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Preliminary concepts

Hello everyone. Welcome to this course entitled Viscous Fluid Flow, | am Professor Amaresh
Dalal, from the Department of Mechanical Engineering at Indian Institute of Technology,

Guwabhati.

Viscous fluid flow is a fluid mechanics course as an advanced point of view, in which we will
discuss more about the viscous fluid flows. As a prerequisite, you need to have credited the

basic fluid mechanics course in your undergraduate level.
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So, first let us discuss about the course outline. So, in module 1, we will discuss the preliminary
concepts that you have already studied in the basic fluid mechanics course; Lagrangian and
Eulerian approach, Reynolds transport theorem and from here, we will derive the mass
conservation equation and momentum conservation equation which is known as Navier-Stokes

equations.



In week 2, we will have the exact solution of the Navier-stoke equations for Steady one-
dimensional rectilinear flows. Here, we will consider Plane Couette flow which is the shear
driven flow, then we will consider Plane Poiseuille flow which is purely pressure-driven flow,
then Plane Poiseuille flow with slip thin film flow and we will discuss about combined Couette

and Poiseuille flow. That means, it is a combination of shear and pressure-driven flow.

In module 3, we will study the Steady Axisymmetric flows. First, we will consider the pipe
flow and the exact solution of fully developed pipe flow is known as Hagen-Poiseuille flow.
Then, we will consider thin-film annular flow, then steady flow between rotating cylinders.

In module 4, we will consider Transient One-dimensional Unidirectional Flow. Here, we will
discuss Flow near a plate suddenly set in motion which is known as Stokes first problem, then
we will consider flow due to an oscillating plate which is known as Stokes second problem,

then we will consider transient plane Couette flow and transient axisymmetric Poiseuille flow.

In module 5, we will solve steady two-dimensional rectilinear flows. Here we will solve flow
through the rectangular duct, flow through an equilateral triangular duct and flow through

elliptical duct.

In week 6, we will discuss about the Lubrication Theory which is a kind of creeping flow. Here,
we will discuss the Reynolds equation of lubrication, slipper bearing, journal bearing, piston-

ring lubrication and two-dimensional lubrication.
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In modules 7 and 8, we will discuss Laminar Boundary Layers, where first we will introduce
the boundary layer equations. Then, we will derive the equations for flow over a flat plate and
using a suitable similarity variable approach, we will derive the Blasius equation, then we will

discuss about the momentum integral equation.

In module 8, we will consider non-zero pressure gradient for a flow over a curved plate or
wedge and we will derive the Falkner-Skan equation and we will show the solution of this
Falkner-Skan equation, then Karman Pohlhausen approximation, we will discuss; separation
of boundary layer and wake behind the circular cylinder and we will discuss about vortex

shedding.

In week 9, we will discuss about the Free-Shear flows, self-similar solution of free shear flows,
flow in the wake of a flat plate, free shear layer between two different streams. In week 10, we
will introduce the Stability Theory; where first we will derive the Orr-Summerfeld equation.
We will discuss the Rayleigh’s theorem, stability envelope, Squires theorem and we will also

solve some stability problem for some simple parallel flows.

In modules 11 and 12, we will discuss about the Turbulent Flows. First, we will derive the
Reynolds average Navier-Stokes equations, then we will discuss about the external and internal
turbulent flows, Prandtl mixing length hypothesis and we will discuss about the universal

velocity profile on flat plate.

Then, in last module, we will have the Integral solution of turbulent boundary layer flow and

we will derive this k-epsilon model and we will discuss other two-equation turbulence model.
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So, for this course mostly, we will follow the Viscous Fluid Flow book by F. M. White, you
can see here. So, this book you can have as the textbook. In addition, you can follow these
books as reference books; Papanastasiou, Georgiou and Alexandrou, Viscous Fluid Flow, CRC
Press; Sherman, Viscous Flow; Ockendon and Ockendon, Viscous Flow; Schlichting and
Gersten, this is especially for Boundary Layer Theory. In addition, you can have other basic

fluid mechanics books which you have already studied at your undergraduate level.

