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Welcome to the session on Simulations and Algorithmic Implementation of Particle 

Swarm Optimization. This session includes the simulations of PSO on four problems for 

which we know the optima. 
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We will start with Rosenbrock Function followed by, we will solve Himmelblau Function, 

then we have a Rastrigin Function and Ackleys Function. After performing the simulations 

we will also see the effect of the parameters with PSO. So, as we know there are three 

main important parameters which are omega that is multiplied with the velocity and there 

are two constant; c 1 and a c 2 which are also a part of the velocity in PSO. 

We will also discuss the issues with PSO and at the last we will understand the algorithmic 

implementation of PSO. And we will go through the data structures and various functions 

using which we can make a code or source code for a particle swarm optimization and at 

the end we will conclude this session. So, before we start the simulation, let us have a 

recap. 



So, in this last session we have gone through the particle swarm optimization from there 

we know that PSO is based on artificial life and evolutionary computing. Artificial life in 

a sense, that it is mimicking the flocking of the birds. So, the birds are moving, they are 

searching the food in a cooperative way. 

Similarly, since there are many birds or say particles are involved, those particles are 

evaluated, compared and the new particles are generated or their positions are updated 

therefore, it has both the features of artificial life and evolutionary computing. Thereafter, 

we found that there are three distinct feature with PSO. 
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These three distinct features include; the global best of the swarm, local best of each 

particle and the velocity and position update. As we can see in the slide that in the velocity 

update we have three parts; one is called momentum part, another is called cognitive and 

the third is called social part.  

In the momentum part we include the previous velocity, in the cognitive part we include 

the difference of the current position of the particle with its local best. And in the social 

part we include the difference between the current position and the global best of the 

swarm. 

So, all these parts are combined together to make a velocity components. We understood 

this velocity component as a graphical, as a addition of the vectors through an graphical 



example. The position update is simple in PSO which includes the current position plus 

the updated velocity. We understood particle swarm optimization through flowchart in 

which we have one standard loop of generation and one loop on the number of particles. 

So, in the number of particles we update the position as well as we update the velocity 

followed by the position. We also fit our particle swarm optimization on the generalized 

framework of easy techniques. Thereafter, we understood the working principles of 

particle swarm optimization through Rosenbrock function. 

So, in that case we run for two number of generations to understand how we have found 

the local best and the global best for the particle and the swarm. And using those 

component we updated the velocity followed by, we updated the position.  

The same example, which we solved for two generations, we showed the graphical 

illustration in which we can find that how these particles are moving. Their local best are 

improving and finally, the global best is also improving to get the optimum solution for 

the given problem. 
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Now, let us start with the simulations now. In this simulation we will start with the 

Rosenbrock function as you can see here. Now, this Rosenbrock function is a scalable 

function which we can write in terms of n number of variable. So, the objective function 

is written on the top and the variable bound is given as minus 5 to plus 5. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥1, … , 𝑥𝑛)  = ∑( 100(𝑥𝑖+1  −  𝑥𝑖
2)2  +  (1 − 𝑥𝑖)

2

𝑛

𝑖=1

 ) 

𝑏𝑜𝑢𝑛𝑑𝑠  − 5 ≤  𝑥𝑖 ≤  5  𝑎𝑛𝑑  𝑖 =  1, … , 𝑛 

 

If we show this Rosenbrock function for 2 variables as a 2 variables now, in this case the 

third axis is drawn as the logarithmic of the function. Now, looking at the surface of the 

Rosenbrock function and the contours which are drawn in x 1 and x 2 plane we can see 

there are lot of local optima. However, as we as it is mentioned on the right hand side, the 

global optima is lying at 1 1 1 1 and the function value is 0 at the global optima.  
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So, let us have the first simulation on Rosenbrock function. In this particular simulation 

we have fixed the number of variable equals to 2, swarm size 40, number of generation is 

200, the two velocity come constants which are c 1 and a c 2, those are both of them are 

fixed to 1.5. 

Now, here instead of having a constant omega we have included an inertia equation which 

says that omega equals to omega max minus t by T omega max minus omega min. This 

particular function will help us to take the omega value large at the beginning say 0.9 and 

this omega value keep on reducing when the number of generation will be increasing. 

So, this means that initially the velocity will be having a component, significant 

component in the velocity update and in the later stage this component will be reduced. 

The initial velocity of each particle is taken as 0. So, on the right hand side we can see that 

the solutions are distributed in x 1 and x 2 plane and contours of the Rosenbrock function 

is are shown in this figure, so this is called initial swarm. So, let us see how this PSO work 

here.  
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So, in this particular simulation the blue dots are the particles position, which are getting 

updated in every generation. As you can see that few particles I have, are coming closer to 

the global best which is the red dot here.  

