Evolutionary Computation for Single and Multi-Objective Optimization
Dr. Deepak Sharma
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Module - 03
Lecture — 07
Algorithmic Implementation of BGA and RGA

Welcome to the session on Algorithmic Implementation of Binary coded GA and Real coded
GA. So, as of now, we have covered both of these genetic algorithm. So, in the case one
where we discussed about BGA or binary coded GA; we used this algorithm for solving a
real parameter optimization problem. Similarly, we have this real coded GA; so the operators
wherever there is a need, we change those operators and we solve the real parameter

optimization problem.

So, as of now we have understood various kinds of operators; we have gone through the hand
calculations as well as simulation. So, we know how these algorithm work. So, in this
session, we will be targeting that, the if we want to implement those algorithm; then what
could be the way. So, I will be discussing one of the implementations in this session. So, this

session includes, here first we will start with the binary coded GA.

(Refer Slide Time: 01:47)

Acomicle ol el =LEL R
Outline

o Implementation of BGA
o Data structure /*
o Input ~
@ Random initial population Z
o Fitness assignment —
@ Binary tournament selection~"
9 Single-point crossover operator /
@ Bit-wise mutation operator .
9 Survival strategy
© Implementation of RGA~
9 Data structure ~
° Input/
@ Random initial population,~
@ SBX crossover operator ;
@ Polynomial mutation operator
© Closure /

D. Sharma_(dsharmaQiitg.ac.in) Maodule 3: Algotihms: BGA and RGA 2/

In this case we will first move to the data structure, then the set of input required for a BGA,

random initial population, fitness assignment, the binary tournament selection. So, here we

have what we target here, the operators which we have already gone through; we did some
hand calculations, so those operators we will discuss. Apart from that, there are various other

operators that can also be implemented.

So, we will restrict our discussion to only those operators, which we have done some hand
calculations. Thereafter, we will move to the implementation of single point crossover
operator, bitwise mutation operator and the survival strategy. Once we are done, then we will

be talking about the implementation of RGA.

So, again if there is any change in the data structure that we will see; the input to RGA,
random initial population and we know that we have to change the crossover operator and
mutation operator. So, those operators we will discuss and finally, we will conclude this

session.

(Refer Slide Time: 03:07)

PEETTIERCET @ 0 G000 c¥BET
i

Implementation of BGA J

D. Sharma (dsharma@iitg.ac.in) Module 3: Algotihms: BGA and RGA I/

So, let us begin with the implementation of binary coded GA, in short we are referring it as

BGA.

(Refer Slide Time: 03:20)

el lem)l el

=
1@
H{wl
1O
=

Generalized Framework of EC Techniques

Algorithm 1 Generalized Framework for BGA

1: Selution representation~ Yabinary string
2 Ingut: t =1 (Generation counter), Maximum allowed generation = T
\Eyiﬁitialize random population (P(t)); YoParent population
\yfvaluate (t)); YoEvaluate objective, constraints and assign fitness
5. while gédo
6: flf(t) = SelectEon(P(t)); / O iSurvival of the fittest
Tt Q(f) = Variation(M(t)); / Y% Crossover and mutation
8 Evaluate Q(f); . %0ffspring population
9: P(f + 1} = SUI’ViVOI’(P(f.), Q(f)). / YSurvival of the fittest
10: t=t+1;
11: end while
D. Sharma (dsharmaiitg.ac.in) Module 3: Algotihms: BGA and RGA 4

So, this is the generalized framework we are following and the working principle of both
BGA as well as RGA are discussed using this framework. So, in this framework, as we can
see in a step 1, we have the solution representation. And once we decided that this is going to
be binary for BGA; then we have set of input. So, in this case, for simplicity we generally
represent two input; but in the simulation you might have found that, there are certain inputs

which are required to run our BGA.

Thereafter we regenerate the initial population, we evaluate the population and we have this
particular while loop, which terminates based on the number of generation. Then we have
selection, variation; then again we evaluate the offspring population and the survivor stage.
So, this particular algorithm 1 is actually telling us that how should be our main function. So,
if our main algorithm is this, then rest of the main operators we will be calling inside this

main algorithm.

(Refer Slide Time: 04:40)

el el

Bgoak s Gk e Poos

=
1@
{w)
fm
§ 4=

Data Structure for BGA 8

o Data Structyre-forpepulation
'
Dv(9
et Chromosome

h’lleldUﬂ](l) lnd]V]dUdlU)
010011010 for x &
Individual(2) Objective_function_value A
. .
Fimesslran%
Individual(j) — Chromosome 011101001 for x,, ¢
xbin o (X}, X35 .. Xp)
. —_— == —
Individua](lj},

g/dﬁtatype Population parent_population, offspring_population;

» parent.individual(j).objective function value;

D. Sharma (dsharmaGiitg.ac.in) Module 3: Algotihms: BGA and RGA . 5/23

So, let us start with the data structure here. Now, data structure is important, because we have
to store different values as well as, as and when it is needed, we have to extract those values.
So, let us see, how the how the data structure of BGA can be made? So, here this is one of the
data structures, which we are discussing. So, as you can see in the figure. So, first data

structure will be based on the population.

This data structure includes all the individual as you can see. So, the maximum number of
individual, we can have N. Now, as of now we are referring these individuals as sometimes
solutions and sometimes members. So, inside a population for real coded or a binary coded
GA, we may refer as individual or sometimes solution or sometime members. So, all of them

will remain, will become the same.

Now, let us take a typical case of an individual j, because all individual will remain the same.
So, this individual should save the value of the objective function, which we generally
calculate and if there is any specific fitness or rank assignment, that also we should save it.
So, as of now, we have not gone through the particular fitness or rank assignment; but we can

have this particular option in our data structure. Then we should have a chromosome.

