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Welcome to the part 2 of SPEA2 session. Till now we have discussed the fine grained 

fitness of SPEA2. As well as we have done the diversity operator that was kth nearest 

neighbor method. 
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So, if we look into the framework the generalized framework which we are following. So, 

for SPEA2 we have finished step from 1 to 6. In this one we started with the initial 

population and we kept our archive empty. Thereafter we assign the fitness to all the 

solution in the population and we copy all of them into the archive. Inside the while loop 

we perform binary tournament selection operator with replacement that created a mating 

pool. 

In this mating pool we perform crossover and mutation using sb x crossover operator and 

polynomial mutation to create a another new population. So, this part we have finished in 

the last session now we will see how the environmental selection or the survivor stage that 

has been developed with SPEA2. 



If we look into the algorithm, step 7 suggest that we have to first combine the new 

population and the current archive and then we will be assigning the fitness to the combine 

population. Thereafter we will see the number of non dominated solution which is 

currently represented as capital N and in the subscript you can say NDS. NDS stands for 

non-dominated solution. 

When we are finding the number there are 3 cases. As we can see in step number 8 the 

number of non dominated solution can be equals to the size of archive. In this particular 

case, we copy all the non-dominated solution into the archive. If we have number of non 

dominated solution less than the size of an archive. 

In this particular case, we first copy the non-dominated solutions to the archive and 

thereafter we are going to copy some dominated solution based on the fitness till our 

archive is full. In case the non-dominated solutions is more than the size of archive that is 

we can see in step number 13, then we have to eliminate. 

Some non-dominated solutions. This we are going to eliminate one by one by using the 

truncation operator till the archive sizes full. In the step 15 we take an increment of 1 and 

we will be moving in the loop this is the while loop till our termination condition gets 

satisfied. 
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So, let us now understand how the survivor stage is developed with the SPEA2. We are 

going to discuss the 3 cases first and then we will take our example which we were solving 

in the previous session. Here first of all as we have to combine the offspring population 

and the current archive. So, that will be become the combine population for now. 

Now, since we have to make the archive for the next generation. So, we have to fill or we 

have to choose the best solutions N bar solution into the archive. So, graphically if we see 

that we have the population, we have the archive, we are combining it and we are looking 

for the solution which have fitness smaller than 1. As per our earlier discussion, we know 

that this condition satisfies when the solution is non-dominated. 

Once we have identified the non-dominated solution in the combined population so, there 

will be 3 cases as we discussed. First case is the number of non-dominated solution is 

equals to the size of archive, second case is the number of non-dominated solution is 

smaller than the size of archive and the third case is number of non-dominated solution is 

greater than the size of archive. 
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So, let us see how we can do it. So, in case I when the number is when the number of non-

dominated solution is the same as the archive size. Then we copy all these non-dominated 

solution to the archive and at this stage the survivor stage of SPEA2 is over. The 2nd case 

is when the non-dominated solution is less than the size of archive. 



So, in this case first of all let us copy all these non-dominated solutions to the archive. 

From this particular condition, it says that still there is a size left in the archive in which 

we can copy some solution. So, we are going to copy the solutions having fitness F i greater 

than 0, in an ascending order of their fitness value till the archive is full. 

So, in this case some dominated solution will be copied. So, that the archive will remain 

full. At this stage the SPEA2 survivor stages over. 
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Case III is when the number of non-dominated solution is greater than the size of archive. 

In this case we are going to calculate sigma i k. As per our earlier discussion this sigma i 

k is calculate using kth nearest neighbor approach. 

So, once we calculated the sigma i k we will find the solution which is having the least 

sigma i k value in the set of non-dominated solution. So, this particular solution will be 

removed and this process we will be repeating till the size reduces to the archive size. 

When we are removing such solutions one by one then rest of the solutions we are going 

to copy in the archive and that finishes the survivor stage of SPEA2. 

The operator which we have discussed for case III is called as truncation operator, where 

we are removing the solution one by one. So, basically we are removing the non-dominated 

solution one by one based on the sigma i k. The less value of sigma i k signifies that this 

particular solution is more crowded. So, therefore it should be removed. So, now we will 



see a that in the current example which we are solving how we can how we can update the 

archive. 
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Now, if we look into the figure here we have combined both the population that is the 

archive and the population which we get after crossover and mutation. Here the notation 

A stands for the archive member and the notation P stands for the population which is 

created after crossover and mutation. So, therefore we are representing or referring this 

particular population as an offspring population. 
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Now, we know that if we want to assign a fitness to any solution in the combine population, 

we have to first calculate the strength of a solution. As an example I have taken few 

solutions to understand the how we can calculate the strength followed by the raw fitness.  

If we look into the figure now in this particular figure let us choose solution A1, in this 

particular solution A1 in order to calculate the strength of this solution we have to find the 

number of solution it dominates. 