So, in today’s class, we will first discuss about some preliminary concepts which you have
already studied. First, let us discuss about what is fluid. So, first, let us define what stress is.
So, if any force is acting on in some elemental area, then stress is defined as the force per unit
area. So, a normal component of this stress is known as normal stress and the tangential

component of this stress is known as tangential or shear stress.
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What is Fluid?

A fluid is a substance that deforms continuously when subjected to 2 tangential or shear stress,
however small the shear stress may be.
A fluid is a substance in the gaseous or liquid form

So, now we will define the fluid. So, if you can see that let us say one stationary fluid is there.
So, this is the stationary plate and this is the fluid layer and if some tangential stress is imposed
on this fluid layer, then you can see it will continuously deform. So, at time t is equal to O, if
this is a vertical line 0, 1. So, if some shear stress is applied on this fluid layer, then obviously,
it will continuously deform and this line vertical line initially was vertical line. So, it will
deform as 0, 2 and 0, 3.

So, we can define the fluid as a substance that deforms continuously when subjected to
tangential or shear stress; however, small the shear stress may be. So, a fluid is a substance in
a gaseous or liquid form. Next, we will discuss about the concept of the continuum. In a study
of fluid mechanics, it is convenient to assume that the gases and liquids are continuously

distributed throughout a region of interest; that means, the fluid is treated as a continuum.
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Concept of Continuum

With the continuum assumptions, the fluid properties can be assumed to exist at all pointsina
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So, with the continuum assumptions, the fluid properties can be assumed to exist at all points
in a region at any particular instant in time. So, consider the variation of density as a function

of the size of any element AV. So, p is the density of the fluid; AV is the volume.

So, if you see that at larger AV, the density is affected by the inhomogeneities in the fluid itself
arising from varying composition and temperature distribution and if AV becomes smaller in
this region if you consider that it is almost a constant and it is uniformly distributed and if AV
is very small, so you can consider in this region, then there will be random fluctuation of density
ok.

So, you can see that we can define a density p in the limit of this AV, because below this AV,
so there will be a fluctuation and due to this fluctuation, there may be a change in mass So,
obviously, you can see that it will not be continuously distributed in the region of interest. So,
density, we can define as the limit, AV tends to AV, which is the limiting volume Am/AV. So,

Am is the mass of the element and AV is the volume of the element.

So, if A is the molecular mean free path of the molecules and L is the characteristic length, then
this continuum approximation is valid when A/L is much much smaller than 1. So, if we define
the Knudsen number as the ratio of A/L, then the continuum model is acceptable if the Knudsen
number is less than 0.01 and no-slip flow will be valid in this range of Knudsen number less

than 0.01 and for slip flow, this Knudsen number range is between 0.01 and 0.1.
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Newtonian Fluid
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if the shear stress of a fluid is directly proportional to the velocity gradient, the fiuid is said to
be a Newtonian Fluid. ,

L Y

So, let us discuss the Newtonian fluid. So, again, we will consider one stationary fluid element
over a flat plate. So, you can see, so this is the flat plate which is stationary and this is the fluid
layer and the upper layers some force, you applied in the tangential direction and due to that,
there will be shear stress.

Now, if you consider initially one vertical line A, B. So, after time delta t;, due to these applied
tangential force, this A, B will come to a position A, B prime and it will make one angle 63

and the distance B to B prime is da. So, obviously, in 6t time this B travels to B’.

For this case, if the height of the fluid is h, then the velocity profile may look like this linear
profile and u will be just uy/h, where y is measured from the bottom plate. So, thus, you can

see that a velocity gradient is developed in the fluid.

So, in a small-time ot, 6t increments an imaginary vertical line A B in the fluid would rotate
through an angle 6B and it will have the position A B’. So, with this if you consider tan 4p;

then, you can write from here you see, it will be da/h; da/h and what is 6a?

