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Operators and Simulations of Binary-Coded Genetic Algorithm

Welcome to the session 2 of module 2. In this particular session, we will discuss more

Operators that can be used with Binary Coded GA. Including that we will also discuss some

simulations on mathematical functions for which the optima is known to us.

(Refer Slide Time: 00:59)

So, therefore, the outline of this particular session is decided as we will be talking about the

selection operator, thereafter the crossover operators, and the mutation operators. So, various

types of operator we will discuss and then we will be showing some application using binary

coded GA.



(Refer Slide Time: 01:25)

And, at the end we will close this module 2 on binary coded GA. So, before we move to the

operators different types of operators, let us recap our previous session. In the previous

session, we started with binary coded GA. And, we implemented and discuss the binary

coded GA with the help of the generalised framework.

Using that generalised framework, we took a problem of Rosenbrock function and on this

function, we started with the working principle of binary coded GA.

Since, in binary coded GA we use binary string. So, first we saw the solutions representing

using binary string. When we have binary string? We can represent the decision like 0 or a 1,

yes and a no on and off similarly. We can also use binary string for the discrete variable and

the integer variable.

We took an example of real variable, where we took a binary string length of 5. And,

accordingly we showed how this five-bit binary string, we decoded it and used the scaling

formula, got the value of a real number.

We use the lower and upper limit for that real number and put in the scaling formula and we

get the value of the real number. There was a parameter called precision that also we

discussed and we found that, if suppose we want more precision in that case we have to

increase the length of binary string. After that, we took that Rosenbrock example in the

working principle and then started with the selection operator.



In this selection operator, we discussed binary tournament selection and selected those

solutions to making a mating pool. That mating pool then was used for the crossover and

mutation operator. We discussed single point crossover operator and bitwise mutation

operator. Afterwards, since the crossover and a mutation operator, they generated a

population, which we refer as offspring population and we also started with a parent

population.

So, since we have two population, that are parent and offspring population. So, we selected

the best solutions from them. So, we used mu plus lambda strategy to select the best solution

for the next iteration. In this particular process, we showed how the solutions were improved,

some solutions were improved, using crossover and mutation some solutions have generated

with the wrong value of the fitness.

The same example we took and we showed for the graphical example. So, just for one

generation, we understood how the initial population was generated and using the selection

followed by crossover and mutation operator, we get the solution. So, we found that the

solutions in one generation started moving towards the optimum solution.

(Refer Slide Time: 05:13)

Now, let us begin with the more operators for a binary coded GA. In the previous session we

discussed the selection operator. As a recap we know selection operator, the purpose of

selection operator is to identify good and above average solutions. And, when we are doing

this process, we eliminate bad solutions and make duplicate copies of the good solutions.



So, in this case we are emphasising the good solution and removing the bad solution. So,

overall we are making a pool, as you remember that selection can be done before the

variation operator and after the variation operator. When we perform before this before the

variation operator, this selection process is generally referred to as reproduction or selection.

Thereafter, if we perform selection after variation operator, so, the main purpose is to find out

best solutions that will be; that will be chosen for the next generation population.

This stage is referred as survival or the elimination. Sometimes it is also referred to as the

environmental selection. In order to perform various kinds of selection or using different kind

of selection operators, we have a list. For example, we can use fitness proportionate selection,

we can use tournament selection, ranking method, and a few more. So, we will be focusing

on few important selection operator in this session.

(Refer Slide Time: 07:05)

Let us begin with proportionate fitness selection. Now, here when we select a solution we

before that, we find the probability of solution. Now, the probability of a solution and

sometimes we also call it as a individual. So, the solution is the probability of a solution we

calculate with the help of the fitness value. So, f i here represents the fitness of the solution,

and this fitness is divided by the summation of fitness of all the solution in the population.
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So, in this particular formula, you can realise that the value of p i depends on the value of the

fitness of a solution. If, the fitness is large in that case the probability of selecting that

solution is large. So, from this explanation you can get to know, that I can use the fitness

proportionate selection operator for the maximization problem.

This operator is also known as the roulette wheel selection operator. So, there are different

names some people refer as a fitness proportionate selection method and some refer to it as a

roulette wheel selection method.

(Refer Slide Time: 08:37)

So, let us see how it works? Here we have taken the same population that we have used with

an example of binary coded GA. Now, the fitness of all these solutions have been taken. Now,

it is important to note that, when we have to perform any selection, we do not need any

binary string, or the decoded value of the binary string, or the value of x 1 and x 2. What we

need is only the fitness value here, which is mentioned in the column number 2.

