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Module - 01 

Introduction 

Lecture - 03 

Derivation of incompressible Navier-Stokes equations 
 

Hello everyone. So, today we will derive the Navier-Stokes equation starting from the 

Reynolds transport theorem. So, first, we will derive the integral form of linear momentum 

conservation from the Reynolds transport theorem then we will write this equation in terms of 

the differential equation for linear momentum conservation. 
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So, if you remember Reynolds transport theorem states that the rate of change of an extensive 

property N for the system is equal to the time rate of change of N within the control volume 

and the net rate of flux of the property N through the control surface. So, we can see this is the 

general form of RTT, where DN/Dt system is the rate of change of momentum in this particular 

case and where N is the extensive property that is equal to momentum. 

Because we are conserving the momentum; so, N will be mV, where V is the velocity vector. 

And, in the right-hand side η is the intensive property and if you take N per unit mass then; 



obviously, it will become a velocity vector. And, in this expression ρ is the density of the fluid 

and Vr is the relative velocity and n is the outward surface normal. 

So, if you consider this arbitrary control volume, where red color is the control surface. So, if 

you take one elemental area dA. So, outward normal is n and if you consider one elemental 

volume that is your dV. So, if you consider non-deforming and stationary control volume, then 

this relative velocity Vr will be just V which is nothing but 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂.  

𝑖̂, 𝑗̂, 𝑘̂ are the unit normal in x, y and z direction respectively and the velocities u, v, w are the 

velocities in the direction x, y, z respectively. So, in that particular case the first term in the 

RTT in the right hand side, you can see this you can write as  

𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

= ∫
𝐶𝑉

𝜕(𝜌𝑉⃗ )

𝜕𝑡
𝑑𝑉 + ∫

𝐶𝑆
𝜌𝑉⃗ (𝑉⃗ . 𝑛̂)𝑑𝐴 
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We have substituted 𝜂 is equal to V in this case. So, now this surface integral we will convert 

to volume integral using Gauss divergence theorem. So, this is the general form 

∫
𝐶𝑆

𝐹 . 𝑛̂𝑑𝐴 = ∫
𝐶𝑉

∇. 𝐹 𝑑𝑉 

 So, you can see this we can write as 



𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

= ∫
𝐶𝑉

𝜕(𝜌𝑉⃗ )

𝜕𝑡
𝑑𝑉 + ∫

𝐶𝑆
∇. (𝜌𝑉⃗  𝑉⃗ . 𝑛̂)𝑑𝑉 

So, now if you take common then you can write 

𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

= ∫
𝐶𝑉

{
𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ ∫

𝐶𝑆
∇. (𝜌𝑉⃗  𝑉⃗ . 𝑛̂)} 𝑑𝑉 

So, here V is the velocity vector and this V is the volume ok. So, as we discussed that DN/Dt 

system is the rate of change of momentum and it is equal to the net external force acting on the 

system. So, we know that in the limit of ∆𝑡 tends to 0 system and control volume will overlap. 

So, whatever net external force acting on the system, it will be acting on the control volume. 

So, we can write  

𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

= ∑𝐹 𝑠𝑦𝑠 = ∑𝐹 𝐶𝑉 

So, where this is the net external force acting on the control volume. So obviously if you put 

𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

 is equal to ∑𝐹 𝐶𝑉  here, then we can write this equation as  

∑𝐹 𝐶𝑉 = ∫
𝐶𝑉

{
𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ ∇. (𝜌𝑉⃗  𝑉⃗ )}  𝑑𝑉 

So, now this equation you can see that we have written in the integral form, now we need to 

convert it into differential form. So, what is this net external force acting on the control volume, 

that we need to determine. So, if you consider the control volume. So, there will be two types 

of forces acting on this fluid element. One is on the surface which is known as surface forces 

and another force will be acting on the bulk fluid that is the body force. 
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So, if we consider that 𝑏⃗  as the body force per unit mass then we can write body force is equal 

to v∫
𝐶𝑉

𝜌𝑏⃗ 𝑑𝑉  , 𝜌𝑑𝑉⃗  is the dm; that means, 𝜌𝑏⃗ 𝑑𝑉⃗ . So, you can see this is the arbitrary control 

volume. This body force 𝑏⃗  is acting on this elemental control volume 𝑑𝑉⃗  and 𝑛̂ is the outward 

surface normal. And, on the surface we have the traction vector 𝑇⃗ 𝑛̂ acting on the face normal, 

which is force per unit area on a surface kind of thing. 

