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Hello everyone. So, in today’s class, we will discuss the preliminary concepts when the fluid 

is in motion which is known as Fluid Kinematics. There are two ways of describing a fluid 

motion: one is Lagrangian approach and the other one is the Eulerian approach. 
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In Lagrangian approach, all the particles are tagged, and their positions are examined with 

respect to time and all hydrodynamic parameters are tied to the particles. In the Lagrangian 

approach, if r is a position vector, then r can be represented as a function of the initial position 

xo, yo, zo and time.  

Similarly, the velocity vector is a function of the initial position so that means, xo, yo, zo, t 

where xo, yo, zo locate the starting point and v also can be represented as dr/dt right. So, you 

can see in Lagrangian approach, you track each and every particle and acceleration you can 

also represent as a function of xo, yo, zo and time t and this you can write as dv/dt. 



Whereas, in Eulerian approach, a particular point or the bulk of the fluid is considered as it 

comes in and goes out of the point or region. All hydrodynamic parameters are a function of 

space and time. So, you can see that any parameter like velocity v is a function of space and 

time. 

So, obviously, you can see that when we will discuss the system approach and control volume 

approach, in Lagrangian approach is equivalent to the system approach where you have a fixed 

mass or fixed particles and you are tracking each particle. And in the Eulerian approach, it is a 

control volume approach so, you are focused on a particular region and you are tracking what 

is coming in and going out. 
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So, when you are considering the Eulerian approach, there must be some visualization 

technique for seeing the fluid flow. So, for visualizing the fluid flow, first, we will discuss the 

streamline.  

A streamline is defined as an imaginary line in the flow field so that that tangent to the 

streamline at any point gives the direction of instantaneous velocity at that point. You can see 

that flow over a triangular cylinder at Reynolds number based on the projected area is 100 and 

these are some visualization of this fluid flow and it shows the streamline. 

Next, we will discuss the pathline. A pathline is the locus of a fluid particle starting from one 

particular point in the stream as it moves along. So, pathline you can see that if you are actually 



tracking a particular fluid element and where it moves about in the fluid domain. So, that is the 

pathline. So, for this particular case, you can see flow over a triangular cylinder at Reynold’s 

number 100, it shows the pathline and, at Reynold’s number 100, it is an unsteady flow so, 

instantaneous pathline is shown here. 

Next, we will discuss the streakline. A streakline at any instant of time is the locus of the 

temporary locations of all particles that are passed through a fixed point in the flow field. So, 

you can see these are the locus of these particles which have come through a particular point 

and these declines are shown at Reynold’s number 100. So, this is also instantaneous because 

it is an unsteady flow, but if you consider a steady flow, then the streamlines, pathlines and 

streaklines are identical. 
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Since Lagrangian and Eulerian variables describe the same flow, there must be some relation 

between the two. So, that will actually relate through this substantial derivative. So, this relation 

is expressed through this substantial derivative which is denoted as  

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑉⃗ . ∇ 

So, where V is the velocity vector which is  

𝑉⃗ = 𝑢𝑖̂ + 𝑣𝑗̂ + 𝑤𝑘̂ 



and this gradient operator in cartesian coordinate we can represent as 

∇=
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑥
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂ 

So, if we want to represent the Lagrangian acceleration, then we can write that Lagrangian 

acceleration is let us say 𝑎 ∗  Lagrangian acceleration. So, obviously, it represents the 

acceleration of a flowing fluid particle and if you represent that 𝑎  as Eulerian acceleration, then 

you can relate these two through this substantial derivative 𝑎 ∗ which is your Lagrangian 

acceleration you can denote as 

𝑎 ∗ =
𝐷𝑉⃗ 

𝐷𝑡
=

𝜕𝑉⃗ 

𝜕𝑡
+ 𝑉⃗ . ∇𝑉⃗  

So, you can see that obviously, this represents the acceleration in the Lagrangian framework 

and this 
𝜕𝑉⃗⃗ 

𝜕𝑡
  is the acceleration in the Eulerian framework and we represent this  

𝐷𝑉⃗⃗ 

𝐷𝑡
 as substantial 

or total or particle derivative in this case it is particle acceleration. This part is known as local 

or temporal acceleration and the last part is known as convective acceleration. 