So, as soon as any of the close goes closer to this red dot, the local best as well as the 

global best for the swarm gets changed. And that is why in the beginning the particles are 

randomly moving in x 1 and x 2 plane and after few number of generations the particles 

gets attracted, because the global best is on the optimum solution.  
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If we look the progress here, the progress we will see that the y axis is written as a best 

fitness and the x axis is written as the generation. So, if y best fitness suggest that we are 

printing the value of global best, as we can see that initially it is started at close to 6.5, 

drastically the fitness is reduced and even in 10 generations, we are very close to the optima 

the fitness is keep on improving. And close to 65 generation we have found the optima of 

this problem using PSO. 
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Let us move to the second simulation here. Here, the number of variable now, it is 

increased to 4 and at the same time the swarm size is taken as 60. So, this also has been 

increased with respect to the previous simulation study. The number of generation is kept 



200, the velocity coefficients are same as c 1 and a c 2 equals to 1.5, we are using the same 

inertia equation and finally, the initial velocity we start with 0. 

So, since it is the 4 variable, we will see how the best global best is progressing with the 

generation. As you can see from the plot on the right hand side, it is started a little more 

than 90 and then drastically the fitness of the solution or the global best is improving and 

then it has reached to the optima after few generation. So, let us see how the progress is 

going through. 
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Now, in this particular simulation as we can see there is a drastic improvement in the 

performance in the initial generation and close to 20, it is we are near to the optima and 

with the generation the fitness value is keep on improving. So, the best fitness means the 

fitness of the global best is keep on improving. 

So, let us see one more time, the how this progress is going on. So, as you can see there is 

a little improvement in the fitness value of the global best and it is quite close to 0 at 200 

generation. Meaning that; if we are going to run this for little more number of generation, 

then PSO can find the optimum solution for n equals to 4 number of variables for 

Rosenbrock function.  
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Now, let us move to the third simulation here. In this case we have taken number of 

variable as n equals to 10, swarm size is kept as 60, the number of generation is 200, and 

the velocity c 1 and a c 2 is velocity coefficients are 1.5. We are using the same inertia 

equation and our initial velocity of each particle is again 0. So, since it is a 10 variable 

problem, we will see how our global best particle is improving. 

Now, looking at the figure on the right hand side, we can see that the global best started 

from 25000 value which is a big number and it reaches close to the 0 after few generation. 
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So, let us see the simulation now. As you can see here the fitness is improving drastically 

in the initial generation. If we zoom the y axis from 10 to 0, we can see that the global best 

or the best fitness in the swarm is keep on improving with number of generation.  

And although after 200 number of a generation we are not at the optimum solution, but 

using a limited number of population and number of a generation we have reached quite 

close to the global optimum. So, if we increase the number of increase the number of 

swarm size and the number of generation PSO can find the optimum solution for n equals 

to 10 Rosenbrock function. 
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Now, come to the second function which is a Himmelblau function. The, we want to 

minimize this function as it is written on the top and both the variables are lying between 

minus 5 to plus 5. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥1, 𝑥2)  =  (𝑥1
2  +  𝑥2  − 11)2  +  (𝑥1  +  𝑥2

2  −  7)2 

𝑏𝑜𝑢𝑛𝑑𝑠  & − 5 ≤  𝑥1 ≤  5   𝑎𝑛𝑑  − 5 ≤  𝑥2 ≤  5 

 

Looking at the surface of the Himmelblau function as well as if we see the contours on x 

1 and x 2 plane we can see that this particular function is multi modal function. So, multi 

modal function as we know that we can have different optimum solution. So, looking at 



the right hand side we have four optimum solution for this Himmelblau function and every 

point the function value is 0.  
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So, let us solve this problem using particle swarm optimization. So, since here we have a 

number of variable equals to 2, swarm size is kept 40, number of generation is 200, c 1 c 

2 are 1.5, inertia equation as we have defined earlier, and the initial velocity is again kept 

0. On the right hand side figure, we can see that our solutions or the particles are randomly 

distributed so this is called random swarm and let us see how this particular swarm 

approaches towards the optimum solution. 
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Now, as you know that any blue point goes close to the optimum solution, our global best 

solution gets updated. So, these blue points in this simulation signifies the position of the 

particle in every generation and since the particle has already reached to the global 

optimum solution or one of the optimum solution, the other particles are getting attracted 

towards this optimum solution. 

Second observation you can see that the particles are getting attracted to one of the 

optimum solution, but the three solutions, other three solutions we cannot find it. It is only, 

because the PSO which we have made it to find the global solution not for multi modal. 

