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Hello everyone. So, in today’s lecture we will find the velocity profile for Poiseuille flow

inside elliptical duct with uniform cross section. We will consider infinitely long elliptical

duct and pressure gradient is constant with negligible gravitational acceleration and also we

will consider fully developed flow. 

In this case we have already derived the governing equation. So, we will start with that

equation and in this particular case we will find the velocity profile or we will assume the

velocity profile such a way that it will satisfy the no slip condition at the wall.
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So, consider this elliptical duct where x is the axial direction, this is the y direction and this is

the z direction. So, if you take any particular cross section then you will get this is the

elliptical duct with uniform cross section where this is the z direction, this is the y direction,

this is the major axis and this is the minor axis. So, obviously, for this particular case we

know the governing equation is this one where del p by del x is a constant in the direction of

flow and u is function of y and z right.

So, now we will try to find the velocity profile from the just assuming a velocity profile. So,

let us consider the elliptical this duct for this wall what is the equation? We will consider first

the equation of ellipse ok. So, you know for this particular case or particular geometry you

can have the equation of ellipse as y square by a square plus z square plus b square is equal to

1 or we can write 1 minus y square by a square minus z square by b square is equal to 0.



So, this is the equation for this wall ok. So, 1 minus y square by a square minus z square by b

square is equal to 0. So, we will assume the velocity profile inside this domain as some

constant into this equation of ellipse then automatically the no slip condition will be satisfied

at the wall for this velocity profile. So, we will assume the velocity profile as u which is

function of z and y is equal to some constant into the equation of ellipse 1 minus y square by

a square minus z square by b square ok.

So, from here you can see that the velocity profile clearly satisfies no slip condition at the

tube walls because this term becomes 0 right at the wall and boundary condition. So, you can

see that u will be 0 which is your no slip condition on the wall and this is valid when y square

by a square plus z square by b square less than equal to 1 because this is actually inside the

domain and when equal to 1 this will become boundary condition. Now, we will determine

this constant a just satisfying the governing equation ok.
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So, we know the governing equation as del 2 u by del y square plus del 2 u by del z square is

equal to 1 by mu del p by del x right. So, now, we have assume the velocity profile as A into

1 minus y square by a square minus z square by b square. So, you find the derivative ok. So,

you can see from here you can see del u by del y it will be just A minus 2 y by a square and if

you write del 2 u by del y square then it will become minus twice A by a square.

Similarly, you can see the derivative del u by del z you can write as A minus 2 z by b square

and del 2 u by del z square is equal to minus twice A by b square ok. Now you satisfy this

derivatives in the governing equation and let us find the constant a. So, now, let us write in

the governing equation del 2 u by del y square plus del 2 u by del z square is equal to 1 by mu

del p by del x.



So, del 2 u by del y square is minus 2 A by a square and del 2 u by del z square it is minus 2

A by b square is equal to 1 by mu del p by del x. So, you can see from here it will be A is

equal to 1 by twice mu minus del p by del x a square b square by a square plus b square ok.

So, now, we know the constant A, we know the velocity profile. So, if you put the value of A

here. So, we will get the velocity profile inside the elliptical duct.
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So, the velocity profile ok. So, if you put the value of a here you will get u as 1 by twice mu

we will write minus del p by del x because this is the favorable pressure gradient, it will be

positive we have a square b square by a square plus b square and 1 minus y square by a square

minus z square by b square. So, this is the velocity profile inside the elliptical duct with

uniform cross section, now if you want to find the maximum velocity where it is occur ok.



So, maximum velocity obviously, it will occur you can see that it will occur at the origin

where y is equal to 0 and z equal to 0. So, from the symmetrical geometry and the boundary

condition you can tell that ok. So, if you put z is equal to 0 and y is equal to 0 then you will

get the maximum velocity at the center line ok. Let us find the maximum velocity. So,

maximum velocity ok. So, you will get u max. So, where it will occur? Obviously, where ever

we have taken the origin; that means, u at z is equal to 0 and y is equal to 0 at the centre line.

So, at the center line now if you put here z is equal to 0 y is equal to 0. So, you will get just 1

by twice mu minus del p by del x a square b square by a square plus b square. So, this is the

maximum velocity and you can write this velocity profile in terms of u max as u z y is equal

to. So, this first part you can see this will be just u max into 1 minus y square by a square

minus z square by b square. Now first let us calculate the volumetric flow rate inside this

elliptical duct and from there we will find the average velocity.