So, you can see that if velocity is 0, then; obviously, this part will become 0. You can see it 

relates between this Lagrangian approach and the Eulerian approach so obviously, you can see 

that if it is a steady flow, 
𝜕𝑉⃗⃗ 

𝜕𝑡
 is 0 right because for a steady flow in the Eulerian approach, you 

can make it 0; however, this convective part is not 0. So, there will be a substantial acceleration 

if the flow is steady. 

So, you can see that for steady flow through a nozzle so, consider a nozzle so, you can see it is 

a bearing cross-section so obviously, from 1 to 2, there will be a change in the velocity as the 

area is decreasing. In this particular case, although it is a steady flow, as there is a spatial change 

in the velocity so, there will be a convective part right which is not 0 although it is a steady 

flow.  

So, the first part is your local derivative so, that will be 0 and the substantial derivative will be 

non-zero. So, in this particular case for steady flow through a nozzle, you can see that this 

acceleration, Eulerian acceleration it will be 0; however, the Lagrangian acceleration is not 0 

because it is having the contributions from this convective acceleration as there is a spatial 

variation of velocity. 
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As you are considering fluid is in motion so obviously, when one fluid element if it is moving 

with the fluid velocity so, obviously, there will be deformation of the fluid element. The 

movement of a fluid element in space has the following distinct features; one is translation.  

So, you have a fluid element so, after some time it may translate from one place to another and 

it will happen when the velocity is constant. There may be fluid rotation. So, you can see it is 

a kind of solid body rotation. So, it is having the initial position like this, but after some time, 

just it rotates as a solid body. 

We can have a rate of deformation. So, there are two types of deformation; one is linear 

deformation, and another is angular deformation. So, linear deformation also is known as 

extensional or dilatation strain. In this case, you can see that this is the fluid element so, if 

velocity is a function of one space coordinates so, let us say u is the function of x only or v is 

a function of y only, then only linear deformation will take place. 

But if the velocity is a function of both x and y, we are considering a two-dimensional fluid 

element so, in this case, u and v are a function of x and y. So, in this particular case, there will 

be an angular deformation and that is known as shear strain. So, you can see when one element 

is in motion so, it will have some extensional strain as well as shear strain due to angular 

deformation. 



First let us consider linear deformation that means, the velocity u is a function of x only or v is 

a function of y only. So, first let us consider one fluid element where v is 0 and u is a function 

of x only to simplify the problem. 
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Let us consider this fluid element A, B, C and D and in this case, u is a function of x only right. 

So, u is velocity in the x direction. So, obviously, you can see that we have the velocity u here. 

So, if the distance is ∆𝑥, this fluid element in the x direction, then obviously, at this particular 

point using Taylor series, you can say that velocity will be 𝑢 +
𝜕𝑢

𝜕𝑥
∆𝑥. So, if you expand this 

using Taylor series, 𝑢(𝑥 + ∆𝑥) locations then you will get 𝑢 +
𝜕𝑢

𝜕𝑥
∆𝑥. 

So, you can see now this point, this A or D you can see obviously, due to the linear deformation, 

it will travel due to the velocity u and this element has come here after a small-time step delta 

t ok. So, obviously, you can see that as you have a velocity u so, at ∆𝑡 it will travel ∆𝑡 . So, and 

this is the location at ∆𝑡 time B’, C’ and D’. 

So, similarly, you can see that you have the velocity 𝑢 +
𝜕𝑢

𝜕𝑥
∆𝑥. so, at time ∆𝑡 it will move to 

this place B’, C’ so, this distance from C to C’, it will be (𝑢 +
𝜕𝑢

𝜕𝑥
∆𝑥)∆𝑡 and this was the 

original length of this dotted line it is shown so, it is ∆𝑥. So, you can see the difference will be 

just 
𝜕𝑢

𝜕𝑥
∆𝑥∆𝑡 due to this linear deformation, there is a change in the size in the x direction is 



d
𝜕𝑢

𝜕𝑥
∆𝑥∆𝑡. So, in this case, you can see the linear strain in the x direction is defined as the 

fractional increase in length of the horizontal side of the fluid element. 