Now, in column number 3 we have mentioned the probability of each solution. So, let us see

how we can calculate the probability of each solution? So, on the right hand side we will find

the probability for this solution. Before that, we have to take the sum of all the fitness. So, if

you look at this particular column number 2, if we take the summation of all these fitness

values you will get this sum. This sum is the summation of the fitness of all solution.
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  =  51242. 386
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 =  210.445

51242.386  =  0. 0041

𝑝
2

= 7536.407
51242.386  =  0. 1471

Now, the probability of solution 1 is the numerator we get the same fitness of solution 1 here

and the denominator is the summation. When you divide it you will get the probability as

0.0041, which is you can see in the 3rd column of the table. Similarly, suppose we follow the

same procedure. In that case, we can find the probability of selecting solution 2 as in the

numerator is the fitness of a solution 2, which you can see here. The denominator is the

summation of the fitness. When we find it the probability is 0.1471.

So, this process will be followed and we can find the probabilities of all the solution by

dividing the fitness with this summation of all the fitness. Now, it is here in the last column as

you can see we are finding this capital P i, which is the cumulative probability. This

cumulative probability we use to select solutions. So, let us see how we can implement

fitness proportionate selection operator?

(Refer Slide Time: 11:25)



Now, in the figure on the right hand side on the top, you can see this is solution 1, 2 and all

these solutions till 8 all of them are given. Now, the rectangular boxes are shown here,

representing the portion or the probability of the solution. So, corresponding to the

probability these rectangles are shown here. On the x axis, we have the cumulative

probability of capital P i. So, how will we select? We will generate a random number r i

between 0 to 1.

Once, we generate it we can find where the counter is? So, you can see this particular counter.

So, this counter will say, that we are going to select a solution. So, let us see how it works.

So, in this case first of all we are going to calculate the probability of each individual, then

we are going to find the cumulative probability, now we are generating random numbers. So,

assume that the first random number is this. So, if you say 0.07218 is your first random

number.

So, where you will be looking you will be looking at the cumulative probability. So, it will be

coming here since it is coming here. So, we are going to select solution number 2. Similarly,

if suppose you have the random number r 2 as given 0.68799 this says that, the counter will

be here. In this case we are going to select solution 8. Now, by using this we have already

selected solution number 1 and solution number 2. Now, we have to select few more

solutions.

(Refer Slide Time: 13:31)



Now, when we are going to follow the same procedure, let us assume that these are the

probably, these are the random numbers, which are generated sequentially. When we generate

it, the solution is 7, 3 and again 7, then one more time 7, 8 and finally, 8, all these solutions

will be selected. Now, remember we have to remember here that we will be performing the

selection operator such that we should select the solution equal to the number of N.

(Refer Slide Time: 14:13)

So, let us copy all these solutions now. So, you can see that when we select a solution,

solution 2 will get 1 copy, solution 3 will get 1 copy, solution 7 will get 3 copy, similarly

solution 8 will get 3 copy. What you can understand here is these two solution especially 7

and 8 are the super solution. So, we will discuss, what is a super solution in the following

slides.



(Refer Slide Time: 14:47)

Another kind of selection operator we have is the stochastic remainder roulette wheel

selection operator. In this selection operator we calculate probability of each solution using

the formula used with fitness proportionate selection operator. So, the formula is going to

remain the same.

However, what we will do is, we will multiply the size of the population which is N, with the

probability of each individual. So, here the same table we have drawn. So, we have index, we

have fitness values and these are the individual probabilities. So, we use the same formula

and we get the same probabilities.

In the last column you will see that, we have multiply the population size into the individual

probability. So, this is the number which we get it. This selection operator says that, we

assign several copies to the solution based on the integer value of the product of N p i. It

means that, if we take a solution number 1. So, the value of N p 1 is 0.0329. Since we since at

the integer value it is given 0, this means that we do not select this solution.

Now, let us look at solution number 2 here the value of N p 2 is 1.17. In this case we will

select only the 1 copy of this solution. Similarly, the solution 3, so if we are going to follow.

So, let us look into the table.

So, here the solution 2 we will get 1 copy, solution 3 we will get 2 copies, solution 7 we will

get 1 copy and solution 8 we will get 3 copies. So, similarly we are going to get that many



number of solution. If we count all the number of solutions, so, actually we selected 7

solution, and you remember that our population size is 8. So, we have to select one more

solution.

(Refer Slide Time: 17:17)

In this case we use the fitness proportionate selection operator using the decimal values. So,

here the same table we are drawing in which the N p we have written. Now, in this case you

remember that these are the solutions, the copies of the solutions; we have already selected.

So, we are going to remove them. So, we will be dealing only with the decimal places for all

the solutions.

So, you can see that all the decimal values are given in this table. Then afterwards we will

find the cumulative probability, as we have found it out you can see the summation is 1. Now,

similar to the fitness proportionate selection method, we will generate random number and

wherever it is lying the solution will be selected. So, let us assume that we have a random

number of 0.76335.