So, you can see that this is a surface force and this is the body force. So, the external force 

acting on a mass of a fluid contained within the control volume is the sum of the body force 

and a surface force and we are telling that 𝑏⃗  is the body force per unit mass. So, that we can 

write ∫
𝐶𝑉

𝜌𝑏⃗ 𝑑𝑉  and 𝑇⃗ 𝑛̂ is the traction vector acting on the face normally. So, this is acting on 

the surface. So, we can write surface force as area integral ∫
𝐶𝑆

𝑇⃗ 𝑛̂𝑑𝐴. 

So, now this surface force which is your area integral we have we need to convert it into volume 

integral. So, for that we will use Cauchy’s law. What it states? Cauchy’s law states that there 

exists a Cauchy stress tensor 𝜏   which is second order tensor which maps the normal to a surface 

to the traction vector 𝑇⃗ 𝑛̂ acting on that surface, according to 𝑇⃗ 𝑛̂ is equal to 𝜏 . 𝑛̂. 

So, in tensorial form if you write, then you can write  

𝑇𝑖
𝑛 = 𝜏𝑖𝑗𝑛𝑗  



 So, you can see 𝜏𝑖𝑗 is the second order tensor. So, Cauchy stress tensor is symmetric. So, we 

can write 𝜏𝑖𝑗 is equal to 𝜏𝑗𝑖. So, now if we write the surface force; so, you can see  

∫
𝐶𝑆

𝑇⃗ 𝑛̂𝑑𝐴 = ∫
𝐶𝑆

𝜏 . 𝑛̂𝑑𝐴 

Now, we will use Gauss divergence theorem to convert these surface integral to volume 

integral. So, you can see we can write surface integral 

∫
𝐶𝑆

𝐹 . 𝑛̂𝑑𝐴 = ∫
𝐶𝑉

∇. 𝐹 𝑑𝑉 

So,  

∫
𝐶𝑆

𝑇⃗ 𝑛̂𝑑𝐴 = ∫
𝐶𝑆

𝜏 . 𝑛̂𝑑𝐴 = ∫
𝐶𝑉

∇. 𝜏 . 𝑑𝑉 

So now, both the forces we have written in terms of volume integral. 
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So, now we can write the net external force acting on the control volume. So,  

∑𝐹 𝐶𝑉 = ∫
𝐶𝑉

{∇. 𝜏 + 𝜌𝑏⃗ } 𝑑𝑉 

Already this we have derived from the Reynolds transport theorem. So, now, if we equate this 

then we can write this term in the left-hand side and this term in the right-hand side.  



And, since the choice of the elemental control volume is arbitrary; so, we can write the 

following 

∑𝐹 𝐶𝑉 = ∫
𝐶𝑉

{
𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ ∇. (𝜌𝑉⃗  𝑉⃗ )}  𝑑𝑉 

So, we can write  

∫
𝐶𝑉

{
𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ ∇. (𝜌𝑉⃗  𝑉⃗ )}  𝑑𝑉 = ∫

𝐶𝑉
{∇. 𝜏 + 𝜌𝑏⃗ } 𝑑𝑉 

So, you can see this equation we have written in differential form right. But, you can see here 

𝜏 is unknown because it is a tensor and it is unknown; so obviously, this equation is not closed. 

So, you need to determine this 𝜏 in terms of the known parameter velocity or pressure. And b 

is obviously, the body force and it is a constant body force. 
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So, whatever equation now we have derived, this equation may be alternatively expressed in 

Cartesian index notation. So, we can write it as interstitial form. So, you can see 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
=

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑏𝑖 

where 𝜏𝑖𝑗 is the second order tensor and these equation actually scientist Navier derived. 



