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Initial and Boundary Conditions

Hello, everyone. So, in the last class we derived that Navier-Stoke equations. Today, we will
just write down the differential form of the momentum equations and the shear stresses acting
on the fluid element in Cartesian coordinate, then we will write down these equations in
cylindrical and spherical coordinates. Then we will discuss the initial conditions and boundary
conditions for Viscous Fluid Flow.
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So, you can see that we have already derived these governing equations for laminar viscous

fluid flows. So, this is the continuity equation

dp _,
TRl (pV) =0

and this is the Navier-Stokes equations

d(pV)
at

+V.(pVV) = —Vp + V.(uVV) + pg



So, these are written in general form and it is applicable for both incompressible and

compressible fluid flows.

And, if you remember that we have also written the Cauchy stress tensor as a summation of
these hydrostatic stress tensor and the deviatoric stress tensor. So, now if you remember that
whatever we have written 1jj this is the second ordered stress tensor and we can denote this 1j
where this index i is the direction normal of the face on which it is acting. And, index j is the

direction of action of the state component itself.

So, if you can see this is one fluid element the stresses acting on the surface x is in this direction,
this is the y and this is the z-direction. If you consider this surface one where at this point you
can see that sheer stress acting on the surface normal to the surface is txx; that means, this the

first x is for the direction normal of the face on which it is acting.

So, you can see on this for this surface 1 the normal direction is the x-direction right. So, txx
obviously, the fist X is the direction normal of the face on which it is acting and the second X is
the direction of action of the stress component itself. So, it is acting in the x-direction. So, this

iS TxX-

Now, if you consider txy, then x is the direction normal of the face on which it is acting. So,
this is the normal direction you can see x, and in which direction it is acting? It is acting in the
y-direction; that means, this y is the direction of x» of stress component itself and similarly tx,
you can see that z is the in the direction of action of stress component in the z-direction and x

is normal to this surface.

So, in other surfaces two and three similarly, these stress components can be defined. If you

consider incompressible fluid flows then obviously, for constant density incompressible fluid

flows you can write % which is nothing but VV is equal to O.
k
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Now, onwards for convenience, we will denote the deviatoric stress tensor for incompressible

fluid flows as
_ aui n au]
TU —H ax] axl-
Earlier as we denoted as o;; and for incompressible fluid flows |s equal to 0. So, these

deviatoric stress tensor. So, this just in general will say that it is the shear stress acting on the
fluid element. So, now, you can see that for 3-dimensional fluid flows we can have 9
components of this shear stress and out of that 6 will be unknown. So, let us write down the
stress components in terms of the velocity gradient.

So, first, let us write that in the normal stress which is acting on the surface normal x and in the
x-direction. So,

du OJdu u
Txx=“(a+a)=2“a

So, this is acting normal to the surface. Similarly,
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Similarly,
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So, these are the stresses acting perpendicular to the surface.

Now,
du OJv
Txy zﬂ(@-l'a) = Tyx

Ju Jdw
Txz :ll( + > = Tzx

9z | ox
B (61) N 6w> _

So, you can see we have 6 components 1, 2, 3, 4, 5, 6 as 1xy Is equal to tyx, Tx; IS equal to Tz«

and 1y, is equal to tzy. So, there are 9 components. So, we can write
Toxx Txy Txz
Ty = U Tyx Tyy Tyz
Tzx sz T2z
And if you can see that txy is equal to tyx, Tx IS equal to tzx and ty; is equal to tzy.

So, although there are 9 components, 6 are unknown. So, whatever Navier-Stokes equations
we have derived. So, you have this non-linear term which is your convective term. So, let us

express this convective term in differential form.
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So, now, if we write this convective term which is your non-linear term so, we can write
V. (pl717) =V. {pl_/( ul +vj + WE)}
=V.(pVu)i + V.(pVv)j + V. (pVw)k
=V. {(p( ul +vj + wlz)u)i + V. (p( ul +vj+ Wl?)v)j + V. (p( ul +vj + WE)W)E
9] 9] 9] (0 0 9] .
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So, now you can see that we have written this term now the temporal term whatever you have.
So, if you write u component of momentum equations so, only x component if you write. So,
you can see here you can write
d(pu) Jd(puu) Jd(pvu) Jd(pwu d
(pw) | 9(puw)  d(pvw)  d(pwu) _ _ Op