If you look at this particular value so, the counter will be coming here. So, in this case we

will be selecting solution number 6. So, we selected 7 solutions earlier, now by generating

one random number, we selected one more solution, now the overall solution is equal to the

size of the population.



Here, when we perform the stochastic remainder roulette wheel selection, you can realise that

the first part of this operator is deterministic. It is because the numbers which we selected is

based on the factor or the multiplication N p. So, since the probability was high, the solution

got 1 copy, 2 copy or 3 copies, making the first part of this operator deterministic.

In the second part which we have just now discussed with the help of this random number

and the decimal values, you can see that this is this stochastic. Since, it is since the first part

was deterministic this operator is considered less noisy, than the fitness proportionate

selection operator in the sense of introducing less variance in its realization.

(Refer Slide Time: 19:55)

We have another kind of selection operator, which is known as stochastic universal sampling.

In short we say, it is called SUS operator. Now, in this operator, we will find the probability

of each individual, the formula given in the fitness proportionate selection will be used, and

thereafter we calculate the cumulative probability for each solution.

Now, in this selection operator, we are going to create only one random number. So, let us see

how this random number is going to help us. So, since we will calculate just one, then we are

making the N equi-spaced number. So, let us see how. So, we generate a random number. The

second number will be r plus 1 by N. So, N is the population size.

𝑅 = 𝑟, 𝑟 + 1
𝑁 , 𝑟 + 2

𝑁 , …, 𝑟 + 𝑁−1
𝑁{ } 𝑚𝑜𝑑 1.



So, accordingly we have divided our range into equi-space and that is that depends on the

size of N. Let us see how it is working.

Suppose, we have the random number as 0.40416 and if we calculate 1 by N we get a value

0.125, it is because the size of the population is 8. Now, since the value of a random number

is 0.40, you can make it out that the counter will be here. So, in this case we will be selecting

solution number 3. In the next stage what we will do is, we will have a random number plus 1

by N. So, this summation is going to give a value 0.52916 now if you look if you find where

it is lying. So, this is the counter where we will get we can see the counter.

According to that the solution 7 is selected. So, this way we will be following and we can

select the solution, using SUS operator. Now, when we perform this series of a number, we

can get the numbers or get the number after 1 plus N. Now, once we have reached.

So, here you can note down that, once we are going we our number is going more than 1. So,

we subtract to 1 and the value which we get we will be considering. So, it's like a circle and

then we follow so, these numbers tells us that we are going to; we are going to select the 3

copies of solution 8, then solution 2 and then 2 copies of solution 3.

(Refer Slide Time: 23:05)

Now, there are certain limitations with the fitness proportionate selection operator, let us see,

what are those. So, domination of super solution, so, this particular term we have used earlier.



So, let us see, what it means. Suppose, we are maximising our fitness and we have 5 solutions

with us. Now, the fitness for each solution given as 10, 5, 70, 7 and 8.

Now, when we are comparing and finding the probability, you can make it out that the

solution number 3, which has the fitness 70, which is a very big value compared to the fitness

of other solution, will behave like this a super solution. Because this solution will get more

copies and become dominant over the other solution, you will realise that there will be only

one type of a solution in the population after a few generations.

Another limitation is the slower convergence in later generation. So, again we take the fitness

of 5 solutions and we are maximizing it. So, the f 1, f 2, f 3, f 4 and f 5 are given here, now

let us compare them. Here, when you are going to calculate the probability of each solution,

you can realise that these values like 19, 21, 22, 18 and 20 are very close to each other.

This means, that they are going to make an equal division on the cumulative probability

scale. So, when we are going to generate a random number and selecting the solution, you

will realise that everyone will get the copy. It means that, the selection operator is not

performing anything and we are selecting the same solutions as we have earlier. So, in this

case, you can realise that the selection operator will behave like a dummy because it selects

all the solution given in the population.

So, these are the two limitations, where in one case, we have super individual, in which one

individual has the largest fitness or very large value of fitness as compared to the other. In

another case all solutions have very similar kind of fitness values. So, what are the possible

remedies to the problem? We can use fitness scaling, but when we use fitness we have to

perform some kind of scaling to select a solution. In this case, we can use a ranking selection

and this ranking can avoid fitness scaling.

We also have a tournament selection. So, as we discussed in the previous session, we had a

binary tournament selection operator. So, these tournament selection operators we drawn do

not have any scaling problem.
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Let us move to another type of operator, which does not behave like a proportionate fitness

selection it is a tournament selection. Since, we have already gone through it, let us have a

generalised definition of the tournament selection. Now, you can see that we have a

tournament selection with the tournament size of ‘k’. So, we are going to sample the k

number of solutions randomly. So, we have a large population, we sample k solutions, and

then select a solution based on the best fitness.