Now, as we know, chromosome stores all the binary string of the variables. Now, as of now,
we are discussing only the BGA. So, we are assuming that all the real numbers are
represented using binary string. So, here you can see under the chromosome; for x 1 we have
a one binary string, similarly we have x 2 we have another binary string, similarly for this

variable I have another binary string.

So, these binary string can have the same length or they can have a different length; meaning
I can choose 5 bit string for x 1 and I can choose 8 bit string for x 2. So, similarly they can

have same binary string length or they can have a different binary string length.

So, if we put together all of them, then we get a chromosome. So, this chromosome we have
to store for every individual. As we know, this particular string will give me the decoded

value of the string and you remember we write this as decoded value of the string D V s.

Now, using this scaling formula, we can find what is the real number say x 1, x 2 and x n. So,
everything will be stored in xbin; so this means that the binary string is decoded and using
this scaling formula, we are storing the real numbers. So, let us take one data type as you can

see here.

So, the data type we have taken as a population. When we are saying population, you can see
from the figure; this particular population we are considering, which have N number of
individual and each individual will be having objective function, fitness value chromosome

and xbin vector.

Now, this population we can use it as. So, I can assign, we have a parent population, we have
a offspring population. So, in binary coded GA, we have only two types of population as of
now parent and offspring. So, as soon as we are assigning this population, so this data

structure is one of the data type.

How we can use it? So, this is just as representation. So, I can say parent dot j. So, parent dot
individual j dot objective function value; this means that, if [am going to call, then the value

I can extract as well as if I call this I want to save some value, I can use this data structure.

Now, this data structure is important; because in a one go, we can extract the value as well as

copy the value into the individuals, particular into the particular component of the individual.

(Refer Slide Time: 09:23)

Input to BGA

Algorithm 2 Input

1: Population size: N

2: Number of generations: T'

3. Number of binary variables: n "~

4 for (j=1;j <njj++)do / Y%Each binary variable
5§ Binary string length: I; /

6:/ Lower and upper bounds on x; that are mgm and r§
7:*end for i Sm———
8: Probability of crossover over: b

9: Probability of mutation: Py

v

v)

D. Sharma_(dsharmaiitg.ac.in) 5 Module 3: Algotihms: BGA and RGA 6/23

With this explanation on the data structure, we know that first step is the input. So, what
could be the input to the BGA? So, I am representing here the important inputs that are
required for BGA. Sometimes those input can change; because if any of the, in any of the
operator needs some extra input, that we can include it. So, you can see these are some basic

or important input that should be given to the algorithm.

So, look at the algorithm number 2. So, the first input here is the population size. And once
we decide, then we have to tell what is the number of generation and similarly the number of
binary variable. As I told you that, since we are working on binary GA; we are assuming that
we have all variables which are binary in nature. Now, as soon as we get to know how many
variables; then we have this for loop, which we are running from the first binary variable to

the last binary variable.

So, first of all we should save what is the binary string length. So, as I told you that, the
binary string length for x 1 variable and x 2 variable can be same or different. So,
individually we will be giving the binary string length and for the same variable, we will be

giving what is the upper and the lower limit of the variable.

So, inside this for loop, we will be getting the binary string length of the variable j as well as
the lower and upper bound of the variable. So, once it is done, then we need probability of
crossover and probability of mutation. So, these set of inputs are important for running any

binary coded GA.

(Refer Slide Time: 11:19)

>
0
E
i
m
Sy
il
=
. 4om]
TC)
)
LY &)
o
jo
§ 4=

Initialize random population B

Algorithm 3 Initialize random population

1: Input: N: population size, n: number of variables, [;: binary string length of an individual(j)

2 foF(i—:lz i Sb'ﬁ T+ +) do&e— i Y%Each individual in the population
3 for (j=1;5 @] ++) do YEach variable of a solution
4 for (’i' =1k @ﬁ' -r +) do Y5Each bit of a variable j
5 — if (random_no < 0.5) then

6: Assign 0 —>

il else

8 Assign1 —=

9 end if

10: endfor — > YBinary string for variable jas 011001
1L end for —’—_—_'—____—'—‘—-—___) Y%Chromasome of all variables

12: end for —

\/Calculate real value (x;) of each variable and store in the data-structure of individual

D. Sharma (thmnﬂﬂqec.h} Module 3: Algotihms: BGA and RGA 7/a

Once we have given the input, now our binary coded GA is ready to work. So, in this case we
know that, we have to generate the population randomly. So, in algorithm 3, we can see we
need certain inputs here. So, population size, number of variable, the binary string length of
every individual j. So, here I am showing you the representation, the algorithmic
representation here. So, the first for loop says that, we will be running for all population size,

all the or for all population members or individuals.

So, once we have taken say individual i, then we have to run for every variable in this
particular individual. Once we decided it, then there is another for loop that will be working
for the number of by a number of bits in a binary string. In this case as you can see at this
step number 5, we are generating a random number; if it is smaller than 1, we will assign 0,

otherwise we will assign 1.

So, in this case what you will realize that, at once we are finishing the for loop; we will get a
binary string for a variable j like this. So, in this case, we are randomly generating a set of 0 1
0 1 1 0 for a variable j. And afterwards once it is done, then we will be performing the same
thing. So, you can see this for loop which is ending give will give me the chromosome. So, as
we understood, chromosome includes all the binary string of the variables, so binary

variables. And thereafter we finish it.