So, due to his name, it is this equation is known as Navier equation so; obviously, you can see 

the above equation is not mathematically close as it contains𝜏𝑖𝑗 as additional unknowns. So, 

this can be overcome if 𝜏𝑖𝑗 can be expressed in terms of the primary variables, velocity and 

pressure. So, to find the shear stress tensor tau, we will use constitutive equation. 
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So, what is constitutive equation? The relation between the stress and deformation in a 

continuum is called a constitutive equation. So, now, whatever shear stress tensor is unknown 

𝜏𝑖𝑗 can be written in terms of two terms ok. One is isotropic stress plus one is non-isotropic 

stress tensor 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜎𝑖𝑗 

 So, −𝑝𝛿𝑖𝑗  is known as hydrostatic stress tensor and 𝜎𝑖𝑗 is known as deviatoric stress tensor. If 

you consider a static fluid then you know that only the normal stress will be acting on the 

surface and it is independent of the orientation of the surface. So obviously, it is the stress is 

isotropic in nature and if the fluid is static then; obviously, the pressure will be acting on a 

normal to the surface.  

And, this stress tensor is isotropic and that we can relate with the isotopic second-order tensor 

Kronecker delta ok. So, you can see the first term which is your hydrostatic part that we have 

written as −𝑝𝛿𝑖𝑗, where 𝛿𝑖𝑗 is the second-order isotropic tensor. And, p is the thermodynamic 



pressure acting on the normal to the surface and p is the thermodynamic pressure related to 

density and temperature by an equation of state.  

And, here the negative sign is coming due to the compressive nature of the pressure. So, you 

can see that this term will be there in the moving fluid as well. So, that’s why we have added 

and it is isotropic stress tensor. And, another term will be there due to the viscous effect and 

that is known as deviatoric stress tensor. And, this 𝜎𝑖𝑗 we need to write in terms of the velocity 

gradient. So, 𝜎𝑖𝑗  is related to the velocity gradient and the velocity gradient tensor can be 

decomposed into symmetric and anti-symmetric parts as you can see you can write 

𝜕𝑢𝑖

𝜕𝑥𝑗
=

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) +

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

So, essentially you can see this 
1

2

𝜕𝑢𝑗

𝜕𝑥𝑖
 and here −

1

2

𝜕𝑢𝑗

𝜕𝑥𝑖
 will get canceled; only you will get 

𝜕𝑢𝑖

𝜕𝑥𝑗
. 

But, we have written in terms of the symmetric and anti-symmetric parts. So, you can see the 

last term in the right-hand side, this is anti-symmetric part represents fluid rotation without 

deformation right.  

It is coming due to the rotation of the fluid and this part cannot generate stress by itself. 

Whereas, the first term in the right hand side you can see that it is symmetric part and it 

represents fluid deformation and the stresses must be generated by the strain rate tensor 𝜀𝑖𝑗. So, 

you can see that whatever 𝜎𝑖𝑗 we are talking about the deviatoric stress tensor. So, this will be 

just due to the presence of this strain rate tensor 𝜀𝑖𝑗. 

So, when we consider a moving fluid; so, we can see that there will be two terms. One is minus 

−𝑝𝛿𝑖𝑗 which is hydrostatic part, it will be present if the fluid were at rest. And, the other part 

will be the 𝜎𝑖𝑗 which is deviatoric stress tensor and it is coming due to the viscous effect. And, 

you can see that we need to determine this 𝜎𝑖𝑗 in terms of the velocity gradient. 



(Refer Slide Time: 15:53) 

 

So, here we will make certain assumptions to find the deviatoric stress tensor. What are the 

assumptions? The relationship between stress and rate of strain is linear; so, we are considering 

the linear relationship between stress and strain rate ok. And, whatever fluids obey this 

relationship those are known as a Newtonian fluid. 

So, you can see now we are making assumptions that it is a Newtonian fluid, where the stress 

and strain rate relationship is linear ok. The second assumption we are taking, the relationship 

between stress and rate of strain is the same everywhere and it does not have any preferred 

direction. What does it mean that same everywhere? That means, it is homogeneous and there 

is no proper direction; that means, it is isotropic so; that means, the fluid is homogeneous and 

isotropic ok. 