So, we have to make appropriate change with particle swarm optimization and then it can 

work for multi modal functions. 
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Coming to the third function, which is Rastrigin function. Now, Rastrigin function is again 

the scalable function. As you can see that the function can be written in terms of n number 

of variable. We want to minimize the function and the function is given on the top. The 

variable bound is given as minus 5.12 to 5 2 plus 5.12.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 & 𝑓(𝑥1, … , 𝑥𝑛)  =  10𝑛 + ∑ (𝑥𝑖
2  −  10 𝑐𝑜𝑠(2 ∗ 𝜋 𝑥𝑖))

𝑛

𝑖=1

  

𝑏𝑜𝑢𝑛𝑑𝑠  & − 5.12 ≤  𝑥𝑖 ≤  5.12    𝑎𝑛𝑑  𝑖 ∈  (1, … , 𝑛) 

 

Now, looking at the surface on the left hand side as well as the contour on x 1 and x 2 

plane we can see that there are so many local optima’s. And therefore, restoring function 

is always difficult to solve, but it has just one global optima which is at the origin as you 

can see on the right hand side and the function value is 0.  
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So, let us solve Rastrigin function using PSO we have taken the first case as n equals to 2, 

swarm size is equals to 40, number of generation equals to 200, c 1 c 2 equal to 1.5, the 

inertia equation is the same and the initial velocity is kept 0. 

Now, the figure on the right hand side we can see that the solutions are distributed in x 1 

and x 2 plane. Since, it is the initial swarm so that is why these solutions are distributed 

randomly in x 1 and x 2 plane. Now, let us see how this PSO going to solve Rastrigin 

function. 
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Now, the blue dots as you can see these are the particle positions and as soon as the particle 

they are improving, the global best and local best are improving. And as you can see the 

global best is already at the optima, the other particles are converged converging to the 

global optima which is shown in the red color. So, this is these are the properties that as 

soon as our global best is converged to the optima or the global optima, other particles will 

get attracted towards this optimal solution. 

Let us see the progress of the Rastrigin function here for 2 variable. Again, the best fitness 

is the fitness of the global best in the swarm in every generation. As you can see it is started 

close to 11, it is keep on improving till 50 generation and then there is a there is no 

improvement, why? Because we have already reached to the optima using PSO, so that is 

why you can see that PSO is quite efficient that even close to the 50 number of generation, 

the optima is found by PSO. 
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Now, let us move to the another simulation here. In this case the Rastrigin problem is 

solved using n equals to 4 meaning 4 number of variables; the swarm size is increased to 

60, number of generation is 200, c 1 and c 2 is 1.5, and inertia equation remains the same 

and our initial velocity we have kept it 0. Since, it is a 4 variable problem. We will show 

the best fitness the progress of the for the Rastrigin function. 



Now, as you can see that the best fitness is starting little more than 35 which keeps on 

improving with the number of generations and it has found a solution close to the fitness 

value 5. So, let us see how the solutions are progressing. 
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So, in this particular progress we can see that in every generation there is a improvement 

in the fitness of the global best which is the best fitness of the swarm which keep on 

improving. As you can see that after 120 generations the fitness is already less than 5 and 

thereafter it can, it is terminated based on the number of generation. If we allow PSO for 

more number of generation and also with large number of swarm size, then this PSO can 

solve this particular problem which is for n equals to 4 number of variable.  
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Coming to the Rastrigin problem with n equals to 10. The number of variable is increased 

to 10 now, swarm size is 60, number of generation is 200, velocity coefficients are 1.5, 

inertia equation remains the same and the velocity initial velocity we kept it 0. 

Now, since it is a 10 variable problem, we will show you the progress of the best fitness 

with respect to the generation. As you can see on the right hand side the fitness, the best 

fitness is keep on improving and then close to 150 generation the improvement is less. 
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So, let us see the simulation now. So, it is started somewhere close to 123 and you can see 

that the fitness, the best fitness in the swarm is keep on improving and still it is not reached 



to the 20 as you can see on the y axis. And thereafter, close to 180 it has converged little 

less than fitness value less than 20. 

Meaning that although PSO has not converged in 200 generation, but if we allow PSO for 

more number of generations and for a larger swarm size, we, this PSO can converge to the 

optimum solution for n equals to 10 variable for Rastrigin function. 
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Now, let us come to the last function that is Ackley’s function on the top we can see that 

we want to minimize this function and it involve exponential as well as cos term. So, that 

is why this particular problem is difficult to solve. Both the variables are lying between 

minus 5 to plus 5. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥1, 𝑥2) =  −20 𝑒𝑥𝑝 (−0.2 √(0.5(𝑥1
2 + 𝑥2

2)))  

−  𝑒𝑥𝑝 (0.5( 𝑐𝑜𝑠(2 𝜋 𝑥1) +  𝑐𝑜𝑠(2 𝜋 𝑥2)))   +   𝑒𝑥𝑝(1)  +  20 

𝑏𝑜𝑢𝑛𝑑𝑠  & − 5 ≤  𝑥1 ≤  5  𝑎𝑛𝑑  − 5 ≤  𝑥2 ≤  5 

 

 



Now, looking at the figure on the left hand side, you can see the surface as well as the 

contours on x 1 and x 2 plane. We can see that this particular function has lot many local 

optima’s, but the global optima as you can see on the right hand side it is lying at the origin 

and the function value or the optimum function value for the Ackley function is 0.  
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So, this is a 2 variable problem the swarm size is kept 40, number of generation is 200, c 

1 and c 2 are 1.5, inertia equation remains the same, and initial velocity is kept 0. So, you 

can see that in our all experiments or simulations we have started with the 0 velocity.  