So, this particular initialization will give me the chromosome for each individual in the
population. Once this is done, we have to decode the binary string. So, since decoding of a

binary string is simple. So, here we are assuming that, we can do it by writing a simple code

for decoding the binary string. Once we decode, then we have to calculate the value of the
variable. So, as you know that, we can use any scaling formula for using this decoded value

to get the value of x j.

So, this is this we will be doing for every variable, for every individual. So, that is why these
two points are mentioned here and we can write a very simple code including, which include
decoding of the binary string as well as using the scaling formula, we can find what is the real

number. So, here that is why we have written in a words, which we can write in a code.

(Refer Slide Time: 14:26)

Jeo =l e i)

i
10
m)
HO
i<

Evaluate Population 3

Algorithm 4 Evaluate Population

—

1: Input: P(t): population, N population size, n: number of variables

2 for (]f_l] <N+ +) do Y%Each individual in the population
3 Evaluate f(ﬂ;i]l) YtExtract i) = (a1,...,2n)7 from the data structure of an individual(j)
4: end for %Assign fitness same as the function value

o parent.individual(j).objective_function.value = f(x1,...,);
o parent.individual(j).fitness = parent.individual(j).objective_function_value;

D. Sharma_ (dsharmaiitg,ac.in) . Module 3: Algotitms: BGA and RGA 8/n

Afterwards when we get the values of x 1, x 2, x 3 for an individual j; now the next task is we
have to evaluate the population. Now, looking at the algorithm number 4, the input is the
population and we should know what is the size and the number of variable. In this case if
you see this for loop in step number 2, that runs from j equals to; j equals to 1 to j equals to

N; this means that, for every member we are running.

So, in this case we evaluate. So, you can see x j. Now, this X j represents the column vector or
the values, the real number real values which we got for this individual j. So, one by one we
are actually calculating the function value. Now, here as we have done till now for both

binary coded and real coded GA, we assign the fitness same as the function value.

So, in this case, as we can see the parent individual j, objective function value will become
the function fitness function value, which we calculated at the step number 2. So, this is

exactly the same.

As soon as we calculate we can say that, as in our assumption, the fitness is the same as the
objective function value. So, this is what we are considering and this is very simple. And now
what the important point which we understood that, the data structure which we generated; as

and when we are calculating some value, we are updating that data structure.

So, in the previous; in the previous slide; we find the decoded value, so we updated the data
structure. Now, when we are evaluating the population; we are again updating the data
structure of say parent population, so that the function value as well as the fitness value can
be stored there. Once the evaluation is done, we are in the standard loop of number of

generation.

(Refer Slide Time: 16:49)

}{a

o= el _es,

Selection Operator

Algorithm 5 Binary Tournament Selection Operator

L: Input: Individual 1 an Individual 2
)

2 if (F(T < F(I(Z])) then %F(:ﬂ‘)) is the fitw Extract this value from the data
structure of an individual. We assume m@ﬁtness.
s urn(zm) S Y0Individual 1 is selected.
4 else if (P(2V) > F(2!)) then
b return(m(} e YoIndividual 2 is selected.
6,/8lse
7./ if (random_no < 0.5) then
8 return(m(li}/’_- %Ind'widual 1 is selected.
9./ else
10: return(m(i)}/ %Ind'widual 2 is selected.
11:/ end if
12:"end if
D. Sharma (dsharmatiitg.ac.in) Module 3: Algotihms: BGA and RGA 9/n

So, the first step in the standard loop of generation is the selection. We have gone through the
tournament selection operator, so we will discuss this operator here. Now, as we know, we
take two individuals. So, you can see the individual x 1 and x 2, both of them are taken at

randomly. So, this is this process we know.

Now, here I am writing this as a capital F of x I, that represents the fitness of an individual

say 1. So, in this case what we can do? We can extract this particular value from the data

structures. So, as soon as we know which individual, we can extract this value. How this
binary tournament operator works? So, in step 2 you can see, we are comparing the two
fitness. Suppose the fitness of solution 1 is smaller than the fitness of 2. So, let us assume

that, we are solving a minimization problem here.

So, in this case, since the fitness of solution 1 is better, so we will return; return means that,
we are actually selecting this individual 1 here. If the fitness value of solution 2 is better than

the fitness of 1, then we return x 2. So, here in this case we are selecting individual 2.

In case which is very unlikely that, the fitness of both the solutions are same. So, in this case,
we can select anything; just as a algorithmic representation we are writing that, suppose if the

random number is smaller than 0.5 we return solution 1 as we return solution 2.

Now, as per the discussion what we can see that, a solution can have a multiple copies and in
this scenario, we can select anyone. But when we are solving say a multimodal problem in
which we have two different solutions; but their function values are same. So, in this case,
such kind of loop, which I have shown you from step 7 to 12 will be useful. So, the
representation or binary tournament algorithm representation is easy to select one solution out

of two.

(Refer Slide Time: 19:23)

£l -0 B G [R VL =
s L e Buc begueh i Gk Pyn Poos bt bu e Wb Coancrs Sos bkt Comtoed
* Crossover Operator *
Algorithm 6 Sipgle-point crossover operator
1: Input: paréé-l, P e?lt(z offspring-1, offspring-2, n: number of binary variables
if (J'rmd(m‘_r;m@men - f-i—_B \;-5—_-
e for (j=1;7<mj++)do l 0610 %Each variable of an individual
T site = random no(1,1; - 1) Y%Random site for crossover
5: fl;(k =1k< site;’km do YoEach bit of a variable
6: Copy k—th bit of parent-1 individual to k—th of offspring-1 individual
Tt { Copy k—th bit of parent-2 individual to k—th of offspring-2 individual
8 end for e ——
9: for (k = site + lzk_g_lj;k ++) do 9% Each bit of a variable
10: —> Copy k—th bit of parent-1 individual to k—th of osts?riné-Z ndividual
1L: Copy k—th bit of parent-2 individual to k—th of offspring-1/individual
12: end for -
13: , end for
\)Alse
15+~ Copy parent-1 binary string to offspring-1
\1}/ Copy parent-2 binary string to offspring-2
17: end if e
D. Sharma_ (dsharmaiitg.ac.in) Module 3: Algotihms: BGA and RGA 10/2

Now, once we perform the binary tournament selection operator, we have to perform the

crossover. Now, in this crossover operator, we have gone through the single point crossover

operator. So, let us discuss this. Now, in algorithm 6, you have as a input parent 1 and a

parent 2.