And, whatever fluids actually having these homogeneous and isotropic media those are known 

as Stokesian fluid. So now, we define general constitutive law that relates the deviatoric stress 

tensor 𝜎𝑖𝑗  with the velocity gradient as this. So, 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 

𝐶𝑖𝑗𝑘𝑙 is a fourth-order tensor and having 81 components that depend on the thermodynamic 

state of the medium.  



The stress-strain rate relationship has not directional preference so; that means, it is isotropic. 

So, this is only possible; that means, 𝜎𝑖𝑗 will be isotropic only if 𝐶𝑖𝑗𝑘𝑙 is an isotropic tensor. So, 

this has to be one isotropic tensor.  
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So, you can refer to some mathematics book of tensor, where you can actually this fourth-order 

tensor you can express in terms of second-order tensor, isotopic tensor, Kronecker delta. So, 

all isotropic tensors of even order are made up of products of 𝛿𝑖𝑗. So, the fourth-order isotopic 

tensor 𝐶𝑖𝑗𝑘𝑙  can be written in terms of second order isotopic tensor products as follows. 

So, we can write 

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑗𝑘 

You please refer some book of tensor, you will find that we can represent this isotropic fourth 

order tensor in this expression. Here 𝜆, 𝜇 and 𝛾 are scalars that depend on the local 

thermodynamic state, where 𝜇 is the first coefficient of viscosity. 

So, that you know; so, in the fluid we are discussing about the dynamic viscosity; so, this is 

first coefficient of viscosity, 𝜆 is the second coefficient of viscosity and 𝛾 is the third coefficient 

of viscosity. So, you can see that where in general fourth order tensor are having 81 

components, but assuming that it is isotropic and homogeneous, we reduced it to three 

unknowns; 𝜆, 𝜇 and 𝛾. 



Now, this 𝜎𝑖𝑗 is a symmetric tensor that, we have already seen. So, we can write 𝜎𝑖𝑗 is equal to 

𝜎𝑗𝑖. So, using this we can actually bring down these three unknowns to two unknowns. So, we 

have already expressed 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 

 sigma ij is equal to C ijkl epsilon kl and similarly you can write 𝜎𝑗𝑖. So, we will interchange 

this; so, 

𝜎𝑗𝑖 = 𝐶𝑗𝑖𝑘𝑙𝜀𝑘𝑙 

So, using symmetric tensor this relation you can see that we can write 𝐶𝑖𝑗𝑘𝑙 is equal to 𝐶𝑗𝑖𝑘𝑙, 

from these two expression you can see. So, 𝐶𝑖𝑗𝑘𝑙 already we have expressed these. So, in the 

left hand side we have written this. Now, in right hand side you change the indices ok; so 𝐶𝑗𝑖𝑘𝑙. 

So, you can see. So, we can write  

𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑗𝑘 = 𝜆𝛿𝑗𝑖𝛿𝑘𝑙 + 𝜇𝛿𝑗𝑘𝛿𝑗𝑙 + 𝛾𝛿𝑗𝑙𝛿𝑖𝑘 

Now, we know that Kronecker delta is symmetric tensor. So, we can write 𝛿𝑖𝑗 is equal to 𝛿𝑗𝑖. 

So, you can see this 𝛿𝑗𝑖 is equal to 𝛿𝑖𝑗. So, in the both side we have this term. So, it will be get 

cancelled. So, you can write  

(𝜇 − 𝛾)( 𝛿𝑖𝑘𝛿𝑗𝑙 − 𝛿𝑗𝑘𝛿𝑖𝑙) = 0 

But, the second term in the bracket cannot be 0 right so; obviously, the first term in the bracket 

will be 0. So,  

𝜇 − 𝛾 = 0 

that means, 

𝛾 = 𝜇 

That means, the third coefficient of viscosity is equal to the first coefficient of viscosity as we 

assumed 𝜎𝑖𝑗 as symmetric tensor. So, you can see that out of 81 components only two scalars  

𝜇  and 𝜆 have survived due to isotropic medium and symmetric deviatoric tensor. So now, if 

you put it in this expression 𝛾 is equal to 𝜇 and let us evaluate this deviatoric stress tensor. 
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So, this is the expression of this fourth order isotropic stress tensor and also we have shown 

that 𝛾 is equal to 𝜇. And, we have already represented this deviatoric stress tensor is equal to 

𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, where 𝜀𝑘𝑙 is the strain rate. So, 𝜎𝑖𝑗  now if you put this expression and if you write 𝜀𝑘𝑙 

then we can write  

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙𝜀𝑘𝑙 + 𝜇𝛿𝑖𝑘𝛿𝑗𝑙𝜀𝑘𝑙 + 𝛾𝛿𝑖𝑙𝛿𝑗𝑘𝜀𝑘𝑙 

So, now, we will use this generic vector transformation. So, if you write 𝛿𝑖𝑗𝑢𝑖, this will become 

𝑢𝑗  ok. So, this is the transformation you can seen in a tensor book. So, if you use this 

transformation; so, you can see 𝛿𝑘𝑙𝜀𝑘𝑙, if we put it here; so, we can write 𝜀𝑘𝑘  so,𝛿𝑗𝑙𝜀𝑘𝑙. So, it 

will be 𝜀𝑗𝑘. So, you can see 𝜀𝑗𝑘  and 𝛿𝑗𝑘𝜀𝑘𝑙,; so, it will be 𝜀𝑗𝑙,; so, 𝜀𝑗𝑙. 

So, again you just use this vector transformation. So, it will be 𝛿𝑖𝑘𝜀𝑗𝑘. So, you can see it will 

become 𝜀𝑖𝑗 and 𝛿𝑖𝑙𝜀𝑗𝑙, it will be 𝜀𝑖𝑗. So, you can see now 𝜎𝑖𝑗 which is your deviatoric stress we 

can write  

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 

So, 𝜆 is the second coefficient of viscosity and 𝜇 is the first coefficient of viscosity, where 𝜀𝑘𝑘 

we can write 
𝜕𝑢𝑘𝑘

𝜕𝑥𝑘
  which is nothing, but divergence of  𝑉⃗  . And, this 2𝜇𝜀𝑖𝑗  you can write in 

terms of velocity gradient 
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
  . 



So, now these 𝜀𝑖𝑗 let us put in the stress tensor 𝜏𝑖𝑗. So,  

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜆𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

So, this is known as Cauchy stress tensor. So, you can see the above equation is a representation 

of general constitutive behavior of a homogeneous, isotropic and Newtonian fluid. And, it is 

applicable to both compressible and incompressible fluid flow because, we have not done any 

assumption till now based on this compressible or incompressible. 
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So, now you can see that we have derived this now here µ and λ are unknown, but we can relate 

it using the normal components of the stress tensor. So, let us write down the normal 

components of the stress tensor setting i is equal to j. So, you can see  𝜏11 we can write 

𝜏11 = −𝑝 + 𝜆
𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝜇

𝜕𝑢1

𝜕𝑥1
 

Similarly, u2 is the velocity in the x2 direction and u3 is the velocity in the x3 direction. So, in 

Cartesian coordinate we have just represented these normal components of the stress tensor. 

So, similarly if you put i is equal to j is equal to 2, then you will get this expression  

𝜏22 = −𝑝 + 𝜆
𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝜇

𝜕𝑢2

𝜕𝑥2
 



 

and if i is equal to j is equal to 3; so, you will get this expression. 

𝜏33 = −𝑝 + 𝜆
𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝜇

𝜕𝑢3

𝜕𝑥3
 

So, if you add these three you will get  

1

3
(𝜏11 + 𝜏22 + 𝜏33) = −𝑝 + (𝜆 +

2

3
𝜇)

𝜕𝑢𝑘

𝜕𝑥𝑘
 

So, after adding and dividing by 3 just we have written this expression and this expression in 

the left hand side, this actually will relate with the mean or mechanical pressures. 

So, this mean or mechanical pressure we can write  

𝑝𝑚 = −
𝜏𝑖𝑖

3
= −

1

3
(𝜏11 + 𝜏22 + 𝜏33) 

So, you can see this mean or mechanical pressure is nothing but the arithmetic average of the 

normal components of the stresses. So, this is known as mean or mechanical pressure pm and 

here you can see p is there, p already we have discussed that it is a thermodynamic pressure. 