So, da is the distance traveled from this B to B’ in time dt. So, if u is the velocity of this upper
layer, then u. &t. So, obviously, if 6t tends to 0, then you can see delta beta also will be tending
to 0 because it will make very small angle and tan &f, you can write as 6f3. So, from here, you

can see of3, you can write as; so, da is u 6t/h.

So, from here, we can define a rate of shear strain y is equal to



_ 6 U du
V=508t R dy
So, from Newton’s law of viscosity, we can say that the shear stress is the applied shear stress.

The applied shear stress t is proportional to the rate of shear strain y. So, that means, shear

stress is proportional to the rate of shear strain.

And now, we can write t as proportional to the velocity gradient du/dy and we can write 7 is

equal to uZ—;‘. So, p is the proportionality constant and this proportionality constant p is known

as dynamic viscosity ok.

Its unit is kg per meter second and we can define the kinematic viscosity v as dynamic viscosity
by the density of the fluid p and its unit is meter square per second ok. So, you can see if the
shear stress of a fluid is directly proportional to the velocity gradient, then the fluid is said to
be a Newtonian fluid.

So, many common fluids like air, water, oil, mercury are all Newtonian fluids. So, we have
seen that if shear stress is directly proportional to the shear strain rate. Then, those fluids which
obey this law are known as Newtonian fluid and the other fluids which does not obey this linear

relation, then those are known as non-Newtonian fluid.
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Non-Newtonian Fluids
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So, fluids for which the shear stress is not linearly related to the strain rate are designated as

non-Newtonian fluids ok. So, in these cases shear stress, we can define as



n

_ |du
r—mdy

So, where m is the consistency index and n is the flow behavior index.

So, in a general way if we define that t is equal to uZ—;, then this is known as apparent viscosity

and this apparent viscosity now from these two relations, we can write as

du
T = Hap E
du n—-1
Hap = @

So, you can see obviously, for Newtonian fluid, the shear stress is linearly varying with strain

rate or shear rate ok.

So, this is the Newtonian fluid and if you can see this apparent viscosity in this case, obviously,
it is mu. It does not vary with the shear rate. So, you can see it is constant for Newtonian fluid.
Now, for non-Newtonian fluids, there are different kinds of fluids. So, one is shear thinning
fluid ok.

So, this is the shear thinning fluid. So, for shear thinning fluids, the apparent viscosity decreases
with increasing shear rate. So, the harder the fluid is sheared, the less viscous it becomes ok.

So, for the example of shear thinning fluid is the colloidal suspensions, polymer solutions.

And for shear thickening fluid, you can see the apparent viscosity this is the apparent viscosity
increases with increasing shear rate ok. The harder the fluid is sheared, the more viscous it
becomes. So, the example of shear thickening fluids are water-corn starch mixture, water-sand
mixture. And for Bingham plastic, you can see it requires a minimum shear stress to cause the
motion ok. After that, it linearly varies. So, once the yield stress is exceeded, it flows like a
fluid. So, the example of Bingham plastic is toothpaste. So, next we will discuss about the
laminar and turbulent flows. So, you can see the laminar flows are very ordered flows with

smooth streamline.
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Laminar and Turbulent Flows
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So, in laminar flow fluid moves along smooth paths and viscosity damps any tendency to swirl
or mix; whereas, the turbulent flow is a highly disordered fluid motion, characterized by
velocity fluctuation and eddies. So, this fluid moves in a very irregular path and it is having
efficient mixing and velocity at a point that fluctuates.

So, Reynold’s number is the key parameter in determining whether or not a flow is laminar or
turbulent. So, you know the Reynolds number, we define as the density of the fluid, some
characteristic velocity U and characteristic length L divided by p which is the dynamic
viscosity of the fluid; where, U is characteristic velocity and L is characteristic length.

So, the characteristic length and the characteristic velocity depend on the type of flow you
consider. So, if you consider external flow, let us say flow over a flat plate, then obviously, the
characteristic length will be the length of the flat plate and the characteristic velocity will be

the free steam velocity U..