So, to find the volumetric flow rate inside this elliptical duct, we will consider this one

quarter of this domain. So, you can see.
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Ah If you see it is actually one fourth of the domain, if we can find the volumetric flow rate

and if we multiply with 4, then we will get the total volumetric flow rate inside the elliptical

duct ok. So, what we will do? We are considering this right top this part and this is the z this

is the y and at a particular distance z let us take one elemental area of a distance d z.

Similarly, at a distance y you take one a small strip of length d y. So, you can see this

elemental area is d y d z ok. So, d A is d y into d z ok. So, now, if you integrate this area over

this one quarter of this elliptical duct, then you will get the total area and now let us find the

volumetric flow rate for this one quarter as Q is equal to; obviously, it is area integral u which

is function of z y d A right. So, now, area integral. So, this is the small elemental area we

have considered.



So, now you can see that if you vary z is equal to 0 to z is equal to b at this point z is equal to

b then at a particular location z you can see y will vary ok. So, how it will vary. So, that we

can find from the equation of ellipse. So, you can see here that equation of ellipse is y square

by a square plus z square by b square is equal to 1. So, from here you can see y as a root 1

minus z square by b square. So, you can see at a particular z you will have the y as a root 1

minus z square by b square and this y will vary with z ok.

So, now, we will write the integral. So, now, we are multiplying by 4 because whatever

volumetric flow rate we are calculating in the one fourth of the domain. So, we are

multiplying with 4 now we will integrate 0 to b first in z direction. So, now, in y direction

now we will have from y is equal to 0 to y is equal to this ok. So, we will get 0 to a root 1

minus z square by b square ok.

Now, we have the expression of the u z y as u max u max is constant 1 minus y square by a

square minus z square by b square into d y d z ok. First we will integrate with respect to y

then we will integrate with respect z ok. So, first let us evaluate this term ok. So, we will can

write 4 u max outside the integral 0 to b. So, first we will evaluate this integral. 0 to a root 1

minus z square by b square 1 minus y square by a square minus z square by b square d y then

after that we will integrate this term with respect to z ok.

So, first let us evaluate the integral inside the curly bracket. So, we can see. So, 0 to a root 1

minus z square by b square 1 minus y square by a square minus z square by b square d y this

first let us evaluate. 

So, you can see if you integrate it, it will be y minus y cube by 3 a square minus z square by b

square y limit 0 to a root 1 minus z square by b square ok. So, you can see that if we take y

common from this two terms then we can write it as y 1 minus z square by b square and we

have minus y cube by 3 a square limit 0 to a root 1 minus z square by b square.

So, now, if you put the value of y is equal to 0 so; obviously, it will become 0. So, y is equal

to just a root 1 minus z square by b square you just write. So, you will get. So, y if you put.



So, it will be 1 minus z square b square to the power half and here 1 is there. So, 1 plus half

will be 3 by 2. So, you can write a 1 minus z square by b square to the power 3 by 2 ok.

And minus so, you can see here y cube. So, it will be a cube by 3 a square and it is 1 minus z

square by b square to the power half. So, it will be 3 by 2. So, 1 minus z square by b square to

the power 3 by 2. So, this 1 a will be here and you can see from here. So, it will be a by 3 and

a; that means, it will be 2 by 3 right. So, it will be 2 by 3 a 1 minus z square by b square to the

power 3 by 2. So, now we can see that we have evaluated this term which is 2 by 3 a 1 minus

z square by b square to the power 3 by 2. So, let us put it here and again integrate it.
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So, now we got Q as 4 u max twice a by 3 integral 0 to b 1 minus z square by b square 3 by 2

d z. Now let us integrate this term ok. So, just we will show the derivation now we need to



evaluate this term 0 to b 1 minus z square by b square to the power 3 by 2 d z ok. First we

will just take let z is equal to b sin theta ok.

So, if z is equal to b sin theta then we can write d z is equal to b cos theta d theta, now if you

put here you can see 1 minus z square by b square will be just 1 minus sin square theta. So, it

will be cos square theta. Now let us discuss about the limit ok. So, you can see at z is equal to

0 so, obviously, you can see that theta will be 0 because sin theta is 0 and at z is equal to b ok.

So, sin theta is 1. So, if sin theta is 1 then theta is equal to pi by 2 ok.

So, now if we say that the integral is I, then you can write I is equal to integral 0 to pi by 2.

