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Operators and Simulations of Real-Coded Genetic Algorithm

Welcome to the session on Operators and Simulation of Real-Coded Genetic Algorithm.

(Refer Slide Time: 00:41)

In this session, we will discuss various operators that will be required for RGA. So, here

RGA stands for the real coded genetic algorithm. We will first discuss about the selection

operators, thereafter the crossover and mutation operators.

The simulations of RGA will be shown using four functions that are Rosenbrock function,

Himmelbau functions, Rastrigin function and Ackley function and thereafter, we will

conclude this session.
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So, before we start our different kinds of operators that are available for RGA, let us have a

recap of the previous session. In the previous session, we found that when we are using

binary coded GA for continuous search space there are certain limitations. Those limitations

are corresponding to the precision or sometimes the hamming cliff problem. So, and

moreover the binary coded GA makes the continuous search space into discrete.

Looking at those limitations we targeted EC techniques that can be used for real parameter

optimization. So, in that category we have gone through RGA, evolutionary strategies,

particles from optimization, differential evolution and etcetera. So, all these all these EC

techniques are used for solving real parameter optimization problems.

We understood RGA using the generalized framework in which various operators and the

processing of RGA we understand through this generalized framework. To understand the

working principle of RGA we started we have taken an example of a Rosenbrock function,

we want to minimize the function and for this particular Rosenbrock function we know where

is the optimum.

So, we started with the initial population. So, here the important part was that we have to we

have to code the variable as a real number. Thereafter, we use the selection operator which is

the binary tournament selection operator; after going through that we found that we do not

have to change or we do not need any new selection operator for RGA because these

selection operator work on the fitness. So, therefore, the functioning is not changing since we

have already calculated the fitness of each solution.



Thereafter we discussed about the crossover operator. So, till binary coded genetic algorithm

we have to deal with the binary strains. As soon as we work with the real numbers so we need

to change the crossover, so that we can use it. In this particular section, we have gone through

the various properties of single point crossover operator such as the averaging property and

there was a spread factor beta.

So, those two properties were taken into the consideration and the authors came up with the

operators called SBX crossover operator. Therefore, there is a polynomial mutation we talked

about. In this polynomial operator we found that the probability distribution function was

linear. Similarly, in SBX as well the probability distribution function was non-linear. That

non-linear distribution allows to create solutions closer to the parent solutions.

And, finally, we use mu plus lambda strategy as a survival stage as an example there. All

these processes as you can see all these operators and evaluations we have shown with the

help of hand calculation. So, we show every calculation for a one generation and the same

calculation we also showed with the help of graphical illustration. So, this graphical

illustration helps us to know or understand how these solutions will be moving towards the

optimum solution. With this recap, let us move to the operators now.

(Refer Slide Time: 05:17)

We start with the selection operator. As we know selection operator need the fitness value of

each solution to select good or above overage solutions. We have various methods available

with us. For example, we can use fitness proportionate selection, tournament selection or the



ranking method; and, for combining the parent population and offspring population we use

mu plus lambda strategies.

So, all these operators which we use either before variation operator or after a variation

operator everyone needs the fitness value and this fitness is these this fitness value is

calculated earlier. So, we found that there is no change in those selection operators. So, the

selection operators which we have understood while learning binary coded GA or all of those

operators are valid here.

(Refer Slide Time: 06:23)

Now, let us come to the selection to the crossover operators. Now, crossover operators here

these crossover operator for real parameters sometimes also referred as a blending operators.

So, let us start with the first crossover operator, that is, the linear crossover operator as you

can see here. This is one of the earliest implementation shown by the by Wright in 1991. So,

for our simplicity we are considering p 1 as our parent 1, p 2 as a parent 2.
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Now, in this case p 1 will be equals to the i-th decision variable for the solution selected in

the t-th iteration. Similarly, this is the i-th variable for solution 2 and t-th iteration. So, before

we move, we know that to perform crossover operator we have to select two or more

solutions randomly from the population. So, in this case we selected two solutions as it is

given here as 1 and 2 randomly and we are representing these two solution as p 1 and p 2.

Now, here in the figure you can see that when you have p 1 and a p 2, this crossover operator

generates three offspring solution. So, the off spring solution 1 is actually at the middle of p 1

and p 2. So, we can say it is p 1 plus p 2 divided by 2. Now, if we measure this particular

distance and say this is delta with a similar distance we created another solution.

So, you can see on the left and side of a p 1 offspring 2 is created on the right hand side of p 2

another offspring is created. Looking at the formula here, so, offspring 1 which is at the

middle of p 1 and p 2, offspring 2 is on the left hand side of p 1 and offspring 3 is on the right

hand side of the p 2. So, as the representation I explained you earlier this is for the i-th

decision variable and in the t-th iteration.
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Now, in this case as you have realized that two parent solution are used to create three

offspring solutions; as I am writing as 1, 2 and 3. Now, what we do here is, from these three

solutions we choose two best solutions among the three solutions. So, this is the way linear

crossover operator works. It is one of the simplest implementation here.