On the right hand side figure, we can see that the solutions are distributed throughout the 

x 1 and x 2 plane and since it is a generation 1 meaning that we started with the random 

swarm here. So, let us see how is the simulation, how PSO is solving this particular 

problem. 
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In this particular problem you can see the blue dots here, these blue dots these are the 

particle positions as and when the particle any of the particle is reached to the optimum 

solution, its local best as well as the global best of the swarm is improved. And once the 

global best reaches to the red dot which is the optima other particles are getting attracted 

towards the global optima. So, in this simulation we can see the solution, many solutions 

are converging towards the global optima. 
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Let us see the progress of the best fitness yeah, best fitness with respect to the number of 

generations here. As we can see close to 10, we are already we are already close to the 

optima somewhere just before 40 generation and or at 45 generation PSO is found an 

optimum solution for the given problem. So, one more time we can see that close to 45 

number of a generation, there is a little improvement you can see here and that takes PSO 

to the global optimum solution for the Ackleys function.  
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Now, till now what we have gone through is the simulation of PSO and we know that for 

2 variable problems PSO is quite efficient to solve the problem, but as and when we are 

increasing the number of variable for Rosenbrock and Rastrigin function. It allows or it 

indicates that, we have to increase the swarm size and allow PSO for more number of a 

generation to find the global optimum solution for the given problem. 

Now, as we know in the in the PSO, this velocity component has three parts and all these 

three parts have constants and those constants are to be decided by the users. So, such as 

we have to decide what should be the omega? What should be c 1 and a c 2? Now, we will 

understand what are those, what are the effects of these constant parameter if you take 

some different values.  
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So, let us begin our experiment simulation again on the Rosenbrock function. Since, it has 

a multi, it has many local optima’s and one global optima. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥1, … , 𝑥𝑛)  = ∑( 100(𝑥𝑖+1  −  𝑥𝑖
2)2  +  (1 − 𝑥𝑖)

2  )

𝑛

𝑖=1

  

𝑏𝑜𝑢𝑛𝑑𝑠   − 5 ≤  𝑥𝑖 ≤  5  𝑎𝑛𝑑  𝑖 =  1, … , 𝑛 
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Now, in this particular effect we will take, we will do the simulation for a large value of 

omega as you can see on the top. For this particular simulation we kept number of variable 

2, swarm size is 40, number of generation is 200, velocity components are coefficients are 

c 1 and c 2 which are 1.5. 

Now, look at the inertia. So, although I have written inertia equation, but the constant we 

kept it omega constant and we took this value 5 which is a very large value and we kept 

our initial velocity is 0. Now, looking on the right hand side figure, these are the particles 

distributed in the initial swarm and let us see the simulations. 
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In this simulation there are different kinds of dots. So, the green dots represents the local 

best of each particle. This red dot represents the global, the position of the global best and 

the black dot represents the global optima of the given problem. Now, here you cannot see 

the blue points why; because if you look at the corners, all the blue points are settled at the 

corners. 

So, these are the particle positions in every generation why it is happening so? It is, because 

the omega component is so large that the velocity component is taking so high and which 

takes the current position of the particle out of the bound and therefore, there is no 

improvement in the local best. As you can see the green dots are not moving as well as 

this red dot is also not moving which is the global best. 



So, this means that if we keep omega value large, then the particles are going out of the 

bound and there is no improvement in the fitness of, best fitness of the PSO. Now, let us 

see the progress here, for the current example.  
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Now, it is started with the 6, as we know the velocity omega component is so high, then it 

says that the it is taking the particle position out of the bound. And therefore, there is no 

improvement in the fitness, because we are not performing any search using PSO with the 

large value of omega. 

So, what we can conclude here is; that velocities of each particle increased over the time 

why; because omega is 5 thereafter and, because of that this swarm diverges. And because 

of this all the particles are going out of the bound and we are not able to update the local 

best and accordingly, the global best.  

Moreover; as you can see at the last, the particles sometimes fail to change direction toward 

more promising region. It is only, because we are not performing search in x 1 and x 2 

plane, because most of the time or all the time the solutions are going out of the bound.  