Now, we are also taking offspring 1 and offspring 2, because we will be storing the value;
similarly the number of binary variable. Now, as we know that when we are picking the

parent 1 and a parent 2, we generally pick these two solution at random.

Now, in step 2 we have, we checked the random number smaller than the probability of
crossover. So, this is what we performed in our hand calculation. Suppose yes, the random
number is small; meaning that we have to perform the crossover operator. Now, in step 3, we

work for the number of variable.

So, we are taking one variable at a time. So, for a variable say j, we find the site; since its a
single point crossover operator, we have to find this site randomly. So, we are creating this
random number from 1 to 1 j minus 1. Why it is say, why it is | j minus 1? So, let me write an

example here.

Say binary string is 1 0 0 1 1 0. So, how many sites are possible? So, I can have 1 23 4 or 5.
So, I can have 5 sites out of 6 bit string and that is why we are writing random number from 1
to I j minus 1. So, once we have decided the site; so the first task is. So, as you remember

that, we have to swap the tail.

In this case, the head of the binary string from the site should remain the same. So, that is
why we are running a loop as you can see in step number 5; we are running a loop from k
equal to 1 to k site and in this case, every kth bit of a parent 1 is copied to the kth bit of
offspring 1.

So, this means that, we are copying the head of the string or you can say the left part from the
site; we are copying exactly from parent 1 to parent 2. Similarly, we can copy for parent sorry

parent 1 to offspring 1; similarly parent 2 to offspring 2. So, we have copied the head part.

Now, we have to swap the tail. So, simple way is, I can start from site plus 1 and I can go to
the last bit in a binary string. Now, you have to be, you can see there is a small change here in
step number 10 that, kth bit of parent 1 is copied to the kth bit of offspring 2, so that is the
important part here.

So, we have taken, we have swapped the tail. So, one the bit of 1 is now copied to offspring
2. Similarly, parent 2 kth bit is copied to the offspring 1. So, these are the two important thing
which says that, we are swapping the tail. Once it is done, so we have performed the single

point crossover operator.

Suppose in the in case the random number is greater than PC, then we have to just copy; as
you can see at a step number 15 and 16, we are just copying all the binary string of parent 1

to offspring 1, similarly parent 2 to offspring 2.

Now, there are at many many places or many a times, what we can do? Here is look at the
step number 2, now this step number 2 and step number 3; now what we are doing is, as soon
as the random number is smaller than the probability of a crossover, then we perform
crossover on each on each variable. However, at some places you may find that, you can

actually swap these two loops.

Meaning that, for every variable, we are creating a random number and we are deciding
whether we have to go with a crossover or not. So, in this case, some variable will be going to
the crossover or some not in a one particular set of parent 1 and a parent 2. So, that is second
implementation. So, the original implementation which we have followed in our hand
calculation, I have shown here; but this swapping of step number 2 and step number 3 are

also allowed.

(Refer Slide Time: 24:45)

Joooal e e el LTEY:

e

Mutation &

Algorithm 7 Bit-wise mutation operator

1: Input: offspring, n: number of binary variables

2: for (] = lj f@] T +) do Y0Each variable of an individual

3 for (k =L k S ty k+ +) do %Each bit of a variable
if (m_rfdomﬁ_o < py) then

5 if (k — th bit is 0) then—

6: Mutate k—th bit of offspring to@

7 else

8 Mutate k—th bit offspring to@

9

end if
10: end if
11: end for

12: end for

D. Sharma (dsharmaQ@iitg.ac.in) Maodule 3: Algotihms: BGA and RGA 1n/n

Once we perform this single point crossover operator, now we have come to the mutation
operator. So, we as an example, we have taken this bitwise mutation. Now, in this bitwise

mutation; what we need an offspring and say number of binary variable.

So, as so since we perform this binary bitwise mutation one by one; so we pick an offspring
one by one. Now, look at this step number 2. So, we are running a loop for all the variables;

thereafter we run the another loop of k for the number of binary bits we have for variable j.

Now, in step number 4, we are generating a random number. So, that says that, whether we
want to perform mutation or not; if yes, then if the bit is 0, we are converting into 1, if it is 1,
then we are converting into 0. So, from a step 5 to step 9, these will be mutating the bit. Now,
what is the implementation what you can see? That for every bit we are generating a random
number and deciding whether we have to perform mutation or not, that you can find it out

from step number 4.

If suppose if the random number is greater than probability of mutation, we do not. So, here
at this stage, we do not do any kind of a mutation for a one particular bit. So, it is easy to

implement this bit wise mutation.