(Refer Slide Time: 09:13)

The another crossover operator which we have is called blend crossover operator. So, this

blend crossover operator is also known as BLX alpha. Now, in this crossover operator we

assume that p 1 is smaller than p 2.
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So, the same representation we are using for parent 1 and a parent 2, but with a condition that

p 1 is a smaller than p 2. Now, in this crossover operator we can see in this figure we have p

1, p 2 and then we have a delta.

Similarly, we have the same quantity of a delta on the right hand side of p 2. So, the in this

case thus delta is decided as alpha times of p 2 minus p 1 and as you know p 2 and a p 1 we

are writing in terms of x i 2, t minus x i 1, t.

(Refer Slide Time: 10:11)

Now, looking at this particular figure we can see that the solution can be generated from x i 1,

t minus delta to x i 2, t plus delta.
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So, basically if we look at this region in the figure, in this particular region the solution is

created and that is created randomly in this region.

(Refer Slide Time: 10:37)

So, the offspring is created with the help of another factor called gamma and this gamma is

calculated with the help of alpha value and the random number u i. So, we using these two

values we can found the value of a gamma. Now, we know that u i is a random number. So,

this random number will be generated by the computer. Now, in this case this alpha value this

is a user defined value and we have to set this value here.
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Now, are looking at the equation of the offspring you can make it out that the two solutions

we are using a scaling function such as 1 minus gamma times of parent 1 plus gamma times

of parent 2. So, this is scaling we use it to create an offspring. So, from this particular

crossover operator we found that two cross two parent solutions are creating one offspring

here.
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Now, once since we have included this gamma into the creation of the offspring solution, so,

if we fixed this value of alpha throughout of throughout the iterations, we can find that the

gamma i is uniformly distributed for a fixed value of alpha. So, this distribution as I showed

you earlier so, this is the distribution where a random a solution will be generated using BLX

alpha.

(Refer Slide Time: 12:17)
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Now, the question is what could be the value of alpha because I can use 1, 0.5, 3 or 7

anything value I can use it. So, in this particular study the author found that if we use alpha is

equals to 0.5, this particular value is working good for many test problems. So, that is why a

guideline or a thumb rule is developed that we can take alpha value. However, we can change

this value as per our problem and simulation.

Now, let us see what is the characteristic of this operator. So, the equation the original

equation in the previous slide is written here. So, let us move some quantity on the right and

side, keep some quantity on the left hand side. So, this particular equation is modified as what

you can see here.

Now, the important point in this particular equation which we have rewritten, so, the in the

square in the rectangular box you can realize it is similar to the difference between p 2 minus

p 1; meaning that the difference between these two parent actually decide what could be the

new solutions.

(Refer Slide Time: 13:43)



So, therefore, it says that the if we are going to use BLX alpha, the search is adaptive in

nature. How? If supposed we are starting so, at the beginning when the solutions are

randomly generated in the plane of variable, in that case we pick two solutions randomly. So,

generally these solutions are little far from each other. So, when they are far this particular

difference will be large.

Since this will be large so, the offspring solution that will be created will be little far from

their parents. So, this property will help us to explore the search space initially and that is

what we desire from EC techniques. But, in the later generations what you will see that the

solutions will be close to each other.

When they are close to each other then the same difference will become small and therefore,

the offspring will also be created close to the parent. So, in this case since the difference is

small we can say the search is focused. So, this adaptive property is useful in all EC

techniques if we can implement it.

(Refer Slide Time: 15:03)

Simulated binary crossover is the third crossover operator. This crossover operator we

discussed in detail. This operator uses the non linear distribution probability distribution. You

can see with respect to the value of beta i there are two functions which are used.
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So, if you look at this particular figure so, this is the value 1. So, on the left hand side there is

a another function, another side there is a another probability distribution function and these

two probability distribution functions are non-linear in nature. The objective is the offspring

should be created close to the parent solution.

And, how we how we can calculate the value of a beta i? As we have discussed earlier that

we will be integrating this probability and this integration will give me the value of beta i. So,

integrating this means the area under the curve as you can see here so, this area under the

curve we can correlate with the random number given here as a u i.

So, after simplification we can get a value of a beta i based on random number. So, if random

number is smaller than or equal to 0.5, we will be using the first equation otherwise we will

be using the second equation.
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Using this beta i value we used this we use this beta i value to create offspring. So, this

equation is familiar to us as we can see these two quantities tells us about the average

property and then we have a beta which we calculated using the probability distribution

function and the difference between the two solution or two parent solutions. Here it is

important to note that all this analysis we are doing by assuming that p 1 is smaller than p 2.

(Refer Slide Time: 17:13)



Now, let us see what how this SBX operator behaves. So, in this case let me draw the curve

for two eta c value. So, this particular different eta c value we have gone through in the

previous session. Now, here we are we have two solutions. So, using these two solution if we

take different eta c value so, what will be the curve? So, let me take eta c is equals to 2.