So, let us take an example here. Suppose, in this problem we have 10 solutions with us, in

these 10 solutions let us choose we have a tournament size of a k. You may be wondering that

earlier we discussed the tournament selection as a match between or tournament between the

2 team.

Since, this concept has been used we can simulate this particular operator for any number of

tournament. So, we are taking in this example k as a 4. So, meaning that there are 4 solutions,

they will be competing with each other and the solution which has the best fitness will be

selected.

So, these four solutions suppose we have taken the four solutions: the randomly selected

solutions and the fitness are given. For a maximization problem, if we ask a question which

particular solution will win this tournament. Since, it is a maximization you can make it out

that this fitness is the maximum 1, so, solution 3 is the winner. Similarly, for a minimization



problem who will be the winner? Again we can see the fitness and we know that the solution

6 has the less fitness. So, we will select this solution.

What is interesting about this operator? That, whether it is a maximization problem or

minimization problem, this operator can be used. Only the relationship we have to change. In

maximization, we will be looking for the fitness for the more fitness, larger fitness; however,

for the minimization problem, we will be looking for the least fitness.

So, if we change the relationship, we can use the same operator for both objective functions.

However, you might have realised that the operator is designed for maximization problem

only with the fitness proportionate selection method. Suppose you want to use for

minimization problem. In that case, you have to use duality principle to convert minimization

problem into maximization and then use it with the fitness proportionate selection method.

Now, often the tournament size we keep is 2 and that is why we call this tournament a binary

tournament selection. So, we have discussed thoroughly in session 1, how this binary

tournament selection works? Only important point you have to remember that, the number of

tournament has to be done in such a way that the, we should select N number of solutions.

(Refer Slide Time: 30:13)

We have operators for survivor or elimination. We discussed this mu plus lambda selection

scheme, it was easy to implement. In this selection scheme we have mu number of parent

population and after performing say variation operator, we created lambda number of



offspring solutions. So, in this process what we do here is we combine both of them. So,

combined population of parent and offspring solutions we took, we sort and select the best

solution for the next generation population after sorting.

Second type of selection scheme which we can think of is the mu lamda selection scheme. In

this case, the lambda should be more than mu, meaning we generate more offspring solutions

than the parent solution. So, in this case we are going to select best mu solutions from the

offspring population only. So, here we are not going to involve any parent solution, both the

selection schemes support elitism.

Now, elitism is a word we use when we keep a good solution in our population. Now, in the

first scheme, you can realise that when we combine parent and offspring population, we are

not going to miss any of the good solutions. In the case of mu comma lambda is scheme, if

the offspring solutions are not as good as parent solution, we may lose the best solution in

this process.

(Refer Slide Time: 32:13)

Now, we have discussed various kind of selection operator and we are free to choose any one

of them, with the help of their limitations, we can make it out that which selection operator

will be useful for us. Now, we are moving to the variation operators. In this class we will start

with the crossover operator. Now, generally when we say crossover operator we use more

than one parent. So, what is the basic difference between a crossover and a mutation? In



crossover, we need more than one solution to create new solutions; however, in mutation we

in mutation we need only one solution to generate another new solution.

So, in crossover we have a probability pc, which we referred to as crossover probability.

Theoretically, if we are saying 100 times of pc that many strings will take part in the

crossover and the rest of the string will be copied as it is. If you remember the case we

discussed in the last session, there were a couple of strings that were just copied, because the

random number was more than the probability of a crossover.

So, those particular strings were copied directly and rest of the strings based on the crossover

and random number, we perform the crossover operator. In this category we have a different

kind of crossover operators. So, let us begin with a single point. This crossover operator we

already discussed. So, in this case what we do? We have for example, parent 1 and a parent 2,

we pick the random site here, I am using the different colour coding, so, that we can

understand.

And, we know that once we know the site we are going to swap the tail and with the help of

colour coding you can make it out, that since we have red and a blue combination we are

generating new solutions. So, those are referred to as offspring 1 and offspring 2.

(Refer Slide Time: 34:37)

Another kind of crossover operator we have is n-point crossover operator. We choose n

random sites we split the site and then we glue some part and we exchange some part. Let us



see how it works. So, here we will be discussing 2 point crossover operator. So, in this case

we will be selecting two random sites. So, the first random site is given here and another

random site is given here.

What we will do is we will glue the corners and the middle part will be swapped. You can see

in the offspring 1 and 2 only this middle part is swapped and the tails and the front will

remain the same. So, this crossover operator can generate the offspring in this way. Now, you

can see a little difference with respect to the 1 point crossover. Now, using 1 point crossover

operator, you may be changing 1 variable at a time, but using 2 point or 3 point crossover

operator you may be changing multiple variables at a time.

Now, remember that we used suppose we have x 1 and x 2 we use some set of binary string

says 0 1 1 0 1 and we have 1 1 1 0 0. So, both of these two strings when we combine them

that makes a chromosome. So, we have a chromosome string of length 10. So, when we

perform crossover using one. So, single point crossover maybe x 1 or x 2 will change, but

with 2 point crossover, both variables can change at a time.

