no shear stress so, tyx is 0. So, it

is known as plug flow.
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Plane Couette Flow
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The 3" special case we are considering that the top plate is moving in the x-direction at
velocity constant velocity U: and the bottom plate is moving in the opposite direction as -
U2 ok. So, U is equal to -U; at the bottom plate and at the top plate U is equal to plus Us.
So, this is moving in this direction and the upper plate is moving in the positive x-direction.

So, if you put this expression Ut is equal to U and Uy is equal to -Uz, the velocity profile

you will get
U, + U,
u(y) = H y—U,;
Shear stress tyx will be
_ wU; +U;)
e T
Q H
w = (U, - U) 2
and
(Ul - UZ)



So, now you can see in this particular case obviously, inside the flow domain somewhere
the velocity will become 0. So, at what distance y you will get the velocity O let us find.

So, you can see u will be 0. So, from this expression you can see if you put it. So,

U, + U,
7} Vlu=o = Uz =0
So, that will give
_ UH
y|u=0 - U1 + U2

So, you can see the velocity distribution will look like this it is a linear profile and at this

distance the velocity will become 0 at this distance.
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Plane Couette Flow
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Next let us consider that top and bottom plates are moving with a same velocity, but in
opposite direction ok. So, we can see that it is moving with minus U, so that means, in this
direction and u is equal to U in this direction. So, obviously, the velocity profile u(y) will
be



So, from here you can see that u will be 0, when

2U
F.’ylu:O -U=0

So,

_H
y|u=0_2

So, this is the velocity profile and as you can see that you have from the here upper side
you have velocity in the positive direction and the bottom side it is in the negative direction

and you will get average velocity as 0.
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Two-layer Plane Couette Flow
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Now, let us consider two-layer Couette flow where we have two different fluids inside
these two parallel plates where upper plate is moving with respect to the bottom plate these

two fluids are immiscible and having different viscosity.

So, if you consider here x is the axial direction, y is measured from the bottom plate; the

bottom plate is stationary, the upper plate is moving with a constant velocity u in the



positive Xx-direction. And, this is fluid A where viscosity is Ua, this is fluid B where
viscosity is us and these fluids are immiscible. So, the interface is located at a distance Ha

from bottom plate and at a distance Hg from the top plate.

Now, we are considering steady incompressible fluid flow. So, we have the same

governing equations. So,

0%u “ o
dy? B

So, for fluid A just we will write this equation as

0%u,
dy?

This is in the range 0 to Ha and you will get the ua as
uy = Cipy + (g

So, if you put boundary condition at y is equal to 0, ua is equal to 0. So, that will give Coa

is equal to 0 hence you will get

Uy (y) = Cray

Now, for fluid B, we can write the same governing equation where Usg is the velocity

profile inside the domain for fluid B. So,

0%ug

dy? =0

And this is valid in the range Ha to Ha+Hzg. So, we will get the velocity profile ug as
uy = Cipy + Cop

Now, we will apply the boundary condition at y is equal to Ha+Hg , ug is equal to U. So,

that will give
Cop = U — Cyp(Hy + Hg)

So, if you put these value in this expression so, the velocity profile us we will get as



ug(y) =U —Cip(Hy + Hg — y)

So, now, at the interface we will apply the interface condition ok. So, at the interface you
know that velocity is continuous velocity will be the same and the shear stress is

continuous ok. So, at the interface,
Uy, =ugaty =Hy
So, if you put it so, from this expression you can see
CiaHy =U — Cip(Hy + Hp — Hy)
So, we will get

U - ClBHB

C., =

Now, let us write at interface that shear stress is continuous. So, at y is equal to Ha; that

means, at interface we have shear stress is continuous shear stress is continuous.
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So, you can see that at this point the stress from side fluid A will be equal to the stress
from fluid side B. So, tyx from fluid A will be equal to shear stress from fluid B at y is

equal to Ha; that means, at the interface.