__r 2
ot ox 3y 3z ax THV Ut gz

ou dap Ju d(pu) Ju d(pv) Ju d(pw)
Partuac TP T ax TPy YTy TPV T Ty

0
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Now, what is our continuity equation if you go back and see the continuity equation you can

see Z—’t) +V(p V) isequal to 0. So,

6u+ 6u+ 6u+ Ju 6p+ V2y +

—_ u— v— w—,|=—— u Z
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So, you can see this equation actually it is in the non-conservative form we have written ok.
So, this is the equation in conservative form and this is the equation of x component momentum
equation in non-conservative form and we have invoked the continuity equation and we have

written it; that means, we have written you can see these terms.

So, if you take u common then you will get

dp d(pw) d(pv)  d(pw)
u at+u ox +v dy +w 57

So, this is the continuity equation. So, we have invoked this continuity equation has 0 and we
have written this continuity this x-component of momentum equation in non-conservative

form.

So, if you see in the Navier-Stokes equation we have the pressure gradient term as well as the
body force term. So, can we club this together to get some quantity which is having some

physical significance?
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So, whatever pressure get in term is there you can see that we have written
—Vp* =-Vp+pg

So, if we are considering body forced term as the gravitational acceleration, then obviously,
this p* will denote as the piezometric pressure. So, let us just write the z-component of the
momentum equation and we considered this pressure gradient term and the body force term
and let us say that this is the z-direction, this is the y and this is the x-direction and gravity is

acting in a negative z-direction.

So, you can see that in X and y components of momentum equation obviously, we do not have
any component of this gravity. However, in the negative z-direction we have the gravity term

as g. So, this is the g so, obviously, for z component of momentum equation we can write

dp” 0p
9z 0z
dp* Jdp

Z 9z oz PY

So, now, we will integrate it and for constant density incompressible flow. So, rho we can keep

it as constant. So, we can write

p*=p+pgz



So, you can see with some constant, but if you put that at z is equal to 0, p is equal to 0, then
obviously, you will get that constant as 0. So, you can see that in general Navier — Stokes
equation instead of this pressure gradient and the body force term, we can write in terms of

some modified pressure which is your piezometric pressure.

As you are considering the gradient of the pressure in the governing equation, so you can see
that it does not matter whether it is a modified pressure or it is a thermodynamic pressure or
mechanical pressure. So, we can actually club together this pressure gradient term and body
force term and we can write one modified pressure when we considered gravity as the body

force term then; obviously, it comes down to the piezometric pressure.

So, we can drop the gravity term and we can deal with the piezometric pressure and as we are
dealing with the pressure gradient so, it does not matter whether it is piezometric pressure or it

is thermodynamic pressure.
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Navier-Stokes Equations
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So, you can see that in Cartesian coordinate we can write the governing equation for laminar
incompressible flow with constant fluid properties. So, you can see this is the continuity

equation. So, this we have already derived.

6u+6V+6W_0
ox dy 0z
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So, this is the x component momentum equation and similarly y and z component of momentum

equation you can write like this.

ov  dv  dv ov op 0%v 9%v 0%v
| M
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So, you can see the this we have written in non-conservative form and in vector form in general
we can write

o) - I
p7+V.VV == —=Vp +uV<V + pg

And, a component of viscous stress tensor for the incompressible Newtonian fluid you can see
that we have already written these expressions. So, these are the normal stresses and these are

the sheer stresses.

So, this T represents obviously, you can see for incompressible fluid flow these the deviatoric
stresses that we have represented here.
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Similarly, if you consider a cylindrical coordinate this is the x, y and z. So, at this pointitisr,
0, z; r is the radius, and 6 is measured from here. So, whatever governing equation we have

derived in Cartesian coordinate and if you use this transformation function because from here

Navier-Stokes Equations

Transformation functions
“rsh »

=gy »

1R e o

! Components of vicous i temar
for iscompressibile Newtonian fluld
A

you can see that x equal to rcos6, y is equal to rsind and z is equal to z.