(Refer Slide Time: 36:37)

There is another crossover operator, which is referred to as uniform crossover. In this

crossover operator, we select a string z, another binary string generated randomly. Let us see

how it works? Say, suppose you have parent 1 and parent 2 and we created this z string

randomly. Now, what it says that suppose we have 1 here, then we will be selecting the bit



from parent 1 for offspring 1. If it is 0 then we will be selecting a bit from parent 2 for

offspring 1. So, let us see how?

So, in this case you can see 1, if it is 1 then the offspring 1 is get the bit from the parent 1, if it

is 0, then it is getting from parent 2. Similarly, for offspring 2 it says that if you have 1 then

the bit will be taken from parent 2, if it is 0 then the bit will be taken from parent 1 for

offspring 2. So, in this way there is a total random swapping of the bits for 2 parents and that

is going to create 2 new offspring’s for us.

(Refer Slide Time: 38:07)

Once, we perform the crossover operators we have different types of mutation operators.

Now, mutation operator introduce small, random changes to a solution chromosome, it is

because we perform mutation with a lower probability. Now, let us take the first mutation

operator that is the local mutation operator.

This is what we studied or understood in the last session. So, here one random bit will be

flipped. Flip means that, if it is 0, it is converted to 1 and 1 is converted into 0. Suppose, we

have a binary string and randomly we pick the fourth position.

Now, in this case, we will convert this 0 to a 1, which is the local mutation. And, at a 1 time

we are changing just 1 bit throughout the string. Another kind of mutation operator is global

mutation operator. So, for each bit in this case we are going to take each bit in the binary



string. So, each bit will be flipped independently with a given probability p m. It is also called

as bit mutation rate and it is often take as a 1 by N.

Now, N is the length of the chromosome length. Suppose we have a binary string and for this

particular bit we generated, we generated a random number. If, this random number is smaller

than the probability of a mutation so, currently probability of mutation is 1 by N. If, this

probability is if the random number generated is less than the probability we will perform the

mutation.

So, in the first bit suppose the random number was more similarly for a second, but for the

third the random number was smaller than the probability of a mutation. So, this is going to

be so, this particular bit will be flipped. Similarly, we checked for all the bit 1 by 1

independently and suppose this is the bit, this is going to change and then the other one.

Now, you will realise that the flipped bits are changed. So, 1 has been changed to 0 and 0 is

changed to 1. So, that makes the random change in a binary string. So, in the case local, in the

case of local mutation, we are changing just 1 bit per string; however, in the case of global

mutation, we are changing the bit as per the random number is smaller than the probability of

mutation.

(Refer Slide Time: 41:13)



Now, let us start the simulation and application of binary coded GA. So, till now we have

understood how binary coded GA works. And, there are a different kind of operators, which

are available.

Now, the operators which we have discussed are limited in number, when you look into the

literature there could be more types of crossover operator, mutation operator, and sometimes

the selection operator. So, the researchers keep on changing the kind of operators that suits

their problem. Now, let us begin with the simulations and application.

(Refer Slide Time: 41:57)

So, the first function we have taken is a Rosenbrock function. You remember that, this is the

same function we have used to understand the working principle of binary coded GA. The

Rosenbrock function can be written in terms of N number of variables and the formula is

given here in the generalised way.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓 𝑥
1
, …, 𝑥

𝑛( ) =
𝑖=1

𝑛−1

∑ ( 100 𝑥
𝑖+1

 −  𝑥
𝑖
2( )2

 +  1 −  𝑥
𝑖( )2 ) 

𝑏𝑜𝑢𝑛𝑑𝑠  − 5≤ 𝑥
𝑖
≤ 5   𝑎𝑛𝑑  𝑖 =  1,  …,  𝑛.

All the variables will be lying between minus 5 to plus 5. In the figure which is shown on the

left hand side, it is shown only for the 2 variables x 1 and x 2. So, the optimum solution for

Rosenbrock function is that the solution will always have a value 1. So, all variables will get

a 1 and the function value at the optimum solution is 0.
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We have used binary coded GA. So, in the generalised formulation in this step 2 there are a

lot of input parameters that we have to set. So, this particular slide will tell how many

parameters we have to fix before we start the binary coded GA.

Let us take an example of 2 variable Rosenbrock function, the population size is set as 40,

and we allow a large number of a generation to see the progress. So, here we have set the

number of maximum the maximum number of generation 200. Currently we pick x 1 so,

binary string length for x 1 is 5, binary string length for x 2 is also 5 and the total length of

binary string is 10. So, 5 plus 5 will make 10.