So, in this particular case, the linear strain now we can write as the or the change in the length 

that is  

𝜀𝑥𝑥 =

𝜕𝑢
𝜕𝑥

∆𝑥∆𝑡

∆𝑥∆𝑡
=

𝜕𝑢

𝜕𝑥
 

So, you can see that if you consider the linear deformation in the x direction, then it is 

represented by the velocity gradient  
𝜕𝑢

𝜕𝑥
. 

Similarly, if you consider that v is a function of y and w is a function of z, then similarly you 

can write the linear deformation in y and z direction as 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
 

𝜀𝑧𝑧 =
𝜕𝑤

𝜕𝑧
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So, you can see that if you consider; if you consider that u is a function of x, v is a function of 

y and w is a function of z, then the change in the volume you can consider so obviously, you 



can see that your after deformation there will be a length (∆𝑥 +
𝜕𝑢

𝜕𝑥
∆𝑥∆𝑡)  so, this is in the x 

direction, in the y direction it will be (∆𝑦 +
𝜕𝑣

𝜕𝑦
∆𝑦∆𝑡) and in the z direction  (∆𝑧 +

𝜕𝑤

𝜕𝑦
∆𝑧∆𝑡). 

So, this is the volume after deformation minus the original volume so, that is −∆𝑥∆𝑦∆𝑧. 

So, now, if you neglect the higher-order term, then we can write change in volume as  

 = (
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)∆𝑥∆𝑦∆𝑧∆𝑡 

So, now, if you write the volumetric strain rate; volumetric strain rate, then we can write it as 

just you can see the change in volume divided by the original length per unit time so, it will be  

=
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= ∇. 𝑉⃗  

So, obviously, you can see that if you consider incompressible fluid flow so, the volumetric 

strain rate will be 0 and divergence of v (∇. 𝑉⃗ ) will be 0. 
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Now, let us consider two-dimensional fluid element and velocities u, v both are the function of 

x and y, then obviously, we will get the angular deformation. So, you consider first this initial 

position of the fluid element at time t so, A, B, C, D and after time 𝑡 + ∆𝑡 obviously, as velocity 

u is a function of x and y, v is a function of x and y, then it will have some angular deformation, 

and this is the position.  



So, it is A’, B’, C’, D’. So, after ∆𝑡 time, it has had it has angular deformation and the fluid 

element looks like this A’, B’, C’, D’. 

So, you can see there is a change in the angle so, we can say that this angle is ∆𝛼  and this angle 

is ∆𝛽. So, similarly, you can see that if you have velocities here so, as u is a function of x and 

y so, there will be a change in the velocities. So, in this fluid element, if velocity is u here, here 

it is u and it is v so obviously, in this position, if you can see that the length is ∆𝑥 and this 

length is ∆𝑦, then here the velocity will be  𝑢 +
𝜕𝑢

𝜕𝑦
∆𝑦.  

So, there is a change in the velocity, and due to that this deformation is different in x and y 

direction. So, similarly if it is v then; obviously, you will get here 𝑣 +
𝜕𝑣

𝜕𝑥
∆𝑥. So, now, if you 

consider that there is a change in the position from time t to 𝑡 + ∆𝑡, then obviously, you can 

see that this length because it is having the velocity u so, A to A’ at a time ∆𝑡 so, it will be 𝑢∆𝑡.  