So, using this transformation function you can convert these governing equations from
Cartesian coordinate to cylindrical coordinate. So, you can see this is the continuity equation,
this is the r component of momentum equation, this is the 6 component of momentum equation
and this is the z component of the momentum equation and corresponding viscous stresses are

written here. So, these are the normal stresses 1, top and 1z and these are the shear stresses.

So, in this case o Will be ter, T2 is equal to tzr and e is equal to te; Where vy is the velocity in

the radial direction, vy is the velocity in the tangential direction and v, is the velocity in the z-

direction.
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Similarly, in spherical coordinate, if you consider this as r, 6, ¢ and 6 is the zenith angle it
varies from 0 to ¢ and ¢ is the azimuth angle. So, it varies from 0 to 2¢ then if you use this
transformation function x equal to rsinf cos¢ and y is equal to rsinfsing and z is equal to rcos6.
So, from the Cartesian coordinate governing equations to cylindrical to spherical coordinates

governing equation you can convert.

So, these are the continuity equations where vy is the velocity in the r direction, ve is the velocity
in 0 direction and vy is the velocity in ¢ direction. So, similarly, we can write the r component
of momentum equation, 6 component momentum equation and ¢ component of momentum
equation where this nabla square vi in spherical coordinate is denoted like this. And, the viscous
stress tensor in spherical coordinates you can write tr, Tee, T¢ these are the normal stresses and

these are the shear stresses.

So, you can see that the governing equation whatever we have derived the Navier-Stokes
equation we have four independent variables that is X, y, z, and t and four dependent variables
u, v, w and p. And, we have four scalar equations three component of momentum equations
and one continuity equation. In general, you can see these Navier-Stokes equations are non-

linear and couple.

So, the general solution after integrating this equation is very difficult. However, for simplified

geometry and simplified assumptions, we can have the integral solution of these equations.



Now, when we solve these equations by integrating and invoking the assumptions we must

specify the physical conditions to constant the flow at the boundaries.

So, those are known as boundary conditions and for time-dependent flow we must specify the
state of the flow at an initial condition and that is known as initial conditions. So, you can see
that the governing equations whatever we have written so, we have a time derivative. So, these

are time-dependent governing equations.

So, if you are solving any time-dependent problem or unsteady problem, then at time t is equal
to 0 you need to specify the initial condition. So, how do you determine that how many initial
conditions and how many boundary conditions are required for a particular problem? So, it

depends on the highest order of the partial differential equation.

So, we can see in the Navier-Stoke equation we have the first derivative with respect to time.
So, obviously, one initial condition is required and if you see in the special variable we have
highest order is second order. So, we need two boundary conditions in each direction ok. So,
if it is a 3-dimensional flow then in three directions in each direction we need two boundary

conditions. So, total 6 boundary conditions are required.
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So, we can see that for an unsteady problem at time t is equal to 0, we need to specify the value
of any variable at interior domain. So, it may be a function of x, y, z or it may be 0 or it may

be constant where ¢ represents any variable u, v, w or p ok.
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Now, in general, we can have three different types of boundary conditions; first is the Dirichlet
type boundary condition where the value of a dependent variable is specified at the boundary

ok. So, you can see that we can have this value of ¢ as a function of space and time, ok.

So, we can see that this ¢ may represent u, v, w or p. So, if you are specifying the values of this
dependent variable at the boundary then that is known as Dirichlet type boundary condition
and it may be a function of space only or function of time only or it may be constant or it may
be 0.

So, if we can see that if we consider a solid boundary ok; so, in the solid boundary; obviously,
we invoke the no-slip condition; that means, there will be no relative motion between the
boundary and the fluid. So, that means, your velocity will be 0 at the solid boundary. So, you
can see that this is the example of a Dirichlet boundary condition even at the inlet you can
specify the velocity or at the outlet, you can specify the velocity. So, those will be Dirichlet

type boundary conditions.

The next one is Neumann the normal derivative of the dependent variable is specified at the

boundary. So, for any surface, if that normal derivative let us say if n is normal. So, Z—f IS

specified. So, it may be spatially varying or with time it may vary. So, you can see this is the
Neumann type boundary condition. So, you can see ¢ maybe u, v, w or p and this may be equal
to 0 or it may be a function of only space or it may be a function of only time or it may be

constant ok.