(Refer Slide Time: 29:42) 



 

Now, let us consider the another effect where we are keeping larger value of a c 1 as 

compared to c 2. So, as you can see on the top we will see the effect of c 1 greater than c 

2. Again, to understand the simulation we have kept n equals to 2 means 2 variable 

Rosenbrock function, swarm size is again 40, number of generation is 200. 

Now, look at the c 1 value. Now, c 1 is 2.5 and c 2 is 0.5. So, c 1 is relatively larger than 

the c 2 value, omega is changing with our equation and the initial velocity of the particle 

is kept 0. On the right hand side, we can see the x 1 and x 2 plane. In this case the particles 

are randomly distributed as you can see. Now, let us see the simulations. 
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Now, here as you can see black and the blue and the green dots; the blue dots represent the 

particle positions, green dots represent the local best, red dot represents the global best 

which is now finally, converged to the optimum solution. Now, as you can see as and when 

the particle is updated the local best is updated, the global best is also updated and finally, 

this global best is converged to the optimum solution. 

If we look at the progress here, it is started close to the 5 best fitness and even in 7 number 

of a generation we got the optimum solution for the given problem when we are keeping 

c 1 greater than c 2. Although, the effect of c 1 and a c 2 is not prominent here, but as we 

know that if we keep c 1 value large as you can see here, this means that we are giving 

more emphasis to the cognitive part as compared to the social part. 

Now, from the simulations we can say that it can be useful for multi modal optimization 

problem. It is only, because since the each particle we are giving emphasis to the cognitive 

part. So, in this case a particle which may reach to the other optimum solution in a multi 

modal problem then it is going to preserve its position, because we are giving more 

emphasis to the cognitive part. So, this kind of small change may help PSO to solve multi 

modal problems. 
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Now, let us come to the another simulation where c 1 is smaller than c 2, the number of 

variable is 2, swarm size is 40, number of generation is 200. Now, look at the value of c 1 

and a c 2, c 1 is 0.5 and c 2 is 2.5. 



So, in this case c 2 is taken more than c 1 and we are taking the same inertia equation and 

initial velocity of the particle is 0. Now, on the right hand side we can see that the particles 

are randomly distributed in x 1 and x 2 plane and let us see how PSO solve this particular 

problem when c 2 is greater than c 1. Meaning; we are giving more emphasis to the social 

part as compared to the cognitive part. 

Now, again the blue dots are blue dots represent the position of the particle, green dots 

represent the local best of each particle, and the red dot represents the global best. As you 

can see that as soon as the local best is updated of each particle and the global best is also 

updating and taking the solution close to the optimum solution here. So, in this case see 

the red dot, it is converging to the optimum solution here. 
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Now, look at the progress now in this particular case the best fitness is started from 45 and 

drastically it reduces its fitness close to 10 and thereafter since, we have already reached 

to the global optima. So, that is why we can see the straight line. So, in 10 number of a 

generation we have reached it. 

It means that, if we compare this simulation with the previous simulation what we found 

that since we have increased c 2 value. So, we are giving more emphasis to the social part 

where the particle will be attracted more towards the global best. And since one of the 

particle has improved and the global best is reaches, close to the optimum solution rest of 

the solutions are also converging towards the optimal solution. 



Such kind of setting, when we are keeping c 2 greater than c 1 that can be useful for 

unimodal optimization problem. Because as and when any optimum solution is found, 

PSO will take all the particles towards this global optimal solution. 
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Now, let us take the another effect where c 1 and a c 2 values are kept low. So, in this case 

n is equals to 2, number of swarm the swarm size is 40, number of generation is 200, look 

at the c 1 and c 2 value which are 0.5 and 0.5 which is relatively small values, omega 

equation or the inertia equation remains the same, initial velocity we kept it 0. On the right 

hand side, we can see the particles are distributed in x 1 and x 2 plane randomly. 

Now, let us see the simulation here. Now, again green blue dots represent; so, the blue dots 

represent the position of the particle, green dots represent the local best, and red dot 

represents the global best. 

So, we can see that when we are keeping small. So, we have these particles or the green 

dots are converging close to the optimum solution and therefore, the global optimum or 

the global best of the swarm has converged to the optimum solution.  
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Look at the progress now. In this case we started with the 3, the best fitness and in early 

generation we are already close to the optima. So, close to say 14 number of a generation, 

this particular setting has taken PSO to the global optimum solution. So, as you can see 

once we reached it so we have a straight line along the, which is parallel to the x axis. 