And, this position you can see that this A’ to D’ this vertical distance will be ∆𝑦 +
𝜕𝑣

𝜕𝑦
∆𝑦∆𝑡 and 

this will be ∆𝑥 +
𝜕𝑢

𝜕𝑥
∆𝑥∆𝑡 . And this distance if you see it will be 

𝜕𝑣

𝜕𝑥
∆𝑥∆𝑡  and as this velocity 

is v so, it has moved to here so, this will be 𝑣∆𝑡 and this distance will be 
𝜕𝑢

𝜕𝑦
∆𝑦∆𝑡 . 

So, now we can represent this ∆𝛼  and ∆𝛽 in terms of the velocity gradients. So, if you see 

from here, if you write tan ∆𝛼 will be  

tan ∆𝛼 =

𝜕𝑣
𝜕𝑥

∆𝑥∆𝑡

∆𝑥 +
𝜕𝑢
𝜕𝑥

∆𝑥∆𝑡
 

tan∆𝛽 =

𝜕𝑢
𝜕𝑦

∆𝑦∆𝑡

∆𝑦 +
𝜕𝑣
𝜕𝑦

∆𝑦∆𝑡
 

So, now, if you consider that ∆𝑡 is very small, then obviously, you can write tan ∆𝛼 is equal to 

∆𝛼 and as ∆𝑡 tends to 0 so, this you can write ∆𝛼  is equal to 
𝜕𝑣

𝜕𝑥
∆𝑡. And similarly, as ∆𝑡 tends 

to 0, tan∆𝛽 will be equal to ∆𝛽 and ∆𝛽  you can write as 
𝜕𝑢

𝜕𝑦
∆𝑡. 



So, now, you can see that we can represent this delta alpha whatever this change in the angle 

divided by the time in terms of the velocity gradient similarly delta beta by delta t we can 

represent in terms of velocity gradient as del u by del y. 
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So, now, if we consider that rotation about an axis parallel to the z-axis that we can write as  

𝑑Ω𝑧 =
1

2
(∆𝛼 − ∆𝛽) 

And, the angular velocity at a point is defined as the arithmetic mean of angular velocities of 

two-line elements at that point that were originally perpendicular to each other.  

So, in that case, we can define the angular velocity  

𝜔𝑥𝑦 =
𝑑Ω𝑧

𝑑𝑡
=

1

2
(
∆𝛼

∆𝑡
−

∆𝛽

∆𝑡
) =

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 

So, now, we have represented the angular velocity in terms of the velocity gradient. And 

similarly the angular velocity in x and y axis we can write as  

𝜔𝑦𝑧 =
1

2
(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 

𝜔𝑧𝑥 =
1

2
(
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) 



So, you can see all this, you can write in terms of second order tensor that is  

𝜔𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑖
−

𝜕𝑢𝑖

𝜕𝑥𝑗
) 

And obviously, from here, you can see that this angular velocity tensor is a skew symmetric 

that means, it is a skew symmetric tensor as  

𝜔𝑖𝑗 = −𝜔𝑗𝑖 

So, now, let us discuss the shear strain rate due to these deformations of the fluid element, we 

have already evaluated the change of angle per unit time in terms of the velocity gradient. 
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So, now the shear strain is defined as the average decrease of the angle between two lines that 

are initially perpendicular in the unstained state. So, obviously, you can see that shear strain 

we can define as  
1

2
(∆𝛼 + ∆𝛽).  

So, now, we can write the shear strain rate so, the shear strain per unit time so, that we can 

write as  

𝜀𝑥𝑦 =
1

2
(
∆𝛼

∆𝑡
+

∆𝛽

∆𝑡
) =

1

2
(
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) 

So, similarly the other shear strain also can write as 



𝜀𝑦𝑧 =
1

2
(
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
) 

Similarly,  

𝜀𝑧𝑥 =
1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) 

So, obviously, from here, you can see that shear strain rates are symmetric. So, in terms of 

tensor if we write then  

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) 

and you can see that 𝜀𝑖𝑗 is equal to 𝜀𝑗𝑖 right so, this is asymmetric tensor ok. 
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So, now, if you consider both the linear deformation as well as angular deformation and if you 

want to write the shear strain rate in terms of 𝜀𝑖𝑗, then we can write as so, considering both 

linear and angular deformation ok, we can write now 𝜀𝑖𝑗 as second order tensor. So, you can 

see it will be 

𝜀𝑖𝑗 = (

𝜀𝑥𝑥  𝜀𝑥𝑦   𝜀𝑥𝑧

𝜀𝑦𝑥  𝜀𝑦𝑦  𝜀𝑦𝑧 
𝜀𝑧𝑥  𝜀𝑧𝑦  𝜀𝑧𝑧

) 



So, it is a second order tensor. 