In this particular case this eta c for two value it will be similar to this curve and then it will

move here and then come back here. So, this is for eta c equals to 2. Now, suppose we will

take a larger value say eta c is equals to 5. So, what will happen? That as and when this eta c

value is large so, you can see it is approaching the y-axis in this way than the mean then again

for another solution it is approaching like this and then finally, coming here.

So, what we can see here is for the two different values of eta c and eta c equals to 2 and 5,

we get two different curves. It is only because when we are integrating the probability the

area under the curved maximum could be 1.

Now, as you can see that if we are using the eta c large eta c value that indicates that there is a

higher probability of creating new a near apparent solution. It is because of the nature of the

curve. So, when eta c is equals to 5 as you can see that the width of the curve as is reduced

however, its peak has it is increased with respect to eta c equals to 2.

So, in this case when an offspring will be generated so, the solution will be close to the parent

solution. In another case when eta c is small then we have a curve which is little wider than

the eta c equals to 5. So, for a smaller value of eta c, the offspring solutions can be created

little far from the parent solution.
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Now, let us come to the property another property of SBX operator here. Now, the what we

have done here is we have taken the difference between the two parent solution two offspring

solutions that comes out to be the difference between the parent solution and this is

multiplied by beta. So, in this case what we can see that the difference between the offspring

is proportional to the difference between the parent solutions.

So, this is similar to the property as we have learned with the b BLX alpha. So, in this case

our SBX operator also supports adaptive search, in the in that case in the initial generation

when solutions are little far so, the offspring solutions will be generated little far. Similarly,

when after few generations when solutions are moving towards the optimum solution so, they

are close enough and this difference suggests that the offspring solution will be generated

close to their parent solutions.

Now, let us take a two cases here; in one case as you can see in this plot y-axis the probability

density and x-axis has parent 1, parent 2 similarly offspring 1 and offspring 2. So, since in

this particular figure you can see that p 1 and p 2 they are little far so, what could be the

distribution? So, if I redraw this, so, this is coming out to be this.



So, in this particular figure plot you can see that when the solutions are far, so they are so

these two probability distribution for p 1 and a p 2 since they are afar so, the offspring

solutions will be created far because the difference between p 2 and a p 1 is large. Similarly,

if we take the another case in the right hand side figure, so, p 1 and p 2 are quite close to each

other. Let us take the another case where p 1 and p 2 are close to each other which you can

see on the right hand side.

So, here so, the distribution will be similar to like this as you can see here. So, you can see

there are peaks and then the curve is like this. So, in this case what we will see that when p 1

and a p 2 are close to each other the peak of the curve has been raged. However, the width of

the curve is reduced as compared to the figure on the left hand side. So, this will allow to

create our offspring 1 and offspring 2 closer to the parent solution.

(Refer Slide Time: 23:05)
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Now, the crossover operator that is SBX operator which we have discussed what we found

that it can generate any solution between minus infinite to plus infinite. However, if we want

what we want is that they since the variable bounds are given as between the lower and the

upper bound we want that this crossover operator should generate solution within the bound.

So, in this case a small change has been made in this crossover operator, in which the

cumulative proper probabilities are calculated with respect to beta U and beta L. What are

those quantities? So, these quantities are corresponding to the upper and lower bound of the

variable. So, you remember that we generally integrate from 0 to beta i, but in this case we

are integrating from 0 to beta upper and beta lower, so that we can generate a solution within

the range of x i.

Now, this beta U, beta L and a beta U we can find using the formula given here which is the

summation of the two parents minus 2x i lower for beta lower. And, when we talk about the

upper so, we have 2x i upper that is the upper limit on this variable and the difference

between p 1 minus and p minus p 2 in this case the denominator remains the same that is the

difference between p 2 minus p 1.

Now, using this modified probability we are going to calculate two quantities which are beta

prime 1, beta prime 2. So, similar to area under the curve and we are equating with a random

number the same approach is used, but with while respecting the lower and upper bound of

the variable. So, our modified probability distribution as you can see here that will change.
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When we integrate it we can get two values of beta 1 and beta 2. So, these two beta 1 and

beta 2 values we are writing here. In this case the same formula as you can see this is the

summation of the two parents and we have taken 0.5 outside. So, this is nothing, but the

average.
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And, then beta 1 prime we have multiplied with a difference, similarly for the offspring

number 2 we have average property then plus so, here you have to make sure that it is beta 2

prime. So, another beta for the upper limit and this is the difference between the 2 parts. So,

in this way we can generate 2 offspring solutions that will respect the bounds for the using

the SBX crossover operator.

So, let us take two things now. First let me take the unbounded. So, unbounded means that

the SBX crossover operator can generate a solution from the limit minus infinite to plus

infinite. So, in this case you can see that this particular curve which is coming from the

infinite going here and then this is coming here and then going here and then going towards

the infinite.



So, this is the probability distribution you can expect when the solution is generated from

minus infinite to plus infinite. Now, let us take the bounded. So, bounded means that the SBX

crossover operator will generate two solutions between the bound.

Now, in this figure you can see the lower bound is given as well as the upper bound is given.