Now, in this case when we are keeping low value of a c 1 and a c 2 that allows smooth 

particle trajectories, as we also observe that the particles are not moving abruptly, they are 

moving slowly towards the optimum solution. And since, we have given low value to both 

to the cognitive part and the social part. These particles are in a cooperative way moving 

towards the optimum solution and reach to the global optimum solution for the Rosenbrock 

function.  
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Let us come to the large value of a c 1 and a c 2 value. So, in this case our simulation setup 

remains the same, where number of variable is 2, swarm size is 40, number of generation 

is 200, coefficient of c 1 and a c 2 so we are keeping a very large value say 5 and a 5 for c 

1 and a c 2, omega is we are using the same equation and our initial velocity of particle is 

0. On the right hand side figure, we can see that the solutions are randomly distributed in 

x 1 and x 2 plane. Let us see how PSO will solve this problem. 
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As you can see there are drastic changes in the velocity component, because of the c 1 and 

a c 2. And because of that the particles are also moving abruptly and therefore, there are 



only few particles which are moving inside it, trying to improve the local best as well as 

the global best.  

Currently as you can see the global best is randomly moving from one position to another 

it is only, because the function has so many local optima’s. So, in this case let us see where 

this red dot is converged at 200. So, it is already close to the black point in 200 generation. 
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Let us run, let us see the progress of the best fitness here. In this case we started with 16 

and then drastically the fitness is improved to 2 and it is keep on improving. Now, you can 

see that the improvement is not continuous it is only, because the c 1 and c 2 values are 

large that are making a large velocity component here. And, because of the large velocity 

component the position is also changed drastically. 

Many of the particles are going out of the bound and very few particles are searching inside 

the region and that is why it takes many generations to converge to the optimum solution. 

Now, from this particular simulation as we can understand that if we are keeping c 1 and 

c 2 value large, it supports large acceleration to the particle, but abrupt movement.  

And that can be evident from our simulation as well that the large acceleration may help 

to move the particle from one position to the another one, but that can take our particle out 

of the bound on either x 1 or x 2 or both. 
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Now, let us discuss the issues with PSO. In this one the first potential dangerous property 

of a PSO is when as you can see in the slide that the current position of the particle is the 

local best as well as it is the global best. 

So, in this case the velocity component the cognitive part as well as the social part are 0. 

So, the velocity update will depend only on the multiple of omega v i and with the number 

of a generation what we will realize that omega v i will be tending towards 0. So, overall 

the if this situation happen then the particle will not be moving and exploring the search 

space to find the optimum solution for the given problem. 

The second problem or the issue is that we have so many infeasible solution. Meaning that; 

the particles leave the search boundaries very frequently. This n once they go out of the 

bound what we do is; we pulled back them into the feasible search space or on the 

boundary. So, this means that the effort which we are making to update the velocity as 

well as the local as well as the current position of the particle all these calculation are 

getting wasted. 

Third is this kind of particles when they are going out of the bound we thought that it is 

the, it is the diversity of the swarm, but when we are keeping them on the boundary or in 

any or in the feasible search space basically that indicates the wrong impression about the 

diversity in the swarm. 



So, these are the two potential issues with PSO. After understanding the behavior of PSO 

on different problems as well as looking at the simulations for different values of omega c 

1 and a c 2. Now, let us understand how we can implement PSO. So, now, we will discuss 

the algorithmic implementation of particle swarm optimization. 

As we have understood this particular algorithmic implementation is independent of any 

programming language. Once we understood it, we can use any of the programming 

language such as C, C plus plus, Java, MATLAB or Python. So, any of the language we 

can use it and we can make our own PSO code for solving the problems. So, let us start 

with the algorithmic implementation. 
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So, as we know that this is the generalized framework which we discussed with the PSO. 

In this case we start with the solution representation in the step number 1 which is in this 

as PSO is used for real parameters so the variables are real in number. In step 2 we give 

certain input to the algorithm.  

So, as of now we have included two, but there are more input parameters which are needed 

to run the PSO. In step 3 we initialize this one as we can observe from our simulations. 

The particles are randomly distributed in the variable space. 

As of now we are currently saying that it is P. So, the swarm is represented by P t. Once 

the swarm is generated we have to calculate this particular swarm here. So, when we are 



evaluating it this means that we will be calculating the objective function constraint and 

finally, we have to assign the fitness.  

Now, from in the step 5 we are in the standard loop of number of generation and step 6 

which is new as we discussed earlier. In this particular step, we have to update the local 

best of each particle as well as we have to update the global best. 

So, that is why we are writing this as our new step. Now, in this PSO we do this update 

with respect to the each variable, so that is why in step number 7 you can see we have a 

for loop starting from the first variable to the last variable it should not be variable. We are 

starting from first particle to the last particle and then first we will be updating the velocity 

component using the equation which we have gone through earlier and we are updating 

the position. 

