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Performance Assessment of Multi-Objective EC Techniques 

 

Welcome to the session on Performance Assessment of EC techniques. 

(Refer Slide Time: 00:43) 

 

In this particular session, we will be looking for the need that why we need the performance 

assessment. Once we complete it, then we will be going through one of the indicators 

called hypervolume indicator. After performing some hand calculations, we will see the 

performance of NSGA-II and SPEA2 using this indicator. Thereafter, we will close this 

session. 
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So, let us understand what is the need for the performance assessment.  
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So, as we can see here that we have to understand the need of the performance assessment. 

So, we know that EC techniques, these are stochastic in nature. So, when we say these 

techniques are stochastic. So, we understand that we generate population randomly. The 

operators which we need for EC techniques, all of them are stochastic in nature.  

So, when we are running EC techniques with the different random numbers, so these EC 

techniques are going to make or these EC techniques are going to generate different sets 



of solutions. In multi objective optimization, these EC techniques are going to generate 

different sets of non-dominated solutions. So, as we can understand the obtained non-

dominated solutions, they can be different in each run. So, our objective is we want to see 

the consistency of the outcome of the EC techniques. 

Why we are looking for the consistency? It is because that when we are running EC 

techniques for multiple times, sometimes it will give us a good set of non-dominated 

solutions and sometimes this EC technique can be prematurely converge to the local Pareto 

optimal front. So, in order to check their consistency that every time or most of the time, 

multi objective EC techniques are converging on the Pareto front or close to the Pareto 

front, we need performance assessment. 

There are different EC techniques that are available in the literature. So, when these EC 

techniques are available and we and when we make a new technique, so that technique can 

be compared with the existing one. So, in order to make a comparison, so this kind of 

performance assessment is needed.  

There are certain problems, where we know the Pareto optimal front. So, these problems 

are generally the mathematical multi objective optimization problems. So, in the previous 

sessions, we have gone through such problems such as ZDT problems, DTLZ problems 

and there are other problems as well. 

Now, for such kind of a problems, when the Pareto front is known, so in that case, we can 

run our EC techniques and can look for various properties such as we can see the proximity 

of the obtained non-dominated solutions to the Pareto -optimal front, we can also see the 

diversity among the obtained non dominated solutions and we can also check the evenness. 

As per our earlier discussion, we know that there are two goals in multi objective 

optimization; first is the convergence, another is called diversity. 

So, the proximity to the non-dominated or the known Pareto front means that how this 

non-dominated solution, how much they are closer to the known Pareto front. Second is 

what is the diversity among the solutions which are conversed to the Pareto front? Even 

though, there could be a good diversity, but if evenness is not there, then we may not get 

the actual picture of the Pareto optimal front.  



So, in this case, when the Pareto optimal front is known for certain problems, we can use 

EC techniques for generating the solutions and using performance assessment with the 

help of indicators. We can look whether these solutions are close to the Pareto front; how 

diverse they are and what is the evenness among the solutions obtained by the EC 

techniques. So, now, we will be discussing the indicator which is called hypervolume 

indicator. 
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In the literature, there are various kinds of indicators available. Hypervolume is one of the 

indicators that has been used in various literature, while comparing the new algorithm with 

the existing algorithm. So, let us understand what is hypervolume indicator. 
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Now, this indicator measures volume of that portion of objective space that is weakly 

dominated by an approximate set A and is to be maximized. So, let us look at the figure 

on the right hand side. So, here these green dots, these are the set of non dominated solution 

say obtained by the EC technique.  

So, in this case, what we are doing is we are considering one point called the bounding 

point and in this bounding point, we have chosen this bounding point, it is only because 

this point is dominated by all the points available in this set A. So, as the definition says 

that we will be finding that portion of the objective space that is weakly dominated by an 

approximate set.  

o, this green space what you can see here, this is the space we are talking about and we 

want to maximize. So, as we know that this particular problem is the minimization for both 

the objective. When we are going to maximize this green region, this means that the 

solutions will be closer to the known Pareto -optimal front. 
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Let us compare the different sets of non dominated solution now. As we can see in the 

figure, we can see we have two different sets; set A and set B. Now, looking into the figure, 

we have the green dots that will be making the area green, what we have seen in the 

previous slide and the set B is shown by this gray area.  