Now, let us consider two special cases ok. So, special cases; now, if you see that if  
𝜕𝑣

𝜕𝑥
  is equal 

to −
𝜕𝑢

𝜕𝑦
 . So, in that case, you can see that angular deformation 𝜀𝑥𝑦  obviously, from the 

expression you can see it will be 0 and 𝜀𝑥𝑦 will be - 
𝜕𝑢

𝜕𝑦
. So, what is happening here? So, you 

can see that if 𝜀𝑥𝑦 is equal to 0 so, there will be no deformation so, it will rotate like a solid 

body right.  

So, if you have initially one fluid element like this, then after time ∆𝑡 obviously, it will rotate 

like a solid body like this ok. The other special case is if  
𝜕𝑣

𝜕𝑥
  is equal to 

𝜕𝑢

𝜕𝑦
 . So, in this particular 

case, you can see 𝜀𝑥𝑦  will be equal to 
𝜕𝑢

𝜕𝑦
  is equal to 

𝜕𝑣

𝜕𝑥
 and 𝜔𝑥𝑦 will be 0 so, that means, the 

fluid element has an angular deformation rate, but no rotation about z axis.  

So, it will look like if you have one fluid element initially like this so, if you have the same 

angular deformation so if ∆𝛼 is ∆𝛽 in the opposite direction if it is same so, it will look like 

this. So, this angle ∆𝛼 and ∆𝛽 will be same in the opposite direction and here also this will be 

same ∆𝛼, ∆𝛽; so, in the same direction ∆𝛼, ∆𝛽. 

So, obviously, you can see that if you have the same angular deformation like this ∆𝛼 is equal 

to ∆𝛽, then there will be no rotation of this fluid element; however, it will undergo an angular 

deformation. Now, you can see that when we are considering the Lagrangian approach, then 

obviously, we need to track each, and every particle and it is very difficult while studying the 

fluid mechanics' problems.  

So, in this particular case, if we consider the Eulerian approach, then it will be convenient for 

us because we will be focusing on a region or domain and we will see what is coming in and 

going out. So, but we need to have the relation between these two approaches so, as you discuss 

that Lagrangian approach is known as the system approach and the Eulerian approach is known 

as the control volume approach. 

So, if you consider one particular control volume and what is happening, what is coming in, 

what is going out that if we note, then it will be easy to study the fluid mechanics' problems. 
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So, we can see that a system is a collection of matter of fixed identity which may move, flow 

and interact with surroundings. So, you can see that it will have the same mass inside a system. 

A control volume is a volume in space through which fluid may flow. So, obviously, it is 

convenient for fluid mechanics study to use the control volume approach. 

A moving system flows through the fixed control volume. So, if you consider that this is a 

system, and this is a control volume and this control volume surface is known as a control 

surface. And in this case, if a moving system flows through this fixed control volume and the 

moving system transports extensive properties across the control volume surface and now, we 

need to keep track of these properties that had been transported into and out of the control 

volume. 
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So, this we can relate this system approach and control volume approach through this 

Reynold’s transport theorem. So, what does it state? Reynold’s transport theorem states that 

the rate of change of an extensive property N for the system is equal to the time rate of change 

of N within the control volume and the net rate of the flux of the property N through the control 

surface. 

So, we are considering this as a system and this is the control volume and in the control volume, 

what is the surface through which the flow will come in and go out. And, if we consider one 

elemental volume that is dV and one elemental surface dA and n is the outward normal unit 

normal. 

