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Hello everyone. So, in today’s class, first we will simplify the fluid flow governing equation

for the application of lubrication and then will derive the Reynolds Equation for Lubrication.

As you know that, lubrication makes the relative motion between two surfaces very smooth; it

reduces the friction and it minimizes the wear. You know that in the application of tribology

like slider bearing. 

The relative motion between two surfaces causes excessive wear; therefore, it is very much

essential to reduce the normal stresses imposed by applied load and to reduce the shear

stresses induced due to the relative motion. So, first let us classify the fluid film lubrication.



(Refer Slide Time: 01:44).

So, you can see that we can classify this fluid film lubrication as hydrodynamic, squeezed

film, and hydrostatic. In case of hydrodynamic, you can see it is a converging wedge shaped

geometry and there is a applied load and it is having the tangential velocity. So, obviously

there will be normal stresses as well as the shear stresses and inside between these two

surfaces, there is lubricant. 

In squeeze lubrication, there is no tangential stresses, only there is a normal motion of this

surfaces and inside you have the lubricant; obviously you can see that in this cases, viscosity

of lubricant plays an important role to support the load. In hydrostatic you can see that,

external pressure of fluid needs to be supplied to generate hydrostatic lubrication; therefore

one pump is used. 



So, in this cases you can see that, this lubricants plays an important role and we need to find

the governing equations for these lubricants. In addition you can see, we can have both the

velocities in normal direction as well as in tangential direction and both the surfaces may

move. But if you see that if you write in terms of the relative motion; so obviously you can

make the bottom surface stationary. And you make the relative vertical motion as well as the

tangential motion accordingly.
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So, this is the geometry of fluid film bearing. So, we can see that this bottom surface is

stationary and we have a this upper surface which is inclined and we have the relative motion

as U, V, W in x, y and z direction respectively. So, we have given this relative motion on the

upper wall and we have made the bottom surface as stationary. 



And obviously, as the upper surface is inclined; so the height from the bottom surface, this h

is function of x, z, and time t. And in this case, if the length of the surface in x and z direction

are L x and L z respectively. And this height h is very very small compared to L x and L z.

So, if you take one x y plane; then you can see in x y plane, it will look like this. 

So, we have this tangential velocity U in the x direction and we have the normal velocity V in

y direction and length is L x. And if the upper surface is inclined and it is making very small

angle alpha and W is also the tangential velocity in z direction. So, in this case you can see,

one or both bodies may be moving; but we are making the upper surface moving and giving

the relative velocities with respect to the bottom surface, which we have made as stationary. 

So, to study this type of fluid film lubrication, we need the governing equation of fluid flow

and first let us write the governing equation, which we have derived in Cartesian coordinate. 
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So, we can see for laminar incompressible flow with constant fluid properties, this is the

continuity equation, where u, v, w are the velocities in x, y and z directions respectively. And

this is the x component momentum equation, where left hand side is the inertia term and right

hand side this is the first pressure gradient term. And this is the viscous term, where rho is the

density of the fluid and mu is the viscosity of the fluid.

Similarly, this is the y momentum equation and this is the z momentum equation. And you

can see these are coupled and non-linear and it is second order partial differential equations.

So, now, these equations will simplify for the application of this lubrication theory. So, first

let us see that, whether some terms in the governing equation, whether we can drop in the

application of this lubrication theory. 



You can see that, this is the viscous dominated flow; because viscosity plays an important

role. So, first let us write down the non dimensional form of the governing equations with a

suitable scale. And in this case as viscous force is the dominating force; so the pressure will

non dimensionalize based on the viscous force.
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So, we can see we are using this dimension less parameters. So, x star which is your non

dimensional x coordinate that is x by L, where L is the characteristic length. And y star you

can see that, the height is very small compared to the length in the x and z direction. So we

will take this y star as y by alpha into L, where alpha is small parameter of the same order as

the channel slope, and the lubrication equation holds in geometries where alpha is much

much less than 1.



So, in this case as you know that in y direction, we have the height which is function of x z

and t; so we are taking in the denominator alpha into L; z star is equal to z by L; t star is equal

to t by L by U, where U is the characteristic velocity; u star is equal to u by U; v star is equal

to v by alpha U, because in the y direction the velocity v is very small you can see, so we are

taking a very small velocity alpha U. 