So, in terms of theta we are writing the limit cos square theta to the power 3 by 2 and d z is b

cos theta d theta ok. So, this you can write as 0 to pi by 2 and b is constant you can write

outside the integral and here it be cos cube theta and cos theta. So, it will be cos 4 theta d

theta and again let us write that z is equal to b cos theta ok.

So, if z is equal to b cos theta then we can find d z is equal to b minus sin theta d theta and if

you see the limit at z is equal to 0 so; obviously, cos theta is equal to 0 and cos theta is equal

to 0 means theta will be pi by 2 and at z is equal to b obviously, cos theta is 1 so, theta will be

0. So, this integral now we can write this integral if you put these values again we can write

that I is equal to pi by 2 to 0 and 1 minus z square by b square. So, it will become 1 minus cos

square theta so; that means, it is sin square theta ok.

So, we will get sin square theta to the power 3 by 2 and this will get b minus sin theta d theta

ok. So, here one minus sin is there and integral pi by 2 0 there. So, now, we will just change

the limit from 0 to pi by 2. So, this minus sin will not be there. So, we will get now sin to the

power 4 theta, d theta and b will be there outside the integral. So, what we will do now just

we will add these two. So, if we add these two then we will get 2 I is equal to 0 to pi by 2 and

we have cos 4 theta plus sin 4 theta d theta.
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Now, let us find the integral. So, 2 I we can write as b 0 to pi by 2 cos 4 theta plus sin to the

power 4 theta d theta. So, this term you can see we can write as cos square theta plus sin

square theta whole square we can write as cos to the power 4 theta plus 2 sin square theta cos

square theta plus sin to the power 4 theta ok. So, you can see from here we can write cos to

the power 4 theta plus sin to the power 4 theta is equal to. So, cos square theta plus sin square

theta whole square minus 2 sin square theta cos square theta.

What is the value of this term? Right hand side first term. So, it is 1 right. So, we will get 1

and what we will do here? We will write just half 2 sin theta cos theta square. So, now, we

know that 2 sin theta cos theta is sin 2 theta. So, we can write 1 minus half sin square 2 theta

and now we can again write that 1 minus 1 by 4 2 sin square theta ok. Now 2 sin square theta

is 1 plus cos 4 theta ok.



So, it will be 1 minus 1 by 4 minus 1 by 4 cos 4 theta. So, it will be 3 by 4 minus 1 by 4 cos 4

theta ok. So, now, let us put it here and integrate it. So, we will get 2 I is equal to b by 4

integral 0 to pi by 2. 

So, we will get 3 minus cos 4 theta d theta it will be b by 4. So, we can see it will be 3 theta

minus sin 4 theta by 4 0 to pi by 2. So, we can see here that for theta is equal to 0; obviously,

first term will become 0, sin 0 will 0 and if you put theta is equal to pi by 2. So, this will

become sin 2 pi and sin 2 pi value is 0.

So, second term will be 0. So, we can write b by 4 3 pi by 2 ok. So, this will be just 3 pi b by

8. So, now, we have found the integral I which actually we wanted to find. So, that is 3 pi b

by 16. So, now, we have found the integral I. So, now, if we put this value in the expression

of volumetric flow rate, then we can find the volumetric flow rate of inside elliptical duct.
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Q will be 4 u max twice a by 3 and that integral we have evaluated as 3 pi b by 16 ok. So, you

can see. So, 4 it will become 4 this 2 it will become 2 this 3 3 will get cancelled. So, Q we

will get as pi by 2 u max a b ok. So, now, if we put the value of u max, then we can write the

volumetric flow rate as Q is equal to. So, u max is 1 by twice mu minus del p by del x a

square b square by a square plus b square and another a b is there. So, Q will be pi by 4 mu

minus del p by del x a cube b cube by a square plus b square ok.

So, you can see this term minus del p by del x is positive right so; obviously, Q is positive

and now let us find what is the value of average velocity. So, for this elliptical duct we know

the area of an ellipse is pi a b. 

So, you can find the u average. So, Q is equal to A into u average and A is pi a b ok. So, you

can see now u average you can find. So, this is the Q if you divide by pi a b. So, you can see



pi by 4 mu if you divide by a. So, it will be 1 by pi a b minus del p by del x a cube b cube by a

square plus b square ok.