If you consider internal flows, let us say flow inside a circular pipe, then generally we consider
characteristic length as the diameter of the pipe and average velocity as the characteristic
velocity. So, for the external flow, if you define this Reynolds number based on this free stream
velocity and the length of the plate, then the flow becomes turbulent if the Reynolds number is
greater than 5x10°.



So, you can see that for flow over a flat plate, this Reynolds number based on any X, so it will
be greater than 5x10°; then, the flow becomes turbulent and for pipe flow, Reynolds number
based on the diameter of the pipe and the average velocity, if it becomes greater than 2300,

then the flow becomes turbulent.
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Steady and Unsteady Flows
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Now, let us discuss about the steady and unsteady flows. So, obviously, in a steady flow, the
flow parameters does not vary with time ok. So, the gradient of any flow parameter with respect

to time will be 0.

So, in this case, the properties at every point in a flow field do not change with time. So, that
means, del of delta t of any parameter will be 0. So, if you consider let us say a flow inside a
pipe and in laminar regime, then you can see that the velocity any quantity U or V, if you

measure with time, then it you can see that it will be a flat curve, it does not vary with time.

But if you consider unsteady flow, then obviously, the hydrodynamic parameters change with
time. So, the unsteady flow we can have two types; one is transient, the other one is periodic
ok. Say if you consider the flow over a circular cylinder of diameter D, then if Reynolds number
based on diameter is less than 40, then generally it is a steady flow and if Reynolds number

based on diameter is greater than 40, then it becomes unsteady.



So, if it becomes unsteady flow and if you are starting the solution from initial velocity as 0
inside the domain, then obviously, if you measure the velocity at any point in the domain, then

initially it will vary or increase with time.

After a certain time, you will find that there will be vortices behind this cylinder, it will be
shedded periodically which is known as von Karman vortex street and it will periodically said
behind the cylinder. So, this velocity, if you measure with time, then you will notice that it will

become periodic.

So, obviously, you can see the initial part is known as the tangent part because it is bearing
with time after that, it repeats periodically ok. So, obviously, this is known as periodic flow.
So, now, let us discuss about the fluid statics. So, fluid statics is the study of fluid at rest; that

means, there is no relative motion between the fluids.
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Fluid Statics

Pascal’s law states that pressure at a point in a static fluid is equal in magnitude in ali directions
P

Basic Equations of flusd statics:

i s “; _ boo\a —j«mu_ PR Wit TAsA
~ £ - A monmod swdwond
l ’P_ wb‘\k’!’;
Bodg Jones, [pRd¥
v A ey ?J‘V A Gouans
> S‘\A-\.-SAU. W' {_vq, dA = ;"\7 1 T
- A . .U"l u,\*&. . . -
3 Y b?.,,ua .§.nu- g\-\?u;«u '5"'“"°
b (Fo-7)a¥ =0
2 "q‘i'af’?»?gt P3P i Pl
cq heniemial glams
B Tl s TR - 3 ey
—ﬁ'“f’ﬂ .V“:.:rv"-c.“.',:é‘k‘l“;-«'_w:‘v Ap =~LJN

T o -pP322

ye PILYRSC
= ﬂww"

So, you know that Pascal law states that pressure at a point in a static fluid is equal in magnitude
in all directions. So, you can see that whatever we consider the hydrodynamic pressure p at a
fluid element, it is the same and also it acts at a point from all directions. So, now, let us discuss
about the basic equations of fluid statics. So, you can see that if you have one fluid volume, let
us say this is v and you have one elemental fluid volume that is d v and this is your y direction,

this is x and this is z.



So, obviously, you can see that any body force acting on this elemental fluid by element db, let
us say it is p ok. If you consider one elemental fluid area and the normal outward normal is n,
then obviously, you can see that pressure will be acting on this fluid element in opposite

direction, so it is p. Because p you know that is always compressive in nature.