W star is equal to w by U and p star we are taking p by mu U by alpha square L. So, these we

have non dimensionalized using the viscous force; as you know the lubrication flow is

viscous dominated flow. So, now if you use these dimensionless parameters and if you put in

the dimensional governing equation; then you can write these dimensionless equations. 

So, this will be your continuity equation; after rearrangement you can see, you will get this x

component momentum equation, where you have alpha square Re, where Re is the Reynolds

number, Reynolds number, where Re is rho is the density of the fluid, U is the characteristic

velocity, L is the characteristic plane divided by the viscosity of the fluid. 

So, in the left hand side, it is multiplied with alpha square Re and in the right hand side, this

is the non dimensional pressure gradient. And you can see in the viscous terms, this is alpha

square del 2 u by del x square plus del 2 u star by del y star square plus alpha square del 2 u

star by del z star square.

So, in this case star represents the dimensionless parameters. So, similarly if you make this y

component momentum equation; you will get in the left hand side alpha to the power 4 into

Re. And in the right hand side you can see, these are the terms, where in all viscous terms we

have these alpha to the power 4 with this term, alpha square is this term with alpha to the

power 4 is multiplied with this term. 

And z component momentum equation you will get like this. So, if you can see that, for the

application of this lubrication. So, the lubrication equation holds in geometries were alpha is

much much smaller than 1; so obviously if alpha is tending to 0, so alpha Re will be also

tending to 0 or alpha square Re will be tending to 0.



So, you can see the left hand side, the inertia terms you can neglect in the application of this

lubrication theory. So, and also in viscous term you can see as alpha is very very small close

to 0; so this term and this term also you can drop, ok. And in y and z momentum equations

also similarly, the left hand side terms you can drop. And in right hand side for y momentum

equation you can see, we have alpha to the power 4 alpha square and alpha to the power 4, so

obviously these terms you can drop. 

And in the z component of momentum equation, this term and this term you can drop as alpha

is very small.
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So, the resulting lubrication equations in the limit of alpha tending to 0 or alpha Re or alpha

square Re tending to 0. So, are this is the dimensionless continuity equation and if you write

in terms of dimensional continuity equation, so it will look like this. So, it is remaining same,



x component momentum equation dropping the other terms; so you can get this equation, ok.

So, in dimensional form, this is the equation. 

And from y component momentum equation, you will get del p by del y is equal to 0; that

means in the y direction, you can have the pressure uniform. So, that del p by del y will be 0.

And z component momentum equation, you will get like this. So, now, we have derived the

simplified governing equation in the application of lubrication theory. Reynolds use this

equations and estimated the equation for pressure in the application of this lubrication theory.
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So, now, we will derive with the following assumptions; laminar, Newtonian and

incompressible fluid flow with constant properties. Now, we are neglecting the inertia terms,

so that we have already derived those equations and obviously, negligible pressure gradient in

the direction of film thickness. So, del p by del y is equal to 0.



So, we derived this equations, this is the continuity equation and these are the momentum

transport equations. And this is the geometry and the relative motion of the upper surface

with respect to the bottom surface, which we have made stationary. And the velocities in x, y,

z directions are U, V and W respectively and h which is the height is function of x, z and time

t. 

So, now, we have the governing equations. So, first let us integrate these equations with

proper boundary conditions and find the velocity distribution in terms of the pressure

gradient.
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So, first let us consider the x component momentum equation, which is your 0 is equal to

minus del p by del x plus mu del 2 u by del y square. And you can see that this equation, you

can integrate and you can write del 2 u by del y square is equal to 1 by mu del p by del x; and



you can write del u by del y is equal to 1 by mu del p by del x y plus c 1. So, at a particular

time, obviously you can assume the pressure gradient del p by del x as constant. 

So, you can integrate and write this equation. Again if you integrate, then you will get the

velocity profile u as 1 by twice mu del p by del x y square plus c 1 y plus c 2. So, c 1 and c 2

are the integration constants. And we can find these with the boundary conditions. So, what

are the boundary conditions? 

So, you can see at y is equal to 0, the bottom surface is stationary. So, u is equal to 0. So, if

you put here u is equal to 0 at y is equal to 0, that will give c 2 is equal to 0. And at y is equal

to h, we have the velocity u is equal to capital U. So, it will be just U is equal to 1 by twice

mu del p by del x h square plus c 1 into h. So, that will give c 1 is equal to 1 by twice mu

minus del p by del x h plus U by h. 