So, how this particular solution will behave? So, here this will be, so, let me start from the

bottom and then it will go it will follow the similar trend here. It will come at the middle now,

it will go little higher and then and then it will finish it off.

So, this kind of a distribution for the bounded region when SBX is creating a solution

between lower and an upper bound you can see as soon as we are fixing the lower and the

upper bound here so, the peak is actually it has gone little up as compared to the bounded

one. Why? Because the area under this particular curve should be one, now we have

restricted this probability distribution from lower to upper so, the peak has been gone little

high.

(Refer Slide Time: 28:15)

So, as of now we have gone through this SBX crossover operator where we can generate

solution from minus infinite to plus infinite as well as if we want to include the bounds. So,

there are some changes needed to calculate beta 1 prime and beta 2 prime using the random

number.
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Now, we are moving to the another crossover operator which is known as fuzzy

recombination operator. This operator as you can see here it is similar to the binary crossover

operator which as we say it is called SBX operator. So, when we fix eta c value is equals to 1,

then both the operators will behave similar. So, what is the difference here?

So, in SBX crossover operator we use non-linear probability distribution on the either side of

the beta. So, for beta equals to 1, we had one function and when beta is greater than 1 we had

another function. So, instead of that as you can see from this figure they in these FR operator

triangular shape probability distribution function is used and, this it is working is very similar

to the SBX crossover operator.

Now, in the figure you can see there is a term called delta. This delta term has a significance

because you can see that this delta depends on the difference between the two parent. So, it

means that FR operator is also has this adaptive search capability in which when the solutions

are far in the early generation, then the offspring solutions will be created little far. When

parent solutions are close to each other when they are moving towards the optima then

offspring solution will also be generated close to the minima.

Now, using this d we have a delta which is also has let me write here as d p 2 minus p 1.

Now, this is the d factor which is a user defined factor. So, this we have to decide before we

execute our function our algorithm.

So, in similar to SBX crossover operator we have eta c we have a BLX alpha where we have

to set the value of alpha. This operator has a one user defined parameter called d. Now, all the

properties what we have discussed earlier with the SBX operator all these properties are hold

by the FR operator.



(Refer Slide Time: 31:05)

Now, let us move to the new crossover operator which is called unimodal normally

distributed crossover which we in short say UNDX operator. This particular operator was

proposed by Ono and Kobayashi in 1997. Now, as you can see this particular crossover

operator, need three or more parent solutions that will create two or more offspring solution;

so we will see how.

Now, offspring solutions are created using the ellipsoidal probability distribution. So, one

thing you can see here that the crossover operators are using some kind of probability

distribution functions to generate offspring solutions. So, this ellipsoidal probability

distribution function is used with one axis formed along the line joining the two of the three

solutions. So, here we are assuming that we are working in a two variable for a two variable

problem.

Now, let us see how it works. So, in this particular crossover operator we take two solutions

as p 1 and p 2 and we picked it randomly. Now, when we pick it we find a component called

d which is nothing, but p 2 minus p 1. So, this particular component d as you can see in the

figure this is referred as the parallel component.

Now, using p 1 and a p 2 we find the value of p c. Now, this p c is preferred as the centre of

the two parents which is nothing, but p 1 plus p 2 divided by 2. So, as soon as we find this

centre here, we pick the third solution which is p 3 and that is again randomly and this p 3 as



you can see that p 3 is lines in this particular figure here and the capital D we find and this

will represent the orthogonal component.

So, using these parallel and orthogonal component, this crossover generates an offspring. So,

you can see that x 0 represent it is x naught, o stands for the offspring population or offspring

solution, we have p c which is the centroid, then we have a zeta d. So, as we know d is our

parallel component and then we have summations with respect to zeta and component of p i's

and of D is our orthogonal component.

So, as you can see that zeta and eta are the random numbers and p i is the orthogonal basis

that span the subspace perpendicular to the d. So, we are talking about all the orthogonal

basis corresponding to the d which is deeper perpendicular or orthogonal component. So, in

this way this crossover operator works and generates new solutions for EC techniques.

(Refer Slide Time: 34:25)

Now, as of now we have gone through various crossover operators, in the literature there may

be few more crossover operators, but when we design a crossover operator we look for

certain properties. So, one of the desired property is that the mean of the population should

not change.

What we mean by that? That we know that; most crossover operators do not use any fitness

value. Since they are not using any fitness value, meaning that, the crossover operator will

not be performing any search in a particular direction. So, that is random in nature and this is



evident from the crossover operator whether it is a crossover operator for binary string or for

a real number all of them are stochastic in nature and we perform the crossover operator.

Now, at this particular stage what we want is a crossover operator that can generate offspring

population that such that the mean of the population should be the same as the parent

solutions. However, the variance can change. So, let us take one example here.

So, let me take this is the mean here and we have various solutions. So, for just clarity I am

taking the solutions little far, but if you try to find out the mean of these, so that it will

become red this is the red point. Now, let me take another case here. Suppose we have this

mean and the solutions are close to this particular solution. Now, in this case what you can

realize that in both the cases mean will not change.