Since, Rosenbrock function has many local optimum solution. So, we are keeping the

probability of crossover high which is 1. The probability of a mutation we have taken 1 by N

should be small n because the small n tells the number of variables. So, in this case since the

number of variables is 2.

So, this will become 0.5. Binary tournament selection operator is used for selection before

variation operator, thereafter we perform single point crossover operator, for a mutation we

perform bitwise mutation. And, finally, for selecting good solutions from parent and offspring

population, we are taking the strategy mu plus lambda strategy.

So, let us see how this binary coded GA work here. So, here in the picture you can see this is

generation 1. So, all the blue dots are the randomly generated solution in the plane of x 1 and



x 2. So, we make sure that, the solution should generate within the range of x 1 and x 2. Now,

let us see, how this simulation work.

(Refer Slide Time: 45:17)

Here, you can see that solutions were randomly distributed and with the number of

generations these solutions now moving towards the optima. So, the red dot here is the

optimum solution, and there are many local optimum solutions. Now, at this stage you can

see that the solutions are not improving much. It is because we have taken a small binary

string length for x 1 and x 2.

Now, since these solutions are here and there are small changes, you can observe no change.

It is because crossover is not generating any good or any new solution. It's only the mutation

operator that will help us to generate a solution close to the red dot.

So, let us wait for the generation number 200 and see how close we can reach. So, this is the

blue point that is closest and that remains the same. Now, let us look at the progress. So, the

progress means that the x axis will be the number of generation and y axis is the best fitness.



(Refer Slide Time: 46:37)

Now, in this case you can see the improvement in the solution, it is drastic, drastically it

reduces in the early generations and after that say after say 23 generation, the improvement

there is no improvement in the fitness, so, the best fitness. We have observed this and the

same situation when we shown the convergence plot for one dimensional landscape. The GA

will improve its fitness very quickly; however, it will take some time to converge to the

optimum solution.

(Refer Slide Time: 47:21)



Let us take another case now here the parent the number of variables remains 2, population

size remains 40, number of a generation 200, binary string has been changed now. Now, you

remember that if we are going to take a larger size of a binary string, then the precision of x 1

will be higher. So, for x 1 we are taking binary string length of 10, for x 2 the binary string of

length 10 is taken so, total is 20.

The crossover probability is kept the same: 1, mutation probability 0.5 and we use the same

set of operators, such as binary tournament selection operator, single point crossover, bitwise

mutation, and mu plus lambda strategy. For this case we generated a random population. This

population of these members are different from the previous case. So, these are generated in a

plane of x 1 and x 2, let us see whether changing the l 1 and l 2 the binary string will help us

to improve this solution or not.

(Refer Slide Time: 48:39)

Now, these are the simulations. So, the solutions were generated randomly throughout the

range of x 1 and x 2 in few iteration, that is less than 25 generations, the solutions are already

close to the optimum. Now, the distribution of the solutions you can see, because there are lot

of local minima’s, but there are certain solution as you can see that these solutions are quite

close to the red dot which is the optimum solution.

Now, one particular solution has already reached very close to the optimum solution

somewhere in the 90 generation. And, let us see that in 200 generation can we get the

optimum solution. Now, you can see another solution is generated close to the optimum and



rest of the solutions are also improving. And, slowly and slowly these solutions are moving,

it is because we have selection operators.

Now, the solution since these are moving, we expect that at the end 1 of the solution should

generate. So, now, you can see that we have increased the string length for x 1 and x 2 from 5

to 10, the solution has no solution that has converged to the optimum solution.

(Refer Slide Time: 50:05)

Let us see the progress, in this progress the number of generation versus best fitness. You can

see, how quickly GA binary coded GA has reached the value close to 0. And, then there is a

and then the best fitness remains the same, the other solutions are improving. Somewhere at

150 generation there was a improvement in the fitness. So, let us see one more time. So, as

close to 150, we will see little improvement yes. So, here somewhere close to 150, we have a

little improvement in the fitness.
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Since we did not get the optimum solution yet, we increase the length of the binary string for

x 1 and x 2. In this case the binary string length for x 1 is 20 and binary string length for x 2

is 20.

So, total chromosome string length is 40 now. We have taken the same 2 number of variables

population size number of generations are kept same, similarly the probabilities and the

operators were also kept the same as before. So, this is the random population generated, and

we will see the simulation for the larger binary string.

(Refer Slide Time: 51:27)



Now, the solutions are moving quickly close to the optimum solutions and then in 25

generations, we are already close to the optimum solution. Now, we have to see whether

binary coded j can generate a solution on the red dot meaning that, binary coded j can find an

optimum solution for this problem when length of the string is increased.

Now, this blue point as you can see which is quite close to the red dot which we have

identified or the binary GA has found in say 80th generation. Other solutions are also moving

now the there are two solutions, which are close to the red dot and we have to see whether B

GA can find a solution for us.