So, if you put this constants c 1, c 2 in this equation; so we will get the velocity profile u y is

equal to 1 by twice mu minus del p by del x y h minus y square plus U y by h. So, you have

already derived this velocity profile when we solved the exact solution for combined

Poiseuille and Couette flow.

So, you can see this is the super position of two solutions. So, this is the solution from plane

Poiseuille flow and this is the solution from plane Couette flow. So, this is solution from

plane Poiseuille flow and this is solution from plane Couette flow. 
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So, now first let us find the volume flow rate at a particular location x. So, volume flow rate,

let us say Q x at a particular location x, we are finding this volume flow rate; so integral 0 to

h u d y, ok. So, it will be 1 by twice mu minus del p by del x, which is constant; you can take

outside the integral, integral 0 to h y h minus y square d y plus U by h integral 0 to h y d y.

So, 1 by twice mu minus del p by del x. So, if you integrate this, so you will get y square by 2

and if you put the limits 0 to h, so you will get h square by 2. So, you will get one h and h

square by 2. And it will be y cube by 3, so minus h cube by 3 plus U by h and it will be y

square by 2, so h square by 2. So, we can write it as 1 by twice mu minus del p by del x. So, it

will be h cube by 2 minus h cube by 3. So, it will be h cube by 6 plus U h by 2. So, you can

write as h cube by 12 mu minus del p by del x plus U h by 2.
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So, now similarly you can derive the velocity profile w as function of y and the volume flow

rate Q z at a particular location z. So, we have derived this velocity profile u as 1 by twice mu

minus del p by del x y h minus y square plus U y by h. And Q x as h cube by 12 mu minus del

p by del x plus U h by 2. So, similarly we can write, we have the other governing equation as

0 is equal to minus del p by del z plus mu del 2 w by del y square. 

So, now, we have the boundary conditions at y is equal to 0, w is equal to 0 and y is equal to

h, w is equal to capital W. So, now, if you integrate and apply the boundary conditions;

similarly you will get the velocity profile w y as 1 by twice mu minus del p by del z y h minus

y square plus W y by h. And similarly you can write the volume flow rate at any location z as

integral 0 to h w d y is equal to h cube by 12 mu minus del p by del z plus W h by 2.



So, in this derivation, obviously you have seen the fluid viscosity is assumed uniform across

the film thickness, which is we already made the assumption.
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Now, let us write the continuity equation and derive the Reynolds equation. So, the continuity

equation we have del u by del x plus del v by del y plus del w by del z is equal to 0, ok. So,

now, we will integrate it between 0 to h. So, we can write integral 0 to h del u by del x d y

plus integral 0 to h del v by del y d y plus integral 0 to h del w by del z d y is equal to 0. So,

now, we will use this Leibniz integration formulae to express this integral and we will take

the derivative del of del x outside the integral.

So, you know this Leibniz integration formulae. So, if you have integral a to b del f by del eta

d y; so you can write it as del of del eta outside the integral a to b f d y plus f a, eta del a by

del eta minus f b, eta del b by del eta, where a and b are the integration limits. So, now, you



can see that the first one, obviously what we can write using this Leibniz integration

formulae. 

So, we can write it as using these, we can see that del of del x integral; so it will be 0 to h u d

y, right. And now we have this a is 0. So, this term will become 0 and b is h, so this term will

become. So, it will be u at y is equal to h. So, what is that? So, that is nothing, but the

tangential velocity in x direction U and we have del h by del x, ok. 

This term now we can see that, you will can write it as integral 0 to h del v and you will get v

at h minus v at 0. So, at v at y is equal to 0; obviously it is 0 and v at y is equal to h, it is

capital V. So, we will write capital V, which is the normal velocity; plus now these we can

write as del of del z integral 0 to h w d y. 

And now this term at, obviously a is 0 here; so this term will become 0 and this term will

become at f, means in this case w at y is equal to h. So, that is minus W del h by del z is equal

to 0, ok. So, now you can see this term integral 0 to h u d y it is nothing, but the volume flow

rate at a particular location x and similarly integral 0 to h w d y is the volume flow rate at a

particular location z. 