(Refer Slide Time: 36:49)

So, I am assuming that both the population have the same mean. However, for this for the

case 1 let me write here for this case 1 we have a larger variance, but for case 2 we have

small variance. So, the crossover operator should be generated or developed in such a way

that the mean should not change.

Second desired property is that the population diversity should increase. So, in every

generation we performed crossover operator. Now, what we can realize here that since we are

performing the selection operator. So, we are actually reducing the variance of the population

because we are selecting only good and above average solution.



In this particular scenario, the crossover operator should not reduce the variance of the

population it is only because that will lead to the premature convergence. It is because

sometimes if there is an individual which is closer to the local optima, then this particular

individual will get multiple copies and then after few iterations all solution will become

same.

But, since it is close to the local optima then the whole population will converge to this a

optima with which we consider as a premature convergence. So, in that case our crossover

operator should not reduce the variance because that will help us to keep the diversity into

our population. Therefore, as we suggested the crossover operator, that should increase the

variance of the population.

(Refer Slide Time: 38:19)

As of now we have gone through various kinds of crossover operator for real parameters. So,

in 2000 Beyer and Deb, they conducted a study where they were comparing different kind of

a crossover operators and the performance of these crossover operator was tested on a flat

landscape function, so that they can understand what is the what is the growth of the

population. So, they are measuring the variance of the variance of the population.

In their analysis what they found is suppose because they have taken three crossover

operators SBX, BLX and FR. And, we know that these are the three user defined parameters

we have to fix before we move for during the simulation.



Now, on this flat landscape what they found is if they keep SBX eta c equals to BLX 0 point

0.06 and d as 1.095 the performance of the operator was similar all these operators. Similarly,

when they kept eta c equals to 3 BLX is equals to 0.5 and d value 0.707, the performance of

all these crossover was found to be similar.

So, these values suggest that there is a one characteristic parameter value for which the

different kind of a crossover can behave similarly. So, that is a good study that help us to

understand that this different kind of a crossover operator in certain situation can behave

similarly.

(Refer Slide Time: 40:19)

After going through various types of crossover operator, now let us move to the mutation

operator which is also of one of the kind of variation operator. So, the first of the first

mutation operator is the random mutation operator. It was proposed by Michalewicz in 1992.
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As you can see the new solutions created; so, y i represents the new solution or the new value

for the i-th variable that depends on r i which is the random number and the difference

between the upper bound and the lower bound.



The interesting part of this random mutation operator is that it is independent of the parent

solution. So, we can say that we are this mutation operator is a random mutation operator and

since it is independent of the parent solution, it can create solution anywhere in the search

space.

(Refer Slide Time: 41:23)
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To modify this particular mutation operator a small factor of a delta i is included into the

formula. So, what this delta i says that? Now, let us look at the figure here. Now, this delta i

says that on the either side of X i that is on the left side and the right hand side we have a

uniform distribution. So, when we decide the delta i. So, this will tell me about how much

perturbation. So, we call it as a maximum perturbation. So, this maximum perturbation is

decided by the delta i value.

So, let us look at the equation now. This says that the solution y i created by the mutation is

equals to the solution that is the parent solution and it depends on the random number and the

delta i. Now, when random number is a smaller than 0.5, you know that we are talking about

the left hand side of X i; when random number is greater than 0.5, then the solution will be

generated on the right hand side of the X i.



Now, in this particular crossover operator as a remark we have to we have to take care of the

upper and the lower bound why because if supposed this X i solution in the figure, if this

solution is say somewhere here as you can see. So, let me write this as a p solution p.

Now, if we take a delta value something like this, then it means that a solution can or the

mutation operator can generate a solution which is beyond the lower bound. So, in this case

what we say that suppose I consider a solution created by the mutation operator is y i, so, if y

i is smaller than the lower bound of variable then we will say y i is actually on the bound. So,

we are keeping this solution on the bound.

Similarly, if this solution y i is greater than the upper bound in this case we will keep this

solution on the upper bound. So, such kind of simple implementation we can use it so that our

solution generated by mutation should be within the bound.
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 𝑦
𝑖
1,𝑡( ) = 𝑥

𝑖
1,𝑡( ) + δ

𝑖
𝑡

 δ
𝑖
𝑡 = { 𝑥

𝑖
𝑈( ) −  𝑥

𝑖
1,𝑡( )( )  1 − 𝑟

𝑖

1− 𝑡
𝑇( )𝑏( ) 𝑥

𝑖
1,𝑡( ) −  𝑥

𝑖
𝐿( )( )  1 − 𝑟

𝑖

1− 𝑡
𝑇( )𝑏( ) 



Another mutation operator here we have non-uniform mutation. It is only because looking at

the figure we have we have non-uniform or non-linear probability function. We can see from

this figure that the non-linear probability distribution is used. In this case this because of this

particular is spread this non-linearity will allow the new solution to be created close to the

parent solution.

So, this particular operator was also proposed by Michalewicz in 1992 and it says that the

probability of creating a solution closer to the parent is more than the probability of creating

away from it. It is only because the non-linear probability distribution function is used here.