So, generally at outflow boundary condition for the velocities, we specify that ‘;—z is equal to 0,
where say if you consider any channel flow and if it is fully developed flow at the outlet and if

this is the x-direction then normal to these boundary you can see g—;‘ will be 0 and similarly, Z—Z

will be 0 and 2% will be 0.
dx

So, this is an outflow boundary condition. So, this is one example of Neumann boundary
condition. Another type of boundary condition we can have Robin or mixed type boundary
condition which we are having the linear combination of the dependent value and its normal

derivative is specified at the boundary.

So, we can write this as

9
a¢+ﬁ£=y

So, n is normal to the boundary ok. So, where a, # and y are the known functions; a. So, you

can see that we have a specified value at ¢ and the normal gradient we have % is equal to y.
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So, now we will discuss about different boundary conditions which we encounter in fluid flow
problems. First we will discuss about solid wall boundary condition which we actually apply

no slip boundary condition at the wall; that means, the fluid sticks to the boundary this



boundary condition says that the fluid in contact with the wall will have the same velocity of

the wall.

So, you can see that if this is the solid wall and the fluid velocity V will have the same velocity
at the solid. So, obviously, for this stationary wall this solid wall velocity will be 0, so V will
be 0. So, in this particular case if it is 2-dimensional flow then u will be 0 and v will be 0. So,

this boundary condition is commonly known as no slip boundary condition.

Then we will discuss about the permeable wall, if the boundary is permeable then fluid can
cross the boundary. So, you can see that in this figure we have shown permeable wall where
suction is taking place; that means, the fluid velocity here normal to this boundary will have
the velocity minus v; that means, here in this case tangential velocity u is equal to 0 and normal

velocity.

So, this is flowing through the wall v not equal to 0 and for this particular case v will be just
minus v for suction and if it is a blowing then obviously, this v will take place in the positive y

direction. So, v will be positive V.
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In some flows there is a plane of symmetry since the velocity field is the same on either side
of the plane of symmetry the velocity must go through a minimum or maximum at the plane of

symmetry.



So, if we consider this channel flow let us say flow inside two infinite parallel plates and x is
the axial direction in this particular case the flow will be symmetric about this central axis the
distance between two parallel plates. So, this will be from the centerline if we measure so, it

will be h and it will be h, then at y is equal to 0, there will be a symmetry plane.

So, in this case, normal velocity so, v will be 0 and shear stress tyx will be 0 and in this particular

case obviously, y is measured from the centerline. So, z—; will be 0; that means, the flow will

be maximum or minimum at this plane of symmetry.
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Now, another boundary condition we will discuss is free surface. So, you can see there are two
fluids; fluid 1 and fluid 2 immiscible fluids and there is an interface. So, free surface occurs at
the interface between two fluids such interfaces require two boundary conditions to be applied.

So, one is the kinematic boundary condition.

So, kinematic boundary condition which relates the motion of the free interface to the fluid
velocities at the free surface. So, if there is any fluid particle sitting on this interface; obviously,
it will always remain part of this free surface ok. So, if we say that Z is this h, the height from

the bas,e and it is function of x, y and t then the velocity in z-direction w will be

oh oh oh

W=E+”ax+v@



So, in this particular case obviously, you can see u, v, w are the velocities in the x, y and z

direction respectively. And, if we consider the flow to be steady, then for steady-state flow
problems obviously, it will not be a function of t. So, V.q is equal to 0 where n is normal to

the free surface. So, you can see there is no flow through this interface. So, V.ais equal to O;

that means, there will be no flow through this free surface.
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So, now, we will discuss about the other boundary condition in case of free surface so that is a
dynamic boundary condition. Dynamic boundary condition requires the stress to be continuous
across the free surface which separates the two fluids. So, in this case the traction exerted by
fluid 1 onto the fluid 2 is equal and opposite to the traction exerted by fluid 2 on fluid 1.

So, that means, in this particular case if we can write the shear stress tensor

1 n; = Tzn]

Tin, ij

So, n is the normal to this interface. If you have this curved surface so, in this case surface

tension can create a pressure jump across the free surface.
So, the surface tension induced pressure jump is given by
Ap = ok

where o is the surface tension and x is the curvature, ok.