So, this we have already derived; so you can write that term here. So, you can write del of del

x. So, h cube by 12 mu minus del p by del x plus U h by 2; then we have minus U del h by del

x. Now, let us write the velocity v in terms of the height h. So, obviously you can see, if we

use the material derivative; then v is the velocity which is nothing, but the in terms of the

Lagrangian frame del D h by D t. 

And this we can write as V which is nothing, but D h by D t and that we can write as del h by

del t and we have velocity, so there will be special change. So, U del h by del x plus W del h

by del z. So, this velocity V now we will write these terms. So, we can write plus del h by del

t plus U del h by del x plus Q del h by del z. And this term, so we have already evaluated the

volume flow rate. 



So, you can write plus del of del z h cube by 12 mu minus del p by del z plus W h by 2 and

we have minus W del h by del z is equal to 0. So, now, you can see these terms will get

cancels. So, u minus U del h by del x, it is plus U del h by del x and this is plus W del h by

del z and this is minus W del h by del z.
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So, now after simplification, we can write the equation as del of del x h cube by 12 mu del p

by del x plus del of del z h cube by 12 mu del p by del z is equal to half del of del x of U h

plus half del of del z w h plus del h by del t. So, this is the Reynolds equation for this classical

lubrication theory and you can see that, we can determine the pressure distribution inside this

slider bearing solving this equation with proper boundary conditions. 

So, if you can see left hand side denotes the pressure terms, ok. So, you can see these terms.

So, this is known as Reynolds equation of classical lubrication theory. So, in general, we have



derived this equation and you can see that, obviously these terms in the left hand side are

pressure terms, ok. 

So, these are pressure terms, ok. And so, these are obviously, hydro dynamic pressure and you

can see this first two terms in the right hand side are the shear induced flow by the surface

sliding with velocity U. So, these are shear induced flow and you can see that del h by del t. 

So, in the normal direction, what is the change of height with respect to time; so it is giving

the action of squeeze, so it is squeeze action, ok. So, right hand side terms are treated as the

source term when you are solving for the pressure to find the pressure distribution. 

So, you can see that in the right hand side two terms, we have written as del of del x U h and

del of del z w h. So, if there are no stretching terms like say in the rubber; you can see that

obviously at different places, it may have different velocities, velocities U, w may not be

constant. But now if you neglect the stretching action; then obviously w and U you can take

outside the derivative.

So, you can see that, assuming no stretching action, ok. So, we are assuming that both are

rigid surface ok; we are assuming that both are rigid surface. So, this u and w you can take

outside the derivative. So, we can write as del of del x, 12 mu you can take in the right hand

side. So, you can write h cube del p by del x plus del of del z h cube del p by del z is equal to

6 mu U del h by del x plus W del h by del z plus 2 del h by del t. 

Now, if you assume that there is no relative velocity in z direction; then we can simplify this

equation as. So, assuming no relative velocity in z direction; so you can make that W is equal

to 0. So, you can simplify this equation as del of del x h cube del p by del x plus del of del z h

cube del p by del z is equal to 6 mu U del h by del x. So, only we have this U as tangential

velocity in the x direction plus 12 mu del h by del t, ok. 

So, obviously you can see that these equations represents the transient lubrication equations.

So, these equations represent the transient lubrication equations. So, in today’s class, we first

wrote the simplified fluid flow equation for lubrication theory. And then we considered slider



bearing and where we have the relative velocity at the upper surface as U, V, W in x, y, z

direction respectively, where U and W are the tangential velocity and V is the normal

velocity, which gives the stretching action in the lubricant. 

And we have made the bottom surface as stationary. So, in this case in the simplified

governing equations, which we derived for this application; we integrated the equation with

proper boundary condition. We found the velocity profile U as function of y and velocity W

as function of y. And from there we have derived the volume flow rate at a particular x

location and in y z plane and volume flow rate at a particular z location in x y plane.

Then we considered the continuity equation and we integrated this equation between 0 to h,

where h is the height of the lubricant or the height between the two surfaces and we derived

the Reynolds equation for this classical lubrication theory. If you solve this equation, then you

will be able to find the pressure distribution inside the lubricant. Then we simplified for no

stretching action keeping this U and W outside the derivative. 

And further we simplified that, if there is no tangential velocity in the z direction, W is equal

to 0; we have written the Reynolds equation which is the tangent lubrication equations.

Thank you.