So, the difference between these thermodynamic pressure and the mechanical pressure we can 

write it as 

𝑝 − 𝑝𝑚 = (𝜆 +
2

3
𝜇)

𝜕𝑢𝑘

𝜕𝑥𝑘
 

So, you can see this is the expression to find the difference between this thermodynamic 

pressure and the mechanical pressure. And, these expression you can see it is; obviously, in 

general we have written, but we can actually relate this 𝜆 and 𝜇 for Stokesian fluid ok. 
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So, now let us discuss; obviously,  
𝜕𝑢𝑘

𝜕𝑥𝑘
  , you can write ∇. 𝑉⃗ . And, from here you can see for an 

incompressible fluid ∇. 𝑉⃗  is equal to 0; that means, we can only define a mean or mechanical 

pressure for an incompressible fluid because there is no equation of state to determine a 

thermodynamic pressure. 

The scalar λ drops out in the constitutive equation as ∇. 𝑉⃗  is equal to 0. So, this will become 0 

so; obviously, you will not have any term related to λ and there is no necessary to consider this 

above equation. So, for the incompressible fluid you can see the constitutive equation we can 

write in a simplified form 

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

But, if you consider compressible fluid then you can see p and pm; that means, thermodynamic 

pressure and the mechanical pressure can be different as part this equation. And, it relates this 

difference to rate of expansion through the proportionality constant 

𝜅 = 𝜆 +
2

3
𝜇 

 And, this is called as coefficient of bulk viscosity. 



So, this is known as coefficient of bulk viscosity and for many application the Stoke 

assumptions 𝜆 +
2

3
𝜇 is equal to 0 is found to be sufficiently accurate and can also be supported 

from the kinetic theory of monatomic gases. So, now, for Stokesian fluid, we can write 𝜆 +
2

3
𝜇 

is equal to 0; that means,  

𝜆 = −
2

3
𝜇 

So, you can see here that we have written this expression λ is equal to −
2

3
𝜇 based on the Stokes 

assumption ok. 

And, this expression we can write for Stokesian fluid, we have related this second coefficient 

of viscosity in terms of the first coefficient of viscosity µ. So, now, if you consider Newtonian 

fluid and we consider Stokesian fluid assuming the Stokes hypothesis or invoking the Stokes 

hypothesis, then we can write the expression for this stress tensor as. 
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So, you can see that this is our expression of 𝜏𝑖𝑗  and this is our expression which we derived 

from the RTT.  

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜆𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 



So, invoking this 𝜏𝑖𝑗, here we can write in general this differential equation of motion as 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
{−𝑝𝛿𝑖𝑗 + 𝜆𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)} + 𝜌𝑏𝑖 

So, here we are not invoking any assumptions ok. 

Now, we can simplify these terms. So, you can see we have 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
=

𝜕𝑝

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑖
(𝜆

𝜕𝑢𝑘

𝜕𝑥𝑘
) +

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑖

𝜕𝑥𝑗
) +

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝜌𝑏𝑖 

So, now this term will now write it as. So, this term we will write. So, now, we are changing 

this index. So, we can write here 

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑗

𝜕𝑥𝑖
) =

𝜕

𝜕𝑥𝑖
(µ

𝜕𝑢𝑗

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑖
(µ

𝜕𝑢𝑘

𝜕𝑥𝑘
) 

So, you can see we can write this term as this  

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑖
{(𝜆 + µ)

𝜕𝑢𝑘

𝜕𝑥𝑘
} +

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝜌𝑏𝑖 

So, you can see this is the equation which is applicable to both compressible and incompressible 

fluid flow. So, now in that general equation let us invoke the Stokes hypothesis. And, we can 

write the second coefficient of viscosity λ is equal to −
2

3
𝜇. 
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So, if you put it in that expression, then you can see 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑖
{
µ

3

𝜕𝑢𝑘

𝜕𝑥𝑘
} +

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝜌𝑏𝑖 

So, this is the expression. Now, this is known as Navier-Stokes equation which is you can see 

it is non-linear due to this convective term ok. And, it is second order partial differential 

equation. 