Now, if we consider that b is the body force per unit mass and n is the unit normal outward and

p is the pressure, then you know the body force. Obviously, it is acting on the elemental volume

dv. So, pdv is the elemental mass. So, pEdV is the body force acting on this elemental volume

and if it is acting on this total volume ¥, then we have to integrate over the volume.

And surface force you can see, here only the special force is acting on the surface. So,
obviously, we can write as area integral —p#idA. So, now in equilibrium condition when fluid
is at rest; equilibrium condition fluid at rest, so this body force plus surface force is 0. So,
obviously, from here you can see that if you use the Gauss divergence theorem, then you can
convert this area integral to volume integral and you can write it as minus volume integral

Vpd¥ using Gauss divergence theorem.

So, you can see that it is

[, (pb —VP)A¥ = 0

VP = pb
So, obviously, this is you know that it is
dp, Op, Op. ) ) ~
L +$] +6_zk = pbyi + pb,j + pb,k

So, 1, j, k are the unit normal in the direction X, y, z respectively.

So, if fluid is at rest and it does not undergo any acceleration, then obviously, the gravity if it
is acting only in the z-direction, then obviously, gx is equal to gy will be 0 and g; will be just
minus g ok; where, gx is the body force. So it is by is equal to by is equal to 0 and b, which is

your gravity acting in the negative z-direction, it is minus g ok.

So, now, from here you can see that you can write for horizontal surface



op_o_,
ox dy

And or horizontal plane because there will be no change in the pressure because pressure acts

in equal magnitude from all directions.

So, obviously, this will become 0 and you can see that

dp _
aZ - pg

because g z is -g because you can see that dp is negative, if dz is positive; that means, the
pressure decreases as we move up and they increase, if we move down. So, obviously, Z_Z is

equal to —pg.

If we assume incompressible fluid ok, so now if you integrate this, then you will get you can

write
dp = —pgdz
and you will get
p=-—pgdz+c
So, here p is the hydrodynamic pressure and p+pgz; so, we can write
ptpgz=c
So, this p + pgz is known as piezometric pressure. So, this is known as piezometric pressure.

So, in today’s class, we first defined what is fluid; then we have discussed about Newtonian
and non-Newtonian fluids. In a Newtonian fluid, we have shown that shear stress is directly
proportional to the shear strain rate and we defined the fluid property viscosity. Next, we
discussed about the non-Newtonian fluid, those fluids whose does not follow Newton’s law of
viscosity, those are known as non-Newtonian fluid and in non-Newtonian fluid, we discussed

about shear thinning and shear thickening fluid.

Then, we discussed about laminar and turbulent flows. So, for external flows when we consider

flow over flat plate; so, if Reynolds number based on the plate length, if it is greater than 5 into



10 to the power 5, then the flow becomes turbulent. For internal flows if we consider flow
inside a pipe, then the Reynolds number based on diameter, if it is greater than 2300, then the

flow becomes turbulent.

Next, we discussed about the steady and unsteady flows; so, obviously, if any parameter like
velocity, pressure does not vary with time, then those are known as steady flow and for
unsteady flow, obviously, if you measure any quantity like velocity or pressure at a region

inside the domain, then obviously, it will vary with time.

We considered flow over a circular pipe of diameter d, for this particular case if the Reynolds
number based on this diameter is less than 40, then the flow is steady and if it becomes greater
than 40, then behind the cylinder the vortices will be set it periodically and the flow becomes

unsteady. Then, we discussed the basic equation in fluid statics.

So, obviously, we know that p is the pressure that acts normal to the surface and it is
compressive in nature and we have shown that if it is a horizontal plane, then in x and y
direction, the gradient of pressure in these x and y-direction will be 0 and in the vertical

direction, the gravity g will be acting in the negative z-direction and ‘;—Z becomes -pg and for

incompressible fluid as p is constant, you can integrate it and you can write p+pgz is equal to
constant; where, p+pgz is known as piezometric pressure. In the next class, we will discuss

about the fluid kinematics.

Thank you.