(Refer Slide Time: 26:31)

ool el

i
1@
v
jm
i<

» «

Survival

Algorithm 8 (j + \)—strategy

1: Input: P(t): parent population, Q(t): offspring population

2 C(t)= P(t)U Q 3 %combine both population

3 Sort C(t) in an ascending order of fitness values YoQuick sort algorithm

4 {Copﬂthe first N solutions from C(t) R
D. Sharma (dsharma@iitg.ac.in) Module 3: Algotihms: BGA and RGA 12/

Now, come to the survival stage; this is we know it is the last function or implementation that
is required for BGA to work. Now, in this case, you can see algorithm 8 is developed using

mu plus lambda strategy.

So, this has been discussed earlier; you can see that for doing this, we need parent population
as well as the offspring population after variation operator. So, first step is, we have to copy.
So, basically we have to combine the parent population and the offspring population. Once it

is done, we can sort this population.

Now, this sorting I can use as I have mentioned here, the quicksort algorithm; there are
various algorithm can be used, so that we can or we can write all these solutions in an

ascending order of their fitness. Once it is done, we will be copying the first N solution from
Ct.

So, this is a very simple implementation, where we need only the sorting algorithm and
thereafter we copy it. Now, in step 4 when we are copying, this is a important step; why

because it says that, the values of an individual should be copied to the another individual.

(Refer Slide Time: 28:08)

e ol e e e
Copy Solution "

ya

Algorithm 9 Copy solution /"

1: Input: individual 1, individual 2, n: no. of binary variables, I;: string length of j—th binary
variable i
2 Copy objective function value of individual 1 to individual 2
%opy fitness/rank of individual 1 to individual 2

4:\9}’(]' =0;j S@] o1 +) do %For each variable of an individual
5 for (k=0;k k+ +) do Y%For each bit of a variable
6 % Copy k—th bit of individual 1 at k—th bit individual 2

7. lend for

8 Copy &j of individual 1 to &j of individual 2 YaCopy real value of a variable
9. end for = =

o Copy the complete data structure «
faliiieth ool 8 ol

D. Sharma_ (dsharma0iitg,ac.in) _ Module 3: Algotitms: BGA and RGA B/n

So, in order to have more clarity; I am showing you the algorithm 9, which is the copy of this
solution. So, let us assume that, we have input 1 and individual 1 and individual 2. So, we are
we want to copy the data of individual 1 to individual 2 and we need some, we need other

input as number of variables, binary string length and everything we need it.

So, first of all what we want is that, we have to copy the objective function from individual 1
to individual 2; thereafter we should also copy the fitness or the rank of individual 1 to

individual number 2. Now, as we know as per our data structure, we have a binary string. So,

in this case in step number 4 we can see that, we are running this particular loop for all

number of variable; then in step 5, we are running another loop for all binary string.

Now, you looking at the step number 6, we have to copy the k th bit to the of individual one
to the at the k th bit of individual 2. So, basically we are copying one by one. And once this is

done. So, we have already copied the binary string of solution or individual 1 to individual 2.

And what is left out is the decoded value. So, this decoded value is also copied into the
decoded value of individual 2. So, our main aim is, we have to; we have to copy the complete
data structure. Since it is important; so we have included this as a in the algorithmic

representation.

(Refer Slide Time: 30:01)

Juom ol epe o) S9LEP
Implementation of RGA J
D. Sharma (dsharmaQiitg.ac.in) Madule 3: Algotihms: BGA and RGA /23

Now, from this we know, we have gone through all the major and important operators that
has been written in a algorithmic way for binary coded GA. Now, suppose we want to

implement for the real coded GA, then what are the changes we need it.

(Refer Slide Time: 30:23)

Joom ool el ROEE
Generalized Framework of EC Techniques *
Algorithm 10 Generalized Framework for RGA
1Solution representation Y%real number
M\put for RGA;

\yfvaluate (P(t)); %Call Algo. 4 &
4 while t <T do

5(M(t) := Selection(P(t)); %Call Algo. 5 <—

6: Q(t) := Variation(M(t)); — ey Y%Crossover and mutation
7] Evaluate Q(t); %Call Algo. 4 &—

8 P(t+1):= Survivor(P(t),Q(t)); %Call Algo. 8 &——

9 ti=t+1; =

10~ end while

D. Sharma (dsharmaQiitg.ac.in) Module 3: Algotihms: BGA and RGA 15/

Now, here as you can see in algorithm 10, we are targeting RGA. Now, the solution
representation in step 1 is the real number; thereafter in step 2, we have certain input, then in
step 3 we have to evaluate the population. Now, since the evaluation will remain the same;
therefore we are not going to create any function, we just call algorithm 4 which we

discussed earlier.

Thereafter, we are in the standard loop of number of generation here and then in step 5, we
have to perform the selection. Now, if we are using the binary tournament operator; then we
do not have to create any new function, because we already discussed how the binary
tournament selection operator work. So, the algorithm 4, we algorithm 5 now in this case; we

can use it as it is and that can be used with the RGA as well.

Step 6 is the crossover and a mutation operator and we know that, this we have to change it;
because the crossover and mutation operator for real variable, real variable is different. Now,
again at step number 5, we have to evaluate the offspring population. So, again we will be
calling the algorithm 4, which we have discussed earlier and then in step number 8, we have

to perform the survival stage.