Now, if we want to compare the outcome in terms of set A and set B, what this 

hypervolume indicator suggest that set A is different to set B in extent. What we mean by 

extent? Now, you can see that certain portion of the green region is seen and because of 

this last solution, we can see that for the same bounding point, the green has or the set A 

has more better extent than set B.  

Let us consider the another case. Now, in this case the set A and set B remains the remain 

the same and set C we have taken. Now, in this case, what we can see that the grey region 

is again by set B and this another region which is by the set C.  

If we are going to compare set B and set C, we can see there is a gap and because of this 

gap, we can say that the set B is better than set C in the proximity to the Pareto front. It is 

only because the problem which we are solving is minimizing f1 and f2. 
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If we consider the another set called D and when we compare D with set C. So, here with 

the color coding, we can see that set C is represented by the color and the set D is 

represented by the black color. Now, if we look at the extremes of these two solutions that 

are same.  

However, because of the two solutions of the set C, we can say the set C is better than set 

D mainly in the evenness. From this figure, what we can understand that when we are 

running multi objective EC techniques different times, so we may get different sets of non 

dominated solution. 

So, set A, B, C and D all of them are different sets that we have obtained. Now, when we 

are going to compare them, some set is better than other set in some contest. It can be 

extent; it can be the closeness or we can say the proximity and someone something can be 

based on the evenness. Now, since these EC techniques can generate different sets, so we 

need to quantify it.  

So, graphically, we can see that because of the different sets of non dominated solutions, 

we have to quantify the performance of the EC technique. Let us understand the 

hypervolume with the help of some hand calculation. 
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 𝑓1
(𝑚𝑖𝑛)

 =  1.0, 𝑓1
(𝑚𝑎𝑥)

 =  8.4, 𝑓2
(𝑚𝑖𝑛)

 =  1.2 and 𝑓2
(𝑚𝑎𝑥)

 =  7.5 

Now, in this case, we have taken a two objective case and both the objectives are of 

minimization type and we have taken 4 plus 4, 8 solutions. In order to calculate the 

hypervolume, we will first normalize the objective space and then, find the hypervolume. 

So, looking at these 8 solutions, we can find what is the minimum f 1, maximum f 1, 

minimum f 2 and maximum f 2.  

So, on the right hand side, the figure shows the solutions or we can say the non dominated 

solutions for the given problem. Once we have identified this f minimum and f maximum 

in both the objectives, we can normalize these values. 
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So, these solutions are the same; only after normalization, we are getting these values. 

Thereafter, we calculate the hypervolume. So, as per our discussion, we are looking for a 

bounding point say W that should be dominated by the given set. Since all the members 

are normalized between 0 to 1. So, what we can understand from the figure on the right 

hand side that we have chosen this W as 1.1 and 1.1.  

It is only because all the solutions are lying between 0 to 1 in f 1 as well as in f 2. So, all 

the solution as shown in the green color. So, these solutions are dominating the point W. 

So, with respect to W, we will be calculating the objective space that is dominated by the 

given set of solutions. 
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 𝐼𝐻  = ( 
(1.1 − 1.000)

(1.1)
× 

(1.1 − 0)

(1.1)
 )  =  0.091 

In order to calculate the hypervolume, the same figure we are drawing in term in terms of 

these rectangles. Now, we have to understand that since we are solving two objective 

problem, so it is easy to make the hyperspace in terms of the rectangle for a given problem. 

So, let us identify what is the area of this rectangle.  

So, we know that this particular member, this has a this has a coordinate 1 and a 0 and the 

W coordinates are given here. In order to calculate the hypervolume, which we can see at 

the bottom. 