Now, we will make the assumptions, if we assume that it is incompressible fluid flows then; 

obviously, you can see 
𝜕𝑢𝑘

𝜕𝑥𝑘
  is equal to 0. So, if you make it 0, then you can write the Navier-

Stoke equation for incompressible fluid flow as this.  

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
(µ

𝜕𝑢𝑗

𝜕𝑥𝑖
) + 𝜌𝑏𝑖 

So, you can see this is the temporal term, this is the convective term, this is the pressure gradient 

term and this is the viscous term. So, now it is simplified because we have only this dynamic 

viscosity µ right plus any body force term. So, in general we can have gravity as body force. 

So, in vector form assuming a gravity force as constant body force ok. So, we can write this  

𝜕(𝜌𝑉⃗ )

𝜕𝑡
+ ∇. (𝜌𝑉⃗ 𝑉⃗ ) = −∇𝑝 + ∇. (𝜇∇𝑉⃗ ) + 𝜌𝑔  



So, this is in the vector form we have written and it is in conservative form ok; in conservative 

form. And, this term if you extend then you will get  

𝜌 [
𝜕(𝑉⃗ )

𝜕𝑡
+ 𝑉⃗ . ∇𝑉⃗ ] == −∇𝑝 + ∇. (𝜇∇𝑉⃗ ) + 𝜌𝑔  

So, from this conservative form to non-conservative form, you need to elaborate this term and 

invoke the continuity equation then you will get this equation. 

And, you can see it is a constant density incompressible fluid flow if you assume, then you can 

take ρ in the outside so, for constant density incompressible flow. So, you can take ρ outside 

and this is the expression in non-conservative form. So, in today’s class, we started with the 

Reynolds transport theorem. And, we conserved the momentum where the extensive property 

N, we have considered as momentum mV and the intensive property η is equal to velocity 

vector V. 

And, DN/Dt system is the change of rate of momentum and it is equal to the net external force 

acting on the system. And, we have seen there are two types of forces acting on the fluid 

element. One is body force which is your volumetric force. So, that is we have considered b as 

the body force per unit mass and we have the traction vector acting on the surface normal to 

the surface. 

So, that is acting on the surface and this is surface force. So, these two now we have written in 

terms of volume integral using the Gauss divergence theorem. And finally, we have written the 

integral form of the conservation equation to the differential form of the conservation equation. 

Now, when we wrote that; so, we used Cauchy’s law and we expressed the traction factor in 

terms of the shear stress tensor. 

And, this shear stress tensor is composed of two components; one is hydrostatic shear stress 

tensor and other one is a deviatoric stress sensor which is coming due to the movement of the 

fluid and due to the presence of viscosity. So, you can see the hydrostatic part anyway it will 

be there if the fluid is static and that we have related with the second-order isotopic tensor 𝛿𝑖𝑗. 

So, we have written −𝑝𝛿𝑖𝑗 and minus sign is coming as pressure is compressive in nature. Then 

we have expressed this deviatoric stress in terms of the velocity gradient and that we have used 



the fourth order tensor. And, we assume that 𝜎𝑖𝑗 as it is a symmetric tensor to make it symmetric 

and isotropic we should have this Cijkl should be isotropic in nature. 

And, it can be expressed in terms of three unknown parameters and the Kronecker delta. After 

rigorous derivation we have found the deviatoric stress, where we have written in terms of first 

coefficient of viscosity, second coefficient of viscosity and third coefficient of viscosity. And, 

as the shear stress is symmetric 𝜎𝑖𝑗 is equal to 𝜎𝑗𝑖, we have written the third coefficient of 

viscosity is equal to first coefficient of viscosity.  

Then, we have written the Navier-Stoke equation in general after putting the expression of this 

stress tensor. And, then we have invoked the Stokes hypothesis ok, where we have used that λ 

is equal to −
2

3
𝜇 and invoking that we have written finally the Navier-Stokes equation. 

And, further, we simplified it for the constant density incompressible flow, where we have used 

that ∇𝑉⃗  is equal to 0. And, in both forms, we have written, in tensorial form as well as in vector 

form. And, in vector form, we have written this Navier-Stoke equation in conservative and 

non-conservative form. 

Thank you.  