So, if we are using mu plus lambda strategy, we can directly call our algorithm number 8, so
that our sorted population based on the fitness can be copied. So, this is the way you can see

that, if any code or a function is written; we have to just use it as it is. Now, in this case

algorithm 4, algorithm 5 and algorithm 8 can be used as it is what we have discussed with

binary coded GA.
(Refer Slide Time: 32:38)

jceom ool i eie]t

23
|
1©
)
ju

v

Data Structure for RGA s

o Data Structure for populatic
Xy

Inleldual(l) lnleldua]U}
Individual(2) Objective_function_value
Fitness/rank /
Individual(j) — xreal \/
. T
Individual(N) (1 X Xy)

O

9 datatype Population parent_population, offspring_population;
» parent.individual(7).objective_function_value;

D. Sharma_(dsharmaQiitg.ac.in) Maodule 3: Algotihms: BGA and RGA 16/23

Now, let us start with the data structure of RRGA. Now, the population data structure remains
the same, where we have solutions from 1 to N. Now, let us take a ones individual say j. Now,
in this case we will be storing the value of objective function, the fitness value and the real
number. Now, we do not need any chromosome or decoding. So, we are storing the x real

value. So, x real means that, we are saving this column vector of N variable.

Now, here we are assuming that all variables are real. So, the data structure here, the same
definition of data structure called population can be used as you can see on the top, which
consist of N pair N solutions. So, we can say, we have parent population and we have

offspring population.

And in a similar way, we can extract the value; say for example, parent dot individual j dot
objective function value. So, we can extract, similarly if we want to copy; we can call similar

kind of similar kind of a command for the data structure, so that we can store the value.

(Refer Slide Time: 34:00)

iz e eals) oL

Input to RGA !

Algorithm 11 Input

. Population size: N /

: Number of generations: T~./

: Number of real variables: n/

. for (j = 1._) @] + +) do %For each variable
Lower and upper bounds on ; that are 2™ and £V

: end for

 Probability of crossover over: p, v~

. Probability of mutation: p,, .~

. In case of SBX crossover operator: nc/ ;

: I case of polynomial mutation operator: fjw”

W @~ G B W o

—
=3

D. Sharma_ (dsharmaiitg.ac.in) Module 3: Algotihms: BGA and RGA /3

Now, let us see the input to RGA. Now, there are certain inputs that, remains that remain the
same for both BGA and RGA. Now, we need a population size that remains the same;
number of a generation will also remain the same and the number of variable. So, last time it
was binary variable, now this time number of real variables. Now, the small change which

you can see that in step number 4, we are running a loop for number of real variable.

Since we already since the variable is represented in a real number; so we only have to
provide the lower and upper bound of the variable j. Thereafter, again we have to assign

probability of crossover as p c; probability of mutation as a p m.

And now, since the crossover and mutation operators are change and we have already worked
on SBX crossover operator and polynomial mutation, so let us take this these two operators.
So, in this case eta c is required for crossover operator and eta m is required for polynomial

mutation operator.

(Refer Slide Time: 35:21)

G (aajnn |- -[a][:]- 0] B G LNy

" Initialize random population i

Algorithm 12 Initialize random population

1: Input: N: population size, n: number of variables
2. for (I = l;i @% + +) do %Each individual in the population
8 for (j = Ily] @] + +) do Y9Each variable of 2 solution
4 Generate real number randomly between zg-L) and wS-U)
5 end for
6: end forz

D. Sharma (dsharmaitg ac.in) Module 3: Algotibms: BGA and RGA B) u;;z

Now, let us start with initialize random population; it is because we have to generate the
number. So, the input to this algorithm 12 is population size and the number of real variables.
So, we are running a loop for each member or each individual of the population; then we are

running another loop for the number of real variable.

So, let us take the variable x j and this value will be we what we will do here is, we generate a
random number between the lower and the upper bound. So, in this case, all the solutions or
the variables that will be generated within the bound and afterwards we can finish this

initialization process.

(Refer Slide Time: 36:10)

PR S EOD0G

=
1O
o
1
=

. «

* Crossover Operator

P
Algorithm 13(SBX (frossover operator

1: Input: parent-1, parent2 nt-2, offspring-1, cffspnngZ n: number of real variables

J/H (m andom no < Pe) then
3 for (j=1;j 5@] +4) Y%Each variable of an individual
44— Checkp = s)@ f_ —pg If not, in erchang)e the values.
5 Calculate}% mﬁ’:_;’ and }‘]7 i };’1‘172 corresponding to the lower and upper bounds
on
6: Generate random number (u1) and calculate dl Generate random number (u) and calculate ﬁz
i Calculate offspring solutions as
(offspring-1); > 0.5 [(p +p2 (2 — Pl
(offspring-2); = 0.5((p1 +p2 p2 — p1
8 —5 If ((offspring); <$ {0 (offspring), =)i ((oﬂsprlng (offsprlng) —:r“’)

9: end for - — S5

7 else
1L \/épy (21,..., Tn) of parent-1 to offspring-1
122 Copy (11,...4‘1)T of parent-2 to offspring-2

13: end if
D. Sharma (dsharma@iitg.ac.in) Module 3: Algotihms: BGA and RGA 19/23

Now, let us come to the crossover operator, now as we remember that; we have to give the
input to RGA, thereafter we have to evaluate it. Now, this evaluation we are not discussing,
because that evaluation is the same as what we discussed with the implementation of BGA,

that is binary coded GA.

Thereafter in a standard loop, we had binary tournament selection; since binary tournament
selection will remain the same; because it depends on the fitness value, so therefore, the
functioning will remain the same and we are we have not included here. We can call the same

function, which we have discussed with the binary coded GA.

Now, we have come to the crossover operator. Now, in this crossover operator, we are
discussing the SBX crossover operator; because we have already done some hand
calculations here. So, input to this is we have a parent 1, then we have a parent 2. So, we
remember that we pick 2 solutions randomly p 1 and a p 2 and then we also have offspring 1
and offspring 2; because we save the new solution or a new value into offspring 1 and a 2 and

the number of variables.

Now, in step 2 as you can see that, we create a random number; if random number is smaller
than probability of a crossover, then we will perform the crossover. Now, looking at the step
3, assuming that yes we are performing the crossover; we have a for loop on the number of

variables.