Now, slowly the other solutions are also moving from other directions, now you have more

solutions so, many solutions surround this red dot. So, from this simulation, we have

identified that since we are increasing the binary string length in the binary string, increasing

the binary string length means we are increasing the precision for x 1 and x 2. The solutions

are going closer to the red dot, but it has still not reached the optimum solution.

(Refer Slide Time: 52:59)

Let us see, the progress now. So, we have a drastic improvement here and with the number of

a regeneration the best fitness in the population is keep on improving. So, around just before

70 iterations, we have found that the best fitness remains the same and after few more

generations let see one more time here. So, somewhere close to 100 and 50, we generated.

So, B GA generated a solution quite close to the optimum solution.
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Till now, what we have solved for Rosenbrock function is 2 variable problem. If, we increase

the number of a variable, we will see how the performance of binary coded GA will change.

In this case the population size number of a generations are kept same. Since, we want a more

precise binary string length of 20 and 20 is used. So, please note that here, we have shown for

x 1 and x 2. Similarly, for x 3 and x 4 we have used 20 and 20.

So, overall binary string length or the chromosome string length is 80 not 40. So, this is it is

80 for this particular problem. So, probability is kept 1, probability of a mutation is again we

kept it 0.5. The operators are binary tournament selection operator, single point crossover,

bitwise mutation and mu plus lambda strategy. So, since it is a 4 variable problem, so, we

cannot show the simulation how the solutions are moving towards the optimum, but we can

see the progress.

So, this particular plot shows that, there is a drastic change in the fitness value and then of

close to say 45 generation, the improvement is very less. So, we will see this particular

progress now.



(Refer Slide Time: 55:15)

So, here the improvement can be seen in the early generation of binary coded GA. And, once

it is reaches 45 the improvement is there is no improvement. Then, somewhere close to 140

there is a little improvement close to 170 also we have a little improvement. Important point

to note that, that is still we have run this binary coded GA for 200 generation, this algorithm

does not find the optimum solution.

(Refer Slide Time: 55:53)

Let us move to the second problem which is Himmelblau function, this Himmelblau function

is made of 2 variables.
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Now, from the equations you can find that this is a; that this is a non-linear function. The

value of x 1 and x 2 are lying between minus 5 to plus 5. So, let us look at the Himmelblau

function. So, the surface you can see and when we draw the contour of this Himmelblau

function, you can see there are 4 areas where the minimise line. So, the Himmelblau function

is a multi modal function as I have mentioned on the right hand side, it has 4 optimum

solutions.

So, all the 4 optimum solutions are also mentioned. So, if one is at 3, 2, another is at minus

2.8, 3.1, then another solution is at minus 3.78, and minus 3.28, and the last solution is at

3.58, and minus 1.848. And, for all these 4 solution the function value is 0.
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Now, we are using the binary coded GA, since it is a multi modal problem, we are keeping

the population size 60. The number of generation is kept little high which is 200, to have

more precision we are taking x 1 binary string length for x 1, 20 and binary string length for x

2 is also 20. So, overall chromosome length is 40, probability of a crossover is 1 and

probability of a mutation is 0.5.



We perform the same set of operators such as binary tournament selection operator, single

point crossover operator, bitwise mutation and mu plus lambda strategy. Now, this is the first

generation in which the solutions are generated randomly throughout the range of x 1 and x 2.

So, let us look at the simulation now.

(Refer Slide Time: 58:07)

So, the simulation shows the solutions are divided into all the 4 optimum solutions, around

the all 4 optimum solution and slowly and slowly they are converging to the optimum

solution. So, in the in during the iterations, the solutions are distributed so that they got all 4

optimum solutions in case of binary coded GA.

Please note that we got the 4 optimum solution with this simulation, but it is not necessary,

because to have the solutions distributed among the peaks, we should use some methods

called fitness sharing.
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Let us see, the progress of the simulation on Himmelblau function. There is a drastic

improvement and close to 25 generations, we have reached the optimum solution. And, then

since we have reached it so, there is no improvement. So, it can be seen that, even though it

was a multimodal problem, the binary coded GA was able to solve this problem quickly and

generated the optimum solution in very few generations.

(Refer Slide Time: 59:31)

The third example which we have taken is the Rastrigin function. This function can be

represented in N number of variables.
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Now, since these terms are added into the objective function, this will create many local

minima’s. All the variables are lying between minus 1 point minus 5.12 to plus 5.12. Now,

for 2 variable Rastrigin problem, you can see the surface with many ups and downs or peaks

or valleys. And, if you see the contours at the bottom, you can see many local optimum

solutions.