Now, along with this non-linear probability function there are some other terms that are also

used. So, as you can see the new solution y i is created with the help of the parent solution

plus there is a delta i parameter which is included. From the formula given here we can see

that the delta i depends on the difference between the two parents.

And, the another factor which is the 1 minus random number; so, r i represents the random

number and the power of the random number depends on the current iteration. So, t is the

current iteration and the capital T is the maximum allowed generations. So, in this case you

will realize that when t is 0 means at the beginning the power of r i is 1, but when t reaches to

capital T then r i to the power will become 0.

So, in this case the random number has no contribution in generating the delta i value. So,

this T max as I have mentioned, it is the maximum allowed generation and the power b is the

non-negative user define parameter. So, you can see this b which is a non negative just to

increase the number or to give the higher power. So, that will be affecting the r i because

everything is on r i that is a random number here.
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Thereafter the one of the simplest cross mutation operator which we can think is using

normally distributed mutation operator. From the figure you can see this is the Gaussian

distribution. In this Gaussian distribution we have taken like a sigma equals to 1 and the

mean is at the 0. So, this is small perturbation we can use it with the solution.

Now, looking at the formula here; so, y i the new solution is equals to the parent solution, but

plus the perturbation using the Gaussian probability distribution as you can see here. Now, as

we know that if we keep changing the value of this sigma i, then the spread of the curve will

change. So, therefore, we have to find this sigma i value or we have to define it very

carefully. So, your sigma i is going to be the user defined a parameter now.

Again for this mutation operator we have to take care of the lower and the upper bound as a

recap. If the solution y i is smaller than the lower limit, then we will keep y i as is on the

lower limit. Similarly, if a solution is created out of the upper bound then we will keep this

solution on the upper bound. So, these simple conditions we can use it for our

implementation. So, every time when a solution is mutated the it will be generated within the

range of lower and upper bound.
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Come to the polynomial mutation: polynomial mutation is discussed in the previous session

when we solved or we have an example we understood the principle working principle of

RGA. So, as you can see in the polynomial mutation it is also following the same that the

new solution is created with respect to the parent solution and the difference between the two

the lower and the upper limit multiplied by the delta i value.

Now, looking at the figure on the right hand side you can see again the non-linear a

probability function is used, so that it will allow the new solution to be created closer to the

parent solution. Now, in this case the probability distribution as you can see here it is used



and when we equate the area under the curve as you can see in the figure on the right hand

side we can calculate the data i value.

So, this delta i value as you can see if random number is smaller than 0.5 we have 1 formula

when random number is greater than 0.5, we have another formula.We have come to the

simulation of RGA.
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Now, let us see how this RGA works of for different kind of problems we will start with the

Rosenbrock function as you can see here.
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So, we want to minimize the function. So, this Rosenbrock function is written in terms of n

variables and the generic form of the Rosenbrock function is given here. The limits of the

variables are taken as from minus 5 to plus 5.

Now, two variable problem as you can see in this figure on the left hand side; the y-axis is

taken as the logarithmic of the function, so that we can see the we can see the surface of this

function and in x and x 2 plane we can see the contours. For this particular function the

optima is lying at 1, 1 and the function value is 0.
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So, in the first simulation we kept the number of variable as 2, population size 40, number of

iteration 200, probability of a crossover we keep it high because it has so many local

optima’s. We are keeping the probability mutation with a thumb rule 1 divided by n, n stands

for number of variable. So, it comes out to be 0.5; then we use binary tournament selection

operator and we also use SBX crossover operator to generate new solutions.

So, here eta c value is 15 and the polynomial mutation is used which has a eta m value 20.

Finally, we used mu plus lambda strategy here. So, in when we generate the initial population

you can see on the right hand side, the blue dots are the initial random solutions which are

generated in x 1 and x 2 plane. So, we call it is a random initial population.
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So, let us start with the simulation here. Now, as you can see the solutions are distributed.
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And, in 15 – 16 generations the solutions are already close to the optima and closed to 100

generation we got the solution. So, let us see one more time, so that we can understand how

quickly these solutions are converged to the optimum solutions.

Since this these variables are represented as a real number, so, any precision is possible and

that is why RGA with the help of SBX crossover operator and polynomial mutation we got

the solution early. Now, let us see the progress. So, the progress here is shown with respect to

the best solution in the population.
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So, you can see in the y-axis we have a best fitness in the population in every generation, an

x-axis is our generation. So, here initially we can see a drastic improvement and thereafter

since we have are already close to the optima so, the performance is or the improvement is

less. So, as you can see the performance is quite good at the in the initial generation and even

at before 10 generation, we are very close to the optimum solution here.
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In the next simulation, we are solving the same Rosenbrock function. We have taken the

number of variable as 4. So, in the last example we took 2 variables, now the number of



variable is 4. Population size we kept it same as 40; similarly the number of generation is

200; probability of crossover is 1. Now, the probability of mutation is reduced it is because

we are using one thumb rule that the probability of mutation is equals to 1 divided by the

number of variable. So, now, it is 0.25.