Now step 4 is important; because this is which we have discussed earlier, then that the parent
1 should be smaller than parent 2. So, this condition you can see here; if it is there, it is fine;

if it is not, then we have to interchange the value.

Once it is done. So, here we are calculating beta L and beta U. Now, this representation or
this SBX operator is the same operator, which we discussed for bounded variable; because we
have lower and upper bound, we want our SBX operator should generate the value in

between.

So, that is why the same set of equations are used here to calculate or to find the offspring.
So, in step 5, we will calculate the beta that is corresponding to the lower limit of on the

variable j and beta u will be corresponding to the upper limit of the variable j.

Once we find out the beta values, we generate the random numbers say u 1 for beta one prime
and u 2 for beta 2 prime. So, in step 6 we get the data what we needed and thereafter, we
calculate the offspring in a step number 7. So, it is simple; why because, we already know the
formula for that. So, offspring 1 jth variable can be represented in this term. Now, important
point is, now we are using minus beta 1 prime and for the offspring 2, we are using plus beta

2 prime.

So, that will help us to generate offspring between lower and upper bound. But as a on the
safer side in step number 8, in case if the variable is still out of the bound; we are including
one condition. In this condition, if the j th component of offspring is smaller than the lower
bound; then we are putting this on the lower bound. Similarly, if the j th component of

offspring is greater than the upper bound, then we are taking this on the upper bound.

So, that will make sure that our variables are under lower and upper bound. Once this for
loop is done, then we are at the step number 10. Now, this 10 says that, in case the random
number is more than probability of crossover; so we should not perform it. In this case, in
step number 11 as you can see; we can copy X 1 to x n basically a column vector of parent 1

to offspring 1, similarly the column vector of parent 2 is copied to the offspring 2.

Now, here you can realize there may be some other implementation, which can be which can
be using these two condition interchangeably. So, I am using this step 2 and step 3 and I am

putting this arrow it is; because if suppose we take step 3 above and a step 2 below that says

that, we are creating a random number for each variable and deciding whether we have to

perform the crossover operator or not.

So, in our hand calculation, we discuss that as soon as the random number is smaller than
probability of crossover; then we will be performing crossover on each variable. But the
another implementation as I suggested, if we are swapping this step number 2 and step
number 3; which says that, we want to generate the random number for each variable of a
solution and then accordingly we will be performing the crossover. So, the small change can

be done for having two kinds of variation in SBX operator

(Refer Slide Time: 42:15)

Jcroslclo)_ jepiepa]ogs SLE:
Mutation @

Algorithm 14 Polynomial mutation operator

1: Input: offspring, n: number of real variables

A if (random nd<)py,) then j _
3 for(j=1;j@g@j++)do o
4 Generate random number(r; Jand calculate

5o { (2t _1 7 i ey < 05, %

%Each variable of an individual

I 1= 20—yt s > 05,
B: Mutate offspring as

U) _ 0
(v))l

(offsprlng)j = (offspring); + (:cJ
If ((offspnng) > ol) (offspring). =

6 —= If ((offspring); < L) (offs_mm_gl___)) =
7. end for
8: end if
D. Sharma (dsharma@iitg.ac.in) Module 3: Algotihms: BGA and RGA 2/

Now, coming to the polynomial mutation. Now, in this polynomial mutation, since we have
worked on hand calculation; so let us see how it works. For this we have an input of
offspring. So, as you know we need only one solution and the number of variables. So, in
step 2 it is the same condition that, we have to generate and check whether it is a smaller than

equal to probability of mutation; if yes, we will be performing mutation on every variable.

So, in step number 3, you can check that the for loop is executed for all the variable;
thereafter we generate in step 4, we generate a random number say r j and then according to
the r j. So, this particular formula we already know for the polynomial mutation and based on
the value of the random number r j, we are going to use either the formula number 1 or

formula number 2.

And using this delta i value, we will be mutating the offspring j with respect to its previous
value plus the difference between the lower and upper bound multiplied by the delta j value.

So, this is the same equation what we have written for mutation.

So, that will change or that will mutate an offspring using polynomial mutation. As I check in
step number 6, we are we are making sure that offspring should be generated within the
bound. So, in this case the offspring, so j th component of the offspring; if it is smaller than

the lower bound, then we are putting it on the lower bound.

If the j th component of the string is on the upper bound, in this case we are putting this on
the upper bound. So, this small check we included, so that we can make sure that even after

mutation; the solution is within the limits or the range.

Now, again if we discuss the swapping; so I am considering step number 2 and step number
3. So, if we are going to swap these two step. So, currently what we are doing that, as soon as
the random number is smaller than probability; we will be performing mutation for every

variable.

However, if we swap it between 2 and a 3 step that indicates that, for every variable we will
generate a random number and then decide whether we want to perform a mutation for say

variable j or not. So, those 2 implementations are easy and we can include any one of them.

(Refer Slide Time: 45:20)

gl el

e

=
1@
]
HD
i

Copy Solution

Algorithm 15 Copy solution

1: Input: individual 1, individual 2, n: ng._ci_rga_l_v;ﬂab\es, N: population size
\;/Copy objective function value of individual 1 to individual 2
¥ Copy fitness/rank of individual 1 to individual 2

47 for (j = 0] + +) do %For each variable of an individual

5> Copy Q'J of individual 1 to ﬂ’,‘) of individual 2 %Copy real value of a variable
g m—— PR S

6{ end for

o Copy the complete data structure

D. Sharma (dsharma@iitg.ac.in) Maodule 3: Algotihms: BGA and RGA A/

Now, coming to the copy of this solution; as you can see in algorithm 15, our main objective
is to copy the complete data structure as it is mentioned in at the last of this slide. So, again
what we need is the individual 1 and the data of individual 1 will be copied to individual 2

and we need for example, number of real variable and the population size.