Now, the optimum solution for this problem is lying at the origin and the function value is 0.
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Now, the Rastrigin function here, since we have a 2 variable, we are taking the 2 variable

problem, we keep the population size 60, number of generation 200, the length for x 1 and x

2 20 and a 20. So, the chromosome string is 40, probability of crossover is 1, probability of

mutation is 0.5 and the same set of operators we have used it. This figure shows that the

solutions are randomly distributed in x 1 and x 2 plane. So, let us see the simulation for this

problem.
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Now, you can see the solutions that are distributed now moving towards the optimum, not

only optimum to the local optimum solutions. Now, in the focused view you see that the

solution, one solution was created close to the optimum and eventually, the other solutions

are also moving to the optimum. Now, we cannot see the red dot, it means that, the optimum

solution for the Rastrigin function is found by the binary coded GA.

(Refer Slide Time: 61:35)

Let us see the progress. Now in this case again there is a improvement in the fitness value

with the number of a generations and in 60, less than 60 generation we are quite close to the



optimum and then we are searching. And, finally, at just before 100 and 80 generation, we got

the solution, which converge to the optimum solution for the Rastrigin function.

(Refer Slide Time: 62:03)

We will take another case of Rastrigin function, where the number of variable is 4 we take all

the parameters here please note that, we have written the binary string length of x 1 and x 2,

since there are 4 variable. So, we are taking 20 binary string length for all. So, the

chromosome string, it is not 40. So, the chromosome string will become 80 here. Probability

of crossover and mutation are given and other operators are the same as before.

Since, it's a 4 variable problem we will be showing the progress. Now, from this particular

figure you can see, there is a drastic improvement less than 30 generations and then the

fitness remains the same and then there is a last improvement somewhere close to 160

generation.
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So, let us see the progress, while solving this problem, Rastrigin problem with 4 variables.

So, the improvement can be seen once it is reaches 30, there is no improvement and at around

close to 160 we get another improvement.

Note that, the optimum solution for this problem is 0 0 and the function value should be 0 and

after 200 generation is still binary coded GA is unable to find the optimum solution in 200

generation. So, we can try, if suppose we increase the number of generation and population

size we may solve this problem using binary coded GA.

(Refer Slide Time: 63:47)



Come to the last problem which is Ackley function, it is written in the 2 variables as x 1 and

x 2.
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And, its a little complex function and the value the upper and lower limit of x 1 and x 2 is

lying from minus 5 to plus 5. Looking at the surface you can make it out, that this wavy kind

of a surface will create a lot of local optimum solutions.

Now, in this contours we on the x in the contour of x 1 and x 2, you can make various local

optimum solutions. For the Ackley’s problem the optimum solution lies at the origin and the

function value is 0.
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Solving this problem the parameters of BGA is parameters remain the same. So, we kept

population size 60, number of generation 200, binary string length for both the variables 20.

So, the chromosome string will become 40, probability of crossover and mutation are

mentioned and the same set of operators are used. So, in generation 1 the solutions are

distributed as you can see in the x 1 and x 2 plane.
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So, let us look at the simulation now. Now, the solutions are moving towards the optima they

are also stuck at the local minima. Now, in 20 generation itself the solution have reached to

the reach to the reach closer to the optimum solution. And, we have to see whether binary

coded GA can solve Ackley’s problem or not. Now, see that the blue point is already on the

red dot.
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Let us see the progress in this case. So, there is continuous improvement in the best fitness in

the population and that is improving and after 40 generation, there is no improvement in the



fitness. Because, the solutions are generating the selection is performing crossover and the

mutation.

And, somewhere close to 130, there was improvement in the population, which is why the

best fitness was improved. So, let us see one more time. So, closed at 100 and yes 130, the

solution has improved and there is a little improvement after 170 generation.
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So, we have come to the closure of module 2, which is based on the binary coded GA. So, in

this module we have understood the algorithm and we have gone through the example by

following the generalised framework. So, we started this binary coded GA, while showing the

solution representation in that one the binary string was used to represent the real variable.

The working principle of binary coded GA was shown with an example of Rosenbrock

function and in that example we have evaluated the function. So, first the binary string is

decoded and x 1 and x 2 values were calculated, then fit after calculating the fitness selection

was made crossover and mutation were performed. And, finally, the survival stage was used

to select the best solution.

So, the same hand calculations were shown in the graphical example. We discussed more

operators in this session, especially we target selection operator, crossover operator, and

mutation operator. Since, they are they work differently, their performance also will be

different when we solve a problem.



Finally, the application of binary GA on mathematical problems, we have taken four

mathematical problems. We have shown that performance and found that as we increase the

binary string length, the optimum solution which we which is generated by BGA, it is closer

to the optimum solution.

However, when we increase the number of variable for say Rastrigin function and

Rosenbrock function, binary coded GA is still little far from the optimum solution we may

require a larger population size, as well as more number of a generation to get an optimum

solution. So, with these remarks I conclude module 2 on binary coded genetic algorithm.

Thank you.