So, this is the length of the rectangle and this is the width of the rectangle. So, 1.1 minus 

1 is going to give me the length and 1.1 minus 0, it is going to give us the width of this 

rectangle. Now, we are dividing with 1.1 and 1.1 because we are just normalizing these 

values. The outcome will become 0.091. 
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𝐼𝐻  =  𝐼𝐻  +  ( 
(1.000 −  0.797)

1.1
×

(1.1 −  0.127)

(1.1)
)  =  0.298 

Similarly, we can have another rectangle which I have shown in the different color coding. 

In this case, we can see the length will become the difference between the f 1 value and 

the length of the rectangle will become difference in the f 2 value and 1.1.  

So, here the hypervolume indicator is equals to the previous value which we have 

calculated earlier and this is the difference in the f 1 value and multiplied by 1.1 minus f 2 

value of the given point. So, this will give me 0.298. So, this is the summation of those 

two rectangular areas. 
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𝐼𝐻  =  ( 
1.1 − 1.000

1.1
× 

1.1 − 0

1.1
)  +  (

1.000 − 0.797

1.1
×

1.1 − 0.127

1.1
)  

+ (
0.797 − 0.608

1.1
× 

1.1 − 0.206

1.1
) 

+  ( 
0.608 − 0.405

1.1
× 

1.1 − 0.254

1.1
)  

+  ( 
0.405 − 0.270

1.1
× 

1.1 − 0.444

1.1
) 

+ ( 
0.270 − 0.135

1.1
 × 

1.1 − 0.603

1.1
) 

+  ( 
0.135 − 0.014

1.1
× 

1.1 − 0.683

1.1
) 

+  ( 
0.014 − 0.000

1.1
× 

1.1 − 1.000

1.1
)  =  0.634 

 

Similarly, if we are going to make multiple rectangles based on the points which we get it 

after running the EC techniques. So, what we can do is we can sum them one by one and 

then finally, the total sum will become 0.634. So, we can say that for a given set of non-

dominated solution, the hypervolume is 0.634. 



(Refer Slide Time: 16:41) 

 

With this, basic understanding of hypervolume indicator, let us compare the two EC 

techniques which we have gone through in the previous sessions. Those techniques were 

NSGA-II and SPEA2. DTLZ problems are the mathematical multi objective optimization 

problem. These problems, for these problems we know where is the Pareto-front. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1(𝑥) =  
1

2
𝑥1𝑥2 … 𝑥𝑀−1(1 + 𝑔(𝑥𝑀)), 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2(𝑥) =  
1

2
𝑥1𝑥2 … (1 − 𝑥𝑀−1)(1 + 𝑔(𝑥𝑀)), 

⋮ ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑀−1(𝑥) =  
1

2
𝑥1(1 − 𝑥2)(1 + 𝑔(𝑥𝑀)), 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑀(𝑥) =  
1

2
(1 − 𝑥1)(1 + 𝑔(𝑥𝑀)), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟  𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥𝑀)  =  100  (|𝑥𝑀|  + ∑ (𝑥𝑖 − 0.5)2  −   𝑐𝑜𝑠(20𝜋 (𝑥𝑖  −  0.5))

𝑥𝑖∈𝑥𝑀

 ) , 

𝑤ℎ𝑒𝑟𝑒 𝑘 = |𝑥𝑀| = 5,   

𝑛  = 𝑀 + 𝑘 − 1.  Here, 𝑀 is the number of objectives. The Pareto

− optimal front is ∑ (𝑓𝑚
∗ )

𝑀

𝑚=1

 = 0.5 

These DTLZ problem, we remember that the DTLZ problems are scalable problems and 

their format are given here. The variable bound for DTLZ 1; the function g is given; value 

of a k is 5; number of variable is M plus k minus 1 and for this given problem, we know 

that the Pareto surface will be the plane intersecting the axis at 0.5. This particular problem 

has 11 to the power k minus 1 local Pareto-optimal front.  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1(𝑥) =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠 (𝑥1

𝜋

2
) …   𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
) , 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓2(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1

𝜋

2
) …   𝑠𝑖𝑛 (𝑥𝑀−1

𝜋

2
) , 

⋮ ⋮    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑀(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1

𝜋

2
) , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   0 ≤  𝑥𝑖 ≤  1,   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒   𝑔(𝑥𝑀)  = ∑ (𝑥𝑖 − 0.5)2

𝑥𝑖∈𝑥𝑀

 , 

𝑘 = |𝑥𝑀| = 10, 𝑛 = 𝑀 + 𝑘 − 1.  𝐻𝑒𝑟𝑒, 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠. 