And, we know that the curvature you can calculate as

_1,1
“TR R,

Where R; and R, are principal radii of curvature of the surface. So, if you consider the surface

tension then this dynamic boundary condition you can write as
1 — 42
‘[ijnj + OKNn; = Tijnj
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Next, we will have another boundary condition fluid-fluid interface. So, similar to whatever
we have discussed in the last slide, but we neglect the surface tension effect then; obviously,
you can see at this fluid-fluid interface there will be shear stress continuity and the velocity

continuity neglecting the effect of the surface tension.

So, if you have two immiscible fluids then at the interface there will be velocity continuity;
that means, so, from fluid 1 side velocity Vv, will be equal to the fluid velocity fluid 2 velocity

V,. So, in this particular case obviously, the velocity at the interface from fluid 1 side and fluid

2 sides it will be the same and there will be also shear stress continuity at the interface.

So, in this case, you can see obviously, from the fluid side T}j will be TLZJ So, in this particular
case if we say that tangential velocity is V; at the interface and n is normal to the boundary,

then we can say that
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So, this is the shear stress continuity and we can have the inlet boundary condition. So, at the
inlet, we can specify the value of the variable. So, obviously, in this case, if you consider that
flow between two infinite parallel plates so, at the inlet you can either specify a constant

velocity or you can have a fully developed velocity profile you can specify at the inlet.

So, obviously, the flow is assumed to be constant or fully developed. So, in this case, if X is the
axial direction, then in this case you can see that velocity u will be either U which is a constant
velocity and v you can make 0 or you can also give a parabolic profile u which will be a function
of y.

So, you can specify at the inlet the condition at the outflow plane now we will discuss. So, you
can see in this particular case it is the outlet. So, at the outlet generally, we specify pressure is
equal to 0 and for other variables, we specify that in the flow direction the gradient is 0 of all

the velocities.

So, in this particular case, you can see the conditions of the outflow plane are extrapolated from
within the domain and have no impact on the upstream flow. So, in this particular case, we can
write if x is the axial direction which is the flow direction. So, we can write

u v ow
7% = 0 el Pl



where X is the flow direction in this particular case ok. So, that means, the gradient of velocities
in the flow direction is 0.

For unsteady flow generally, one more appropriate boundary condition is OrLanski boundary
condition; which you can apply at the outlet for unsteady flow problem. So, this we can write

u o
—4+V.Vu=0
Jat

Similarly, you can write

ov
—+V.Vv=0
ot
and
ow
—+V.Vw =0
ot
Where V we can take as
V=ui+vi+wk

So, in this particular case we write the average velocity at the outlet. So, we need to calculate
the average velocity then if the average velocity let us say if it is uay at the outlet, then we can
write

ou Jdu "
ot Hav Gy
av ov
E + Ugy a— 0
ow ow 0
ot Yy

So, this is known as the OrLanski boundary condition and this is more appropriate for unsteady
flow problem.



So, in today’s class, we started with the Navier-Stoke equation in general form and then we
have invoked the incompressible flow assumptions and we have written the momentum
equations in differential form and in Cartesian coordinate we have written the continuity
equation and three components of momentum equations in differential form and in non-

conservative form.

Also, we have written the shear stresses three components of normal stresses and three
components of six components of shear stresses and out of these you can see out of nine
components six are unknown. Next, we have written the governing equations in the cylindrical

coordinate and spherical coordinate and corresponding viscous stresses also we have written.

Then we discussed about piezometric pressure. So, we combined the thermodynamic pressure
or the mechanical pressure plus the body force term in the piezometric pressure. Next, we
discussed about the initial condition where at time t is equal to 0, we need to specify the value

of the dependent variable.

Next we considered different types of boundary conditions Dirichlet, Neumann, and Robin
boundary conditions and for the dependent variable if the value is specified at the boundary,
then it is known as Dirichlet type boundary condition; if the normal gradient is specified, then
it is known as Neumann type boundary condition and if the value of the dependent variable

and it is normal gradient is specified then it is Robin boundary condition.

In addition, we have discussed about other boundary conditions like no-slip boundary
condition, then free slip boundary condition or symmetry boundary condition and also if we
have two different immiscible fluids at the interface we need to consider the boundary

condition. So, that also we have discussed.

Thank you.