The same set of operators such as binary, tournament selection, SBX crossover, operator

polynomial mutation and mu plus lambda strategy are used; eta c and eta m values are 15 and

20 respectively. Since it is a 4 variable so, we cannot see this simulation with respect to the

contours of the function.

However, if you look into this figure we can see that the best fitness initially was close to say

67 and it reduces drastically by say 23 generations and then with a small improvement and

close to 60 generation we got the optimum solution.

So, let us see how it worked. So, you we can see the improvement is drastic at the early

generations and then slowly it is reaching to the minimum. Now, you can see the 0 is written

here and before 60 generations a the RGA already found an optimum solution for 4 number

of variables for Rosenbrock function.
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Now, let us move to the another function which is Himmelblau function.
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This function is a 2 variable function as you can see on the top and the bounce on both the

variables is from minus 5 to plus 5. Looking at the surface on the left hand side so, this

surface is based on the Himmelblau function and if you look at the contours you can locate 4

optimas.

So, basically it is a multimodal problem as I have mentioned on the right and side. So, it is a

multimodal function which has 4 minimum point. Now, you can see that it has minimum

point at 3, 2. Similarly, you have other 3 optimum solution where the function value is 0.
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In this case we kept the population size 60 which is little larger than the Rosenbrock function

just to make sure that we are solving a multimodal problem here. Number of a generation is

kept a 200, probability of crossover is 1, probability of mutation is 1 by 1 by n as this

problem is two variable. So, p m is equals to 0.5. We are using the same set of operators such

as binary tournament selection, SBX crossover operator, polynomial mutation and mu plus

lambda strategy.

Now, since it is a two variable problem we can we can show the simulation here. Now,

looking at the figure on the right hand side this is the generation 1; this means we have this



initial population which is generated randomly in the x 1 and x 2 plane. So, let us see how

these solutions will progress towards the optimum solution.
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Now, as of now the solutions are distributed along 4, but when we reach in to the 15th

generation the solution were a two peak and after 50 generation we can see all the solutions

are converged to the one peak.
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So, here the advantage is that you can see the solutions are quickly converged to converging

to the optimum solution, but the disadvantage is that all solutions have converged to the one

peak. As we have discussed earlier with the multimodal function that we should find out all

the peak using EC techniques.

Since we do not have any fitness sharing kind of criterion here that will help us to solve multi

model problem, so, this is the best example we can see that if we want to solve multimodal

problem then we have to include some features for example, fitness sharing so that we can

find the optimum solution at all four positions.
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Now, let us move to the Rastrigin problem as you know this problem is difficult to solve

because it has many local optimas and a one global optima.
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For n variable function we can have an objective function which is given on the top and the

variable the bounds on each variable is from minus 5.12 to plus 5.12.

Now, looking at the two variable function here, the surface you can make it out there are. So,

many local minimas and from the contour itself it is clear that this problem is a difficult



problem. So, the global optima for this problem is lying at the origin and the function value is

0.
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So, let us solve this Rastrigin function or a problem using RGA. Initially we have taken 2

variables, population sized 60, number of generation 200, probability of a crossover 1,

probability of mutation 0.5 because number of variable is 2 and the same set of binary

tournament selection, SBX crossover operator, polynomial mutation and mu plus lambda

selection strategy. Now, the figure on the right hand side you can see the solutions are

randomly generated and let us see how this RGA will work for this kind of a difficult

problem.
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Now, from the simulation you can see the solutions are quickly moving and in less than 30

generation we got the optimum solution using RGA. So, that is the advantage when we deal

with the real numbers and when we have efficient crossover mutation operators. So, again

you can see how quickly the solutions are converged to the optimum solution.
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Now, coming to the progress let us see how the progress is visible or if we can observe with

RGA. Now, initially it is started and within 10 or 15 generations, the solutions are already on

the optimum solution and with the generation the rest of the solutions are converged to the

optimum solution.



So, let us see one more time here how quickly the solutions are converged to the optimum

solution. So, within 15 generation the optimum solution was found by using RGA. So, we

can see that RGA is one of the efficient EC technique for solving real parameter optimization

problem.
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In another simulation, we have taken the number of variable as 4, population size is 60,

number of a generation 200, probability of crossover 1, probability of mutation 0.5 and the

same set of operators for selection and variation. Now, since it is a variable problem, we

cannot see the simulation; however, we can see the progress as it is it can be seen in the

figure.

So, it is started from say 25 close to the 25 value and almost close to 50 generation there is a

drastic improvement in the fitness and thereafter, we since we have reached to the optimum

solution, so, the progress can be seen as a straight line. Now, let us see this simulation the

progress simulation.

So, here you can see how quickly the solutions have converged and almost after just 50

iterations we have reached to the optimum solution. So, after close to the 90 generation we

have a little improvement that is just we are improving our optimum solution using RGA.



So, in this case we know that Rastrigin function itself is a difficult problem. Even we have

increased the number of variable from 2 to 4; RGA is efficient to solve such kind of difficult

problem where you have multiple local optimum solution and one global optimum solution.
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We also performed this RGA simulation for Rastrigin function having 10 number variables,

the population size is 60, a number of generation is 200, probability of crossover is 1. Now,

probability of mutation is 1 by n, so, 0.1 it is because the n is 10 basically the number of

variable is 10.