     𝑇ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑟𝑜𝑛𝑡 𝑖𝑠  ∑ (𝑓𝑚
∗ )2

𝑀

𝑚=1

 = 1 , 𝑥𝑖
∗  =  0.5 ∈ 𝑥𝑀  

The another problem which we have considered for comparison is the DTLZ2 problem. 

Again, we can see these scalable objectives with the bound on x i, the function g, the value 

of a k is now 10, number of variable remains the same. In this case the Pareto front is the 

quarter of the sphere. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1

𝜋

2
) …   𝑐𝑜𝑠 (𝑥𝑀−1

𝜋

2
) , 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓2(𝑥)  =  (1 + 𝑔(𝑥)𝑀))  𝑐𝑜𝑠(𝑥1

𝜋

2
)   …   𝑠𝑖𝑛(𝑥𝑀−1

𝜋

2
) , 

⋮ ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑀(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1

𝜋

2
) , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒  𝑔(𝑥𝑀)  =  100  (|𝑥𝑀|  + ∑ (𝑥𝑖 − 0.5)2  −   𝑐𝑜𝑠(20𝜋 (𝑥𝑖 −  0.5))

𝑥𝑖∈ 𝑥𝑀

 ) , 

𝑘 = |𝑥𝑀| = 10, 𝑛 = 𝑀 + 𝑘 − 1.  𝐻𝑒𝑟𝑒, 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠. 

    𝑇ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑟𝑜𝑛𝑡 𝑖𝑠 ∑ (𝑓𝑚
∗ )2 = 1  

𝑀

𝑚=1

 𝑎𝑛𝑑 𝑥𝑖
∗  =  0.5 ∈ 𝑥𝑀 . 

The third problem which we have considered is the DTLZ 3 problem. The formulation is 

given in equation number 3. The function g is given to us. This particular problem has the 



same Pareto front as DTLZ 2 which is quarter of the sphere that is in the first quadrant and 

this particular problem has many local Pareto fronts. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠 (𝑥1
𝛼

𝜋

2
 ) …   𝑐𝑜𝑠 (𝑥𝑀−1

𝛼
𝜋

2
) , 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (
𝑥1

𝛼𝜋

2
) …   𝑠𝑖𝑛 (𝑥𝑀−1

𝛼
𝜋

2
) , 

⋮ ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑀(𝑥) =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛 (𝑥1
𝛼

𝜋

2
) , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒    𝑔(𝑥𝑀)  = ∑ (𝑥𝑖
𝛼 − 0.5)2

𝑥𝑖∈𝑥𝑀

  

𝑘 = |𝑥𝑀| = 10,

𝑛 = 𝑀 + 𝑘 − 1, 𝑎𝑛𝑑 𝛼 = 100.  𝐻𝑒𝑟𝑒, 𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠. 

 𝑇ℎ𝑒 𝑃𝑎𝑟𝑒𝑡𝑜 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑟𝑜𝑛𝑡 𝑖𝑠 ∑ (𝑓𝑚
∗ )2 = 1

𝑀

𝑚=1

 , 𝑎𝑛𝑑 𝑥𝑖
∗  =  0.5 ∈  𝑥𝑀 . 



The last problem on which we will be comparing our techniques is the DTLZ 4 problem. 

We can see the mathematical equations in equation number 4. The function g is given to 

us; k is 10; n is the number of variable. Here alpha is taken which is a big value 100. The 

Pareto front for the given DTLZ 4 problem is again the quarter of the sphere in the first 

quadrant.  
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In order to compare NSGA-II and SPEA2, we have set the common parameters. So, this 

population size is 92 for 3 objective problem and population size is 210 for 5 objective 

problem. Similarly, the number of generation is decided that T is equal to 400, when the 

objective is number of objectives is 3; T equals to 600, when the number of objective is 5. 