So, this pi pi will get cancelled this a b. So, it will become a square b square. So, you can

write average velocity u average as 1 by 4 mu minus del p by del x a square b square by a

square plus b square. Now let us consider two special cases. So, you can see for elliptical duct

if you put a is equal to b is equal to R then; obviously, it becomes circular duct. So, we will

consider that as a first case.
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So, special cases. So, we will consider circular duct ok. So, if you put a is equal to b is equal

to R then it will become just Hagen Poiseuille flow right Hagen Poiseuille flow ok. So, now,

if you put a is equal to b is equal to R then we will get the Hagen Poiseuille flow. So, we have

the expression of velocity u z y as 1 by twice mu minus del p by del x a square b square by a



square plus b square 1 minus y square by a square minus z square by b square ok. So, now, let

us put the value of a b as R.

So, you will get 1 by twice mu minus del p by del x. So, it will be R square R square. So, R to

the power 4 here R square plus R square 2 R square and you will get 1 minus. So, in the

denominator if you write R square. So, it will become y square plus z square. 

So, now, if we switch to cylindrical coordinate and if you put small r square is equal to y

square plus z square then we can see the Hagen Poiseuille flow this velocity profile. So, now,

setting r square is equal to y square plus z square and switching to cylindrical coordinate. So,

we can put here. So, you can see u will be function of r only.

So, it will become 1 by 4 mu minus del p by del x and you can see here R square and 1 minus

r square by R square. So, you can see that this is the same expression what we derived for

Hagen Poiseuille flow and now if you calculate the volumetric flow rate. So, we have Q is

equal to pi by 4 mu minus del p by del x a cube b cube by a square plus b square. So, if you

put a b as r then you can write Q is equal to pi by 4 mu minus del p by del x. So, it you can

see you it will be R cube R cube. So, R to the power 6 divided by 2 R square 

And final you can write Q as. So, pi by 8 mu minus del p by del x R to the power 4. So, it is

the same expression what we derived for Hagen Poiseuille flow. So, now, let us derive the

special case where you consider the plane Poiseuille flow ok. So, in case of plane Poiseuille

flow we will consider b is equal to h and a is much much greater than h where 2 h is the

distance between the 2 parallel plates.
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So, special case. So, this is the second special case where we are considering flow between

two infinite parallel plates.

Here we will consider a is much much greater than H and b is equal to H. So, it will give

plane Poiseuille flow ok. So, if we have the expression u which is function of z y as 1 by

twice mu minus del p by del x a square b square by a square plus b square 1 minus y square

by a square minus z square by b square ok. So, you can see a is much much greater than H.

So, ah; obviously, this term y square by a square will become very very small. 

So, now, y square by a square will become very very small. So, if you put it then we will get 1

by twice mu minus del p by del x. So, if you put here b square as H square divided by. So,

you divide by H square. So, it will be 1 plus b square means H square a square by H square.



So, you can see H by a is much much smaller than 1 much much smaller than 1 so, obviously,

you can write this as H square and we have 1 minus ok. 

So, we can have z square divided by H square because y square by a square will be very

small. So, now, this will be very small. So, you can write 1 by twice mu minus del p by del x

H square into 1 minus z square by H square ok. And now u is function of y only.
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So, we have found the velocity profile for plane Poiseuille flow and it is same as we derived

for the flow between two infinite parallel plates. So, now, let us summarize what we have

done in today’s class. So, we considered one elliptical duct with uniform cross section and we

have found the equation for the wall first and; obviously, we assume the velocity profile such

a way that it will satisfy the no slip condition at the wall.



So, from the we have written velocity profile as constant into the equation of the wall. So,

from there we found the velocity profile and we found the constant a satisfying the governing

equation. So, after that we found the volumetric flow rate and once we found the volumetric

flow rate we could find the average velocity and we know the maximum velocity will occur at

the central line and we have put y is equal to 0 and z is equal to 0 in the expression of velocity

profile and we found the maximum velocity.

So, you can see that this is the velocity distribution whatever we have found and this is the

volumetric flow rate and average velocity just we have divided by pi a b which is your area.

So, then we got the average velocity and setting y is equal to 0 z is equal to 0 we found the

maximum velocity. So, you can see here for the case a by b is equal to 0.5 we are showing the

velocity contour.

So, in this case you can see that maximum velocity obviously, will occur at the centre line

and these are the lines with constant velocity magnitude . So, you can see velocity contours

follow the wall ok. So, it is the profile is similar like the wall of this duct.

Thank you.