So, first point is, let us copy the objective function value of individual 1 to individual 2.
Similarly, thereafter we can copy the fitness of individual 1 to individual 2; the in step from
step 4 to 6 as we can see, there is a for loop on the number of variables. So, for every variable
say j th variable, we are copying the x j; so basically a full column vector, we are copying to
the individual 2, so x j to individual 2. So, please note that, we are copying each and every,

each and every variable of individual 1 to individual 2.

(Refer Slide Time: 46:40)

ke |[-E[le B § QT U Ue o &
s G re. L bdguak e ek Pge Peos N fae o W Coamerss Shov e o
Closure)
@ Implementation of BGA @ Implementation of BGA

» Data structure for BGA /Data structure for RGA

» Input to BGA Tnput to BGA

» Random initial population /Random initial population

» Fitness evaluation —— 88— SBX crossover operator

» Binary tournament selection —— \/Polynomial mutation operator

» Single-point crossover operator » Fitness evaluation, Binary tournament

» Bit-wise mutation operator selection and Survivor strategy will

» Survivor strategy ——— remain the same as with BGA.

D. Sharma (dsharmaitg ac.n) Module 3: Algotibms: BGA and RGA /%

So, now let us come to the end of this implementation. In this particular session, we have
gone through the implementation of a BGA first, where we discussed the data structure which
is an important part of an algorithm. So, before we start implementing this algorithm, we
should know what kind of data structure we should use it. We then we discussed about what
kind of inputs we needed, so that we can call that function and every input should get for

running the BGA.

We generated the random population in terms of binary string and finally, making the
chromosome. Fitness evaluation was easy; because every individual one by one, we calculate

the objective function and the same objective function value will become the fitness as of

now. We perform the binary tournament selection of picking the two solutions randomly. So,

we compare the fitness values and accordingly we return one solution.

Single point crossover operator, it is the simplest operator, where we find the site; in the site
we will be copying the head of the binary string as from individual or from parent 1 to the
offspring 1. And the tail as we swap the tail; so the from site to the last bit, we are
interchanging those bits from parent 1 to offspring 2, similarly from parent 2 to offspring 1.

So, it was a easy implementation; thereafter we have a bitwise mutation.

Now, in bitwise mutation, as soon as the probability is satisfied, the random number is
smaller than the probability of mutation; we check that every bit will be will be mutated from
0to I or 1 to 0. And thereafter, we had a survival stage, which is mu plus lambda. So, in that
case, we have to combine it; we have to perform sorting and then we have to copy. So, the
copy also we have we have gone through; because the main objective is we have to copy the

data structure as it is from individual 1 to individual 2.

Thereafter we discussed r j. So, this should be. So, the in this case, this is RGA. So, the
implementation of RGA includes the data structure of RGA and you can see that; we do not
need chromosome, decoding and the scaling function. So, we are representing the variable as

it 1s in the real number.

Thereafter, the input has been changed; it is only because the variables are represented in the
real number, second the crossover and mutation operator need other parameters that should

be fixed by user.

Random population was generated according to the lower and upper bound of the variable,
which was not required in binary GA; because the scaling function will take care of it. But in
real number that can go beyond, so that is why we generate the random number between
lower and upper bound. In case of crossover operator, we performed the SBX and that the
implementation was shown for the bounded SBX, where the SBX operator should generate a

new offspring solution within the bound.

However, on the safer side, we included the way, if suppose it is going out of bound;
thereafter we discuss polynomial mutation. In this polynomial mutation, we used the, we
calculate the delta 1 value and used it to mutate a individual or an offspring. An important

point we found that, the fitness evaluation or the binary tournament selection or the survival

stage, we do not have to change; because the same functions that has been used with binary

coded GA can be used as it is with the real coded GA.

(Refer Slide Time: 51:01)

[Ra

oo molemil e e

i
i©
i
O
23

Closure

@ Implementation of BGA
» Data structure for BGA
» Input to BGA
» Random initial population
» Fitness evaluation
» Binary tournament selection
» Single-point crossover operator
» Bit-wise mutation operator
» Survivor strategy

@ Implementation of BGA

» Data structure for RGA

» Input to BGA

» Random initial population

» SBX crossover operator

» Polynomial mutation operator

» Fitness evaluation, Binary tournament
selection and Survivor strategy will
remain the same as with BGA.

o One of the implementations was discussed.

o Independent of programming language: ¢/c++, java, matlab, python, etc,)

D. Sharma_ (dshormaiitg.ac.in) Module 3: Algotihms: BGA and RGA nin

At the end what we have discussed is one of the implementation. So, that is why if you
search, there will be various other kinds of implementation available in the literature. So, this
is one of the implementation and that is also you can use it, you can write your own binary

coded or a real coded genetic algorithm code for you.

Here important point is that, all the algorithm representation which are shown in this session,
they are independent of any programming language. It is because, it depends on the user

which choice or which programming language they want.

So, therefore, the algorithm representation is starting from the generalized formulation or
framework, followed by the other functions or implementation we have discussed; for
example, binary tournament selection operator, crossover mutation, all of them can be easily
implemented using either for example, I have mentioned as C, C ++, we can use java,

MATLAB, python etcetera.

So, those languages we can use it and since these implementations are independent, we can
easily make our own code and solve our problem. So, with these details on implementing the

binary coded and real coded in an algorithmic way, I conclude this session.

Thank you.