So, this is 5. 

Now, probability of crossover is 1. Probability of mutation depends on the number of 

variables; eta c is 30 and eta m is 20. So, these are the SBX is the crossover operator and 

polynomial mutation is used. Since we use archive in SPEA2, the size of archive is the 

same as the population size N. 
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Both the EC techniques are run 20 times with different initial population and the 

comparison as we have mentioned is performed for 3 and 5 objective DTLZ problems. 

Here, it is important to note that we are running our EC techniques multiple times that is 

20. It is only because since these are stochastic in nature.  

When we are starting with different initial population, 20 times when we are running, we 

should get different set of non dominated solution obtained by these EC techniques. Let 

us see the performance of these techniques on DTLZ problem one by one. We will take 

DTLZ 1 first. 
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Here in this particular table, we can see the best median and worst HV; HV stands for 

Hyper-Volume obtained by NSGA-II SPEA2 and best performance are highlighted in a 

grey background. So, when we are saying the first value. So, this is the best value; this is 

the median and this is the worst value. So, what we mean by that? When we are running 

any of the EC techniques, then we get a one non dominated set.  

For the given non dominated set, we can calculate what is the hypervolume. Similarly, we 

will be running another time. So, since we are running 20 times, so we can get 20 

hypervolume values. So, among these 20 values of hypervolume, we find which one is the 

best, which one is the worst or which one is the median. These statistical values, we are 

showing in this particular table.  

So, let us look into the table now. In this table, we can see that the performance of SPEA2 

is better than the performance of NSGA-II for 3 objective as well as for the 5 objectives. 

However, if we are going to compare them, there is not much difference; but since this 

value is more, so SPEA2 is showing better value. Now, what we can understand that since 

as per the definition of the hypervolume indicator, we want to maximize that particular 

area or the hyper volume.  

So, the value which is going to be close to the one is the better value. So, that we can 

understand from this particular table. So, here these hypervolume values, we have 

calculated by following the paper that is a fast way of calculating the exact hyper volume. 
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The second problem which we have considered is the DTLZ 2 problem. Again, the best 

value, the median value and the worst value are given. Now, looking at the performance 

of NSGA-II and SPEA2, the shaded region suggest that in both the objectives, again 

SPEA2 is generating better set of non dominated solution as compared to the NSGA-II. 

However, if we look at what is the difference. So, the difference you can find only after 

the third decimal places. 

(Refer Slide Time: 24:20) 

 



The next problem which we have considered is DTLZ 3. In this case the best mediam 

median and worst values are given. So, here we can see that again SPEA 2 is showing 

better hypervolume indicator value for t3hree as well as 5 number of objectives. 
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The last table on DTLZ 4, we can see that SPEA2 is showing better results over NSGA-

II, except just one worst value. So, we remember that this is best mediam median and 

worst. So, just the worst value of SPEA2 is poor as compared to NSGA-II; otherwise SPEA 

2 generated the better set of non dominated solution for the given problem.  

(Refer Slide Time: 25:22) 

 



So, with this understanding on performance indicator, we have come to the closer of this 

particular session. 
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In this session, we understood that since EC techniques are stochastic in nature, we have 

to assess the performance be using some indicator. For the same, what we are looking is 

the quantitative comparison or the performance assessment that we can achieve using 

various indicators.  

In this session, we focus on hypervolume indicator that can give some value and based on 

that, we can compare or assess the performance of EC techniques. On this hypervolume 

indicator, we see the comparison on NSGA-II and SPEA2 on the DTLZ problem set.  

What we found that SPEA2 is better than NSGA-II on the chosen set of problem and the 

input parameters. However, the difference between the hypervolume values obtained from 

these EC techniques is very small and that we have understood that the difference can be 

seen at the third decimal place. So, with this understanding on hypervolume indicator, I 

conclude this session. 

Thank you.  