We use the same set of selection operators for running the RGA. Now, let us see the progress

as you can see the best fitness is started somewhere close to 130 it is keep on improving here

and just after 80 generation it is almost like a straight line and they are further improvement

close to 180 generation. So, let us see what is the progress here.

Now, you can see the progress is steady and the solutions are improving. So, best fitness is

keep on improving with the number of generation. And now, after 80 generation as we have

seen earlier there was no improvement and then there was a little improvement after 140 and

180. Important point here is that for 10 variable problem we can see in this figure that still we

are little far from the a best fitness which is 0 which is the optimum solution for the given

problem.



So, in this case, if we want to improve RGA we can work with the more number of

population. So, currently we have taken 60 so we can take it little larger why because the

number of variable is 10 which is a large number. Similarly, number of a generation can be

increased to see how this RGA will perform.
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Come to the Ackley’s function.
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Now, Ackley function is again a two-variable function, looking at the equation you can see or

observe that this function is going to have multiple local optimas along with a global

optimum. The variable bounds are given as between minus 5 to plus 5 or both the variables

now look at the surface of Ackley function.

Now, small ups and downs in the surface suggest that there are many local optimum solution.

Looking at the contour of x 1 and x 2 that says that yes there are many and we have a one



global optimum solution. So, the optimum solution is at the origin which is 0, 0 and the

function value is 0.

(Refer Slide Time: 65:39)

For running the Ackley problem we took the population size of 60, number of generation

200, probability of crossover is 1, probability of mutation is 0.5 and we have a SBX

crossover operator with eta c 15, polynomial mutation 20 and mu plus lambda strategy we

have use and we have taken.

Now, here since it is the repetition, we did not mention that we have also used the binary

tournament selection. So, binary tournament selection operator is also used here. Now, a in

the generation 1 this is how the population members are distributed in x 1 and x 2 which are

randomly generated. So, let us see how what is the simulation.
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Now, looking at this how quickly the solutions have moved to the optimum solution in less

than 30 or a 20 generation.
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So, once it is it is generated now you can see within 5 or 10 generations, the solutions are

actually converged near to the optimum solution. So, RGA is you we can say that RGA is

able to solve the problems such kind of a problems which has so many local optimas and one

global optima.
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Let us come to the progress. Now, in this progress we can see that how the fitness is

improved quickly and close to 15 number of 15 number of generations we have already

reached to the optima and therefore, afterwards there is a straight line in the in the

convergence plot or the progress plot. Let us see one more time how quickly it has

converged. So, it is already just after the 50; 50th generations we the RGA has converged to

the optimum solution.
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Now, with this let us come to the closure of this session, in this particular session we have

discussed various operators for RGA. We found that the selection operators which we have

discussed earlier that are also applicable with the RGA without any change. Thereafter, we

have discussed series of crossover operators starting with the linear crossover operator

followed by the blend crossover so, BLX alpha. We discussed SBX crossover and thereafter

fuzzy recombination operator.

The last three these three crossover operator says that the new solution that is created

proportional to the difference between the parent solution. So, that is why their search was

found to be adaptive. Thereafter we have gone through unimodal normally distributed

crossover operator which use the ellipsoidal probability distribution.

The important part which we discussed is the properties of the crossover operator. So, when

we want to generate or we want to develop a new crossover operator, two desired properties

were discussed such that the mean should remain the same and to keep the diversity variance

should not reduce.

Thereafter, we also discussed about a very good study on the similarity of the crossover

operator. That suggests that these three crossover operators they behave very similar only we

have to find that characteristic parameter value, so that these three operators can behave

similarly.

Thereafter we discussed mutation operator. In these in this particular list we have gone

through the random mutation operator followed by the non-uniform mutation operator; in this

particular mutation operator non-linear probability function was used. Then we have a normal

distributed mutation operator in which Gaussian distribution was used. It is considered as one

of the simplest mutation operator to implement for real numbers.

Finally, the polynomial mutation was discussed in the list of mutation operators. The working

of RGA or and the simulation of RGA was shown with the help of four examples. So, we

have seen that the Rosenbrock function, Himmelblau function, Rastrigin and Ackley’s

function RGA was found to be good in finding or searching the minimum solution.

With Rosenbrock function when we increase the number of variable the performance is we

have to check the performance and the parameter of RGA has to be changed. For

Hemmelblau function we found that since it is a multimodal problem, then RGA needs some



changes, so that we can locate all four minimum point. In the present case RGA converged to

the 1 minimum point out of 4.

For Rastrigin and Ackley function RGA was found to be good and when we take 10 number

of variable for Rastrigin function, the solution found by RGA was close to the optima, but not

reached the optimum point. So, in this case, the number of the number of the population size

or the number of generations can be changed, so that RGA can work for such kind of

problem. With these detail I conclude this session.

Thank you very much.