So, now, you can see that through this Reynolds transport theorem, we can write  

𝐷𝑁

𝐷𝑡
|
𝑠𝑦𝑠

=
𝜕

𝜕𝑡
∫

𝐶𝑉
𝜌𝜂𝑑𝑉 + ∫

𝐶𝑆
𝜌𝜂(𝑉𝑟⃗⃗  ⃗. 𝑛̂)𝑑𝐴 

So, in this case, N is any extensive property, it has the intensive property, 𝜌 is the fluid density, 

𝑉𝑟 is the relative velocity and 𝑛̂ is the outward surface normal? 

So, now using this Reynold’s transport theorem, we will derive the continuity equation. So, we 

will first consider the conservation of mass. So, if you consider the conservation of mass, then 

N will be equal to the mass of the fluid. So, that is the extensive property and intensive property 

𝜂 will be just 1 in this particular case. 
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So, you can see that if we consider the conservation of mass, then obviously, N will be m and 

𝜂 will be 1 and as m is the mass is fixed in the system, then obviously, DN/Dt system will be 

0 right. So, you can see that for non-deforming and stationary control volume, Vr will be the V 

and for non-deforming control volume, this first integral we can write as 

∫
𝐶𝑉

𝜌𝜂𝑑𝑉 = ∫
𝐶𝑉

𝜕(𝜌𝜂)

𝜕𝑡
𝑑𝑉 

So, now, this second part if you consider 𝜂 is equal to 1 and Vr is equal to V, then using Gauss 

divergence theorem we can write 

∫
𝐶𝑆

𝜌𝜂(𝑉⃗ . 𝑛̂)𝑑𝐴 = ∫
𝐶𝑉

∇(𝜌. 𝑉⃗ )𝑑𝑉 

So, in this particular case, now if you consider this equation, then left-hand side DN/Dt system 

will be 0 and this is your volume integral and we are considering non-deforming control 

volume, then we can write 
𝜕(𝜌)

𝜕𝜂
 as 𝜂 is equal to 1 plus this last term in this equation, we are 

converting to volume integral putting 𝜂 is equal to 1, then you can write ∇(𝜌. 𝑉⃗ )𝑑𝑉.  

So, since the choice of the elemental control volume is arbitrary so, we can have 

𝜕(𝜌)

𝜕𝑡
+ ∇(𝜌. 𝑉⃗ ) = 0 



So, this is the continuity equation in general. 
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So, we have  

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 

Now, if you consider incompressible flow where you have a constant density incompressible 

flow; so, for constant density, you can write it as  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

So, from the continuity equation for a constant density incompressible flow, we have written 

this divergence of V is equal to 0. That means, the volumetric strain rate will be 0 in case of 

constant density incompressible flow. 

If you consider steady incompressible flow; so, for steady compressible flow; for steady 

compressible flow obviously, this time derivative will be 0 and you can write  

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0 

 that means, the divergence of  𝜌V will be 0.  



So, this is for steady incompressible flow, but you can see this equation is valid for both steady 

and unsteady because we have assumed constant density incompressible flow. So, the first term 

becomes 0. So, it is applicable for both steady and unsteady incompressible flow. 

So, in today’s class, we discuss the preliminary concepts when the fluid is in motion. First, we 

discussed the Lagrangian and Eulerian approach, we have considered that the deformation of 

the fluid when it moves with a fluid element. In this case, we have considered that fluid element 

undergoes rotation, translation, angular deformation and linear deformation. 

When you considered the angular deformation, we have represented the shear strain in terms 

of the velocity gradient as well as the angular velocity in terms of the velocity gradient. And 

we have shown that the angular velocity tensor is skew-symmetric, and the shear strain rate 

tensor is symmetric. 

Next, we have discussed the system approach and the control volume approach and we have 

related these system approach and control volume approach through Reynold’s transport 

theorem. Next, we used the conservation of mass law and we have derived the continuity 

equation from Reynold’s transport theorem. 

Thank you. 