Since, the position is updated in step 10 we have to evaluate, basically we have to evaluate 

the new position and assign the fitness. Once it is done we will increase the counter of 

number of generation by 1 and we keep on moving in this particular loop till the 

termination condition is not satisfied. So, as you can see that there are so many functions 

which are involved here. So, let us understand them one by one.  
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We will start with the data structure of PSO. Similar to our earlier implementation as you 

can see we have a swarm here and this particular swarm consist of various particles. So, 



the size of the swarm is N. So, therefore, we can see there are N particles. So, let us take a 

typical particle say j and in this particular particle j what are the values we can save it? 

That is the objective function value, the fitness value, we have to keep the value of the of 

each variable. 

Now, you can see x 1, x 2 and x n. So, we are saving the values as a column vector. It is 

for representation purpose now, we also have a velocity component. So, this data structure 

should have the option of velocity. So, velocity means that it is going to have say v 1, v 2 

and similarly, v n which is the same size as the number of variable. 

We should also save the local best and the global best. So, the local best of the particle is 

needed why; because we are going to use it in the velocity update. Similarly, the global 

best of the swarm is also should also be stored with the particle, because we are going to 

use with the in the velocity update. 

In some implementation this global best is saved explicitly, but we can save in our data 

structure just for the so that we can use it easily, but our memory size will increase. So, at 

the bottom as you can see that the data type is swarm and if we have to say store the value 

or update. So, we have a swarm then we will be calling as a particle j and then this objective 

function value will be storing the function value.  
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Once we when we have to start PSO, we have to gave certain input to our algorithm. So, 

in this case what we need is the swarm size, the maximum number of a generation the 

number of variable. As soon as we know how many variables are there then we have to 

decide the lower and the upper bound as you can see in the step number 5.  

And there are some other parameters as you can see on the step number 7 that we have to 

fix omega c 1 and c 2. So, in our simulations we have taken omega as an equation. So, in 

that case we have to save say omega max and omega min for PSO. 
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Now, let us start with the initializing the random swarm. So, in this case as you can see in 

Algorithm number 3, we need input as what is the population’s population size or a swarm 

size and what is the number of variable. So, the first loop will start for all the particles in 

the swarm, as you can see for the loop i in the step number 2 and step number 3 is the loop 

which is on the number of variable. 

So, for every particle we will be running a loop for number of variable our main point is 

we have to generate the x j which is the current position of the particle, that we generate 

randomly between the lower and the upper limit of the of this particular variable. Step 

number 5 shows that we have to keep the velocity component 0. 

So, as we know that in our implementation we have taken 0, but if we want to have some 

random values, we can exactly copy the same step here, if we do not want to start with a 0 



value. So, that way we can start with the random values of each variable as well as the 

random values of the velocity or we can keep it 0. 
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Now, let us come to the evaluate particle which is the simplest in all the functions where 

the input to the Algorithm 4 is particle j. So, this particular x j as we know, this x j includes 

a column vector of a variable. So, once we are including the value in the objective function 

we can calculate.  

So, as of now since our problems are we have taken unconstrained problems. So, we are 

calculating only objective function here. Now, here our assumption is that the fitness is the 

same as the function value, so the fitness what we calculated in the step 2 in Algorithm 4 

that will become the fitness here. 

So, here you can see that we have a swarm, we have a particle j and then the objective 

function value is updated with the help of x 1 x 2 x 3 values. Once we calculated it then 

we can update this fitness at the last line with the objective function value here. 
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Now, once we evaluate the swarm or each particle, we are in the standard loop of 

generation. Inside it our first task is to find out the local best of each particle. So, let us see 

how we can do it. In this Algorithm 5 this is made basically to update the local best of each 

particle. So, the input to this is the particle. So, every time a one particle is going here. 

Suppose, now here in this step number 2 you remember that t is our generation counter if 

t is equals to 1 this means it is the first generation. 

So, remembering the hand calculation in the first generation the current position itself is 

the local best of the particle. This is exactly the same thing we have done in step number 

3 where the local best of the particle j is the current position. If it is not the first generation 

then in step number 5 as you can see we have to compare the fitness of the current position 

of the particle and the fitness of the local best. 

In this case if the fitness of the current position is better than the fitness of the local best, 

we will update the local best otherwise we will not change the local best. So, this is as per 

our definition of the local best we can create such kind of algorithmic implementation. 
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Coming to the global best of the swarm; for the global best of the swarm we know all of 

the particles. So, that is why we are taking swarm as our input and the size of the swarm 

N is also needed. 

So, what we are doing just for our simplification; at step number 1 we are assigning that 

the global best is equals to the local best of the first particle why; because in because this 

particular value of the global best the fitness value that based on that we will keep on 

updating this value. 