S0, you can see



duy
Ha dy

dug
=Up——
4 dy

B

So, you will get

PaCia = upCip
So, you can write that

U—CigHp
Ua T = ugCip
A

pal

Crp=—2
Y ugHy + uaHp

So,

oo o mU
YW ua " T ugHy + pgHg

So, the velocity profile in the two layers we will get

upU y
ugHy + pyHg

u(y) = Cay =
In the range y between 0 and Ha.
Similarly,

upU

—U—-Cp(Hy+Hy—y)=U———B"
ug(y) 18(Ha+ Hg —y) ioHy + 1aH,

(Hy + Hg —y)

In the range of y Ha less than equal to y less than equal to Ha+Hg.
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Now, let us find the shear stress distribution in the fluid domain A and B. So, shear stress
you can find
o duy _ co = tappU
yx, = Ha dy Halia —,UBHA + i Hp
In fluid domain b you will get

dug UatgU

= — C e —————————
Tyxp = HUB dy Uplip s H, + i Hy

So, if we look into the expression you can see that tyx in the fluid A and fluid B are same

and constant; that means, the shear stress will be constant and same value in entire fluid

domain . So, that means,
TnyA = TyxlB

So, now from this expression you can see the if you want to compare the velocity gradient

say
dug
dy _GCis
du, C_lA = Ua/lp



So, if you consider that the viscosity in fluid domain A is greater than the viscosity in the

fluid domain B. So, what will happen? So, from this expression you can say that u, if it

is greater than u then obviously, % will be greater than % . S0, obviously, you can see

that the fluid velocity is linear inside domain fluid domain. So, obviously, this will be

constant in the entire fluid domain.

So, obviously, you can write

dy dy
dug duy

\ So, if your velocity is varying linearly so, you can see that this is your dy and this is your
du. And, if this is the angle 6 so, you can see you can write dy/du as tan 6 ok. So, you can

see ddTy will be just tan6gs will be less than tan6a; that means, 0g will be less than 0.
B

So, depending on the values of u, and pg you can see that if u, is greater than ug, you

will get Og as less than Oa.
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So, now, let us plot the velocity profile for two different conditions. So, we have already
found that if u, is greater than g then 6a will be greater than 6g and obviously, you can
see that this is the angle for the velocity profile in fluid domain A. So, this will be 64 and

this is 0g. So, 6 will be greater than 0g.



So, you can see that velocity is linearly varying in the fluid domain A after that. So, 6g
will be less than 6a. So, your velocity profile will look like this ug in the fluid domain B

and if you consider that p, less than ug . So, then you can so that 64 will be less than 6g.

So, you can see this is 04 and this is 0g. So, 0a obviously, is less than 0g. So, your velocity
profile will be like this after that s will be greater than 6a. So, ug velocity profile will

look like this. So, in this way you can plot the velocities in the two different fluid domains.
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Now, let us find what is the volumetric flow rate for these two layer Couette flow. So, in

each fluid domain we need to integrate this integral udA to find the Q. So,

Q Hpy Hp+Hp
sz uAdy+J ug dy
0

Hy
Ug U j-HA J«HA+HB Ua U
= ydy + {U——(H +H —y)}dy
MaHp + p1pHy Jo Hy HaHp + pHy 4 g
So, now if you integrate it, it will be
pp U Hj paU 1 .
=——————+UHg ———{(Hy + Hg)Hp} — = (Hz + 2H,H

UH? U H?
— UH, + Up Ully Ha {2_ B}

2(uaHp + ppHy)  paHp + upHy 2



= UHp + (ugHi — uaHB)

2(uaHp + ugHy)

So, this is the expression for volumetric flow rate per unit width for two layer plane Couette

flow.
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Now, let us see the special case where we have pu, is equal to up is equal to y; that means,

we have same fluid in region A and B. So, in this case you will get obviously, you can see

Uy

uAZuBZH()’)=m
B

and

0 U U
W UHg +E(HA_HB) =E(HA+HB)

And, let us say that Hg is equal to 0 and Ha is equal to H then you will get plane Couette
flow. So, you see the velocity profile will be same as the plane Couette flow whatever we

have derived

U
u(y) ==

And



So, in today’s class first, we simplified the Navier-Stoke equation invoking the
assumptions so that we can have the analytical solution. So, what we did? We converted
the partial differential equation to an ordinary differential equation invoking the
assumptions. Then, we derived the velocity profile, shear stress distribution, the volume

flow rate and the average velocity for plane Couette flow considering different cases.

Then we considered two-layer Couette flow where we have two immiscible fluids of
different viscosities u, and ug. In this particular case, we found the velocity distribution

in fluid layer A and fluid layer B.

Then, we calculated the shear stress distribution and as we have the interface condition
that shear stress is continuous at the interface and in each fluid layer the shear stress is
constant, hence the shear stress is the same and constant for the whole fluid domain. Then

we calculated the volumetric flow rate inside the flow domain for two-layer Couette flow.

Thank you.