So, let us see the step number 3, we run now here, it is important to note that we are running 

from the second particle to the last particle and thereafter in the step number 4 we are 

checking the condition whether the fitness of the local best of the particle j is smaller than 

the fitness of the global best. If yes, then the global best of the swarm is updated, if not we 

will not do it. So, at the end of this function we will get the global best of the swarm.  
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Now, coming to the velocity and the position update, as we know once we updated the 

local and a global best then only we can update our velocity. Looking at the Algorithm 

number 7 here so the input to this function is say particle j and we have some constant 

parameter as you remember we have omega c 1 and c 2. 

So, the velocity is updated. As you can see this is the velocity component we are adding 

omega v j, then we have this cognitive part, and then we have this social part. So, these 

three component for every particle is updated. So, since it is the simple operation. So, I am 

showing you in a equation form. Only it will involve one more for loop on the number of 

variable, because we are going variable wise and keep on updating the each component of 

velocity. 

Now, once the velocity is updated as you can see in step number 3 the position is updated. 

So, this is the vector addition and this can be done simply. Again, in this particular step 

we need a for loop for a number of variable and each component of the position is added 

with the updated velocity to get the updated position. Since, it is simple so we are writing 

in a very direct form as a vector addition.  
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Now, at the last we have to copy. Now, this copy is required, because when we have 

identified for example, we have identified that our local best is to be updated or our global 

best has to be updated. So, in this case what we are doing is we are copying. So, when we 

copy our main idea is we have to copy the complete data structure that we have made it at 

the beginning. 

So, as you can see in the Algorithm 8 the input to the copy is particle 1 and a particle 2 

here, we are assuming that the data from particle 1 is copied to the particle 2. So, step two 

says that let us copy the objective function, then we have to copy the fitness from particle 

1 to particle 2, then we have to copy the full vector of particle 1 to particle 2. We have to 

copy the velocity as well, we have to copy the local best, we have to copy the global best. 

So, as per our data structures as you can see at the bottom, we have to copy the complete 

data structure. This is important, because when we are updating a solution this copy will 

be needed. So, simple function can be made it to copy the data from particle 1 to particle 

2.  
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So, now we have come to the closure of this session. So, in this session we started our 

discussion on the simulation of a PSO. Here, we have solved four problems. As you can 

see the Rosenbrock function is solved using PSO in which we have taken different set of 

number of variable. 

So, the simulations were performed for 2 variables, 4 variables and 10 variables. Similarly, 

for the Rastrigin function as well we did perform the simulation of PSO for 2, 4, and 10 

number of variables. 



Himmelblau function is a multi modal function and Ackley was a difficult problem or a 

function to solve, because it has so many local optima’s. So, from this simulation we found 

that PSO is able to solve all the problems having two number of variables, but when we 

have to increase the number of variable. In this case we have to increase the population 

size or the swarm size as well as the number of generation and then PSO can able to find 

the global optimum for the problem. 

Once we have performed the simulation then we talked about or we have seen the effect 

of PSO parameters. So, we started with the large value of omega. As we remember if we 

keep a very large value of omega then the velocity component is going out of the bound 

which has impact on the position and that is why the particles are also going out of the 

bound. So, in that case we were not getting any particles within the x 1 and x 2 range that 

is updating the local best as well as the global best. 

The second effect we have seen with respect to c 1 greater than c 2 or c 2 greater than c 1. 

In that case what we found is that when we are keeping c 1 more than c 2 then we are 

emphasizing on the cognitive part. Meaning that; in this case the local best is emphasized 

more as compared to the global best. 

So, the particles are free to move and after few number of a generation PSO was able to 

find the optimum solution, but in the second case when c 2 was more than c 1 we are giving 

more emphasis to the social part. This means that particles will be attracted towards the 

global best. So, in this scenario such value of c 1 and a c 2 can be useful for say multi 

modal or unimodal kind of optimization problem. 

Then we have seen the effect of low value of c 1 and a c 2 and we have seen that there 

were smooth trajectories of the velocity. And that makes the position or the current position 

of the particle inside the bound, slowly the local best were updating and finally, we get the 

optimum solution in few generations. 

In the last effect we have taken large value of a c 1 and a c 2. As we understood that the 

large value of a c 1 and a c 2 taking the velocity component out of the bound, eventually 

the position of the particle is also going out of the bound and that is why the algorithm 

took more number of simulations to converge. So, the acceleration is fast, but the abrupt 

changes making our PSO little slower for the Rosenbrock function. At the last we 

discussed about the implementation. 



We started discussing the data structure of implementing the PSO then we talk about what 

could be the important input to the PSO. How we can generate the random number, random 

initial swarm, then the fitness evaluation. We have a dedicated function for the local 

update, local position or the local best of each particle, we also have update on the global 

best global best of the swarm. 

Once we find it out, with a simple function we can update the velocity of each particle and 

similarly the position and finally, we have understood the copy. So, that copy was essential 

to copy the data from one particle to another. So, with these remarks and simulations and 

understanding the behavior of PSO, I conclude this session.  

Thank you. 