We know that since it is a minimization problem. So, both the objective are minimization 

as well as it is a 2 objective problem. So, if we take A1 as our reference and if we look 

into the first quadrant we can see how many solution are dominated by A1. Looking into 

the figure we can see that the solution P4 is dominated by A1. Since A1 is dominating one 

solution the strength of A1 is 1. 
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Let us take another case, in this particular case we have chosen the solution P8. Now if we 

are going to calculate the strength we can see that if I take solution 8. And if we look into 

the first quadrant with respect to the solution P8 solution number A3, A2, P1, A 6, A7, P6, 

A1, P3 and P4 these are the solutions which are dominated by P8. 

So, if we can see the complete list on the right-hand side and if we count the number of 

solutions here. So, the strength of P8 will become 9 because it is dominating 9 solution. 
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Similarly, we can calculate strength of all the solution in the combined population. So, if 

we see the figure on the left hand side. So, the first quadrant of each solution are shown 

and by looking into the first quadrant we can find that the strength of the members in the 

combined population that are given in the table. 
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Once the strengths are given or calculated the next step is we have to find the raw fitness 

of each solution. As per our earlier discussion raw fitness is the summation of the strength 

of those solutions which are dominating the given solution. 



So, we will see few examples here of the raw fitness. If we take solution A1 in this case 

since it is to objective minimization problem and we take A1 as our reference and if we 

look into the third quadrant with respect to solution A1 the solutions which are lying in 

the third quadrant we can see that A3, P 8, P2 is 8, P7 similarly P3, A4, A5 and P5. 

So, these are the solutions which are dominating A1, meaning that once we get the list of 

solutions which are dominating A1 we have to take the summation of the strength of all 

such solutions. So, here we have written the strength of those solutions by adding them we 

get the strength of solution A1 is 60. 

So, we remember that if the raw fitness of any solution is a large number meaning that it 

is dominated by many solution and therefore, it is not a good solution and the number 60 

for solution A1 represents the same. Let us take the another solution to find out the raw 

fitness. 
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Here we are choosing say solution P8 and looking at the figure on the left-hand side and 

if we take P8 and with respect to this solution. If we look into the third quadrant for the 

minimization problem we can see that there is no solution which is dominating P8. 

Meaning that the raw fitness of P8 will become 0. Moreover we also know that if any 

solution is having raw fitness equals to 0 that solution will become the non-dominated 

solution in the current set of current set of solution or the population.  



If we are going to follow the same procedure for all the solution we can calculate the raw 

fitness for each and every solution. 

(Refer Slide Time: 15:48) 

 

So, here we can see in the figure that, we have drawn the third quadrant for each and every 

solution. And accordingly when we are going to make a summation of the strength of those 

solutions we can find the raw fitness. So, the table on the right-hand side shows the solution 

it is strength as well as it is raw fitness. 

Similarly, for the population it is strength and the raw fitness. It is noted that we are 

calculating the strength and the raw fitness of a combined population. From this particular 

table we can see that population the population member P2, P5 and P8. They have a raw 

fitness equals to 0, meaning that these solutions are going to be the non-dominated 

solution. 

So, the number of non-dominated solution in the current set is 3. Now we are in a position 

to apply the survivor stage of SPEA2; because we know how many are the non-dominated 

solution. 
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So, in the current set we since we have number of non-dominated solution 3 which is less 

than N bar which is the size of an archive. So, the first step is let us copy all these non-

dominated solution and thereafter we are going to copy dominated solution using the 

fitness. 

So, initially the archive for the next generation is kept empty and thereafter we are going 

to copy the non-dominated solution. Once these non-dominated solutions are copied so we 

know that currently the size is 8 so we can copy another 5 dominated solution. Now if we 

look at the raw fitness of this solution. 

So, solution P2, P5 and P8 are copied. Now we will see which solution has the least fitness. 

From the given table we can see the solution 3 has the least fitness raw fitness. So, 

therefore, A3 is going to be copied in the archive. So, the updated archive will include A3 

as we can see on the right-hand side. 

Now, we still we have a space for 4 and we have copied 4 solution. So, after copying three. 

So, the next best fitness we can see with solution A8 and a P7 that is 12. Now since we 

have a space so we are going to copy these two solution into the archive. And now this is 

the current archive which has copied 3 plus 1 plus 2 basically 6 solutions. 
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Since we have copied 6 still we have a space of A2 solution to fill the archive completely. 

As of now the solutions having the fitness the raw fitness of a 12 are copied. So, if we look 

into the next best fitness we have solution A5 having a fitness of 17 and so A5 and then 

followed by A4. So, since these two solutions can be accommodated. 

So, we are going to add them into the archive population archive and these are the solutions 

which are copied into the archive for the next generation. Since the archive is already full 

so we can say the survivor stage of SPEA2 is over. Now it is important to note that we do 

not need to calculate D i for the given set of solutions. Since we can easily copy 8 solutions 

without any tie. 

It means that when we are calculating the fitness of any solution. So, the fitness is made 

of the raw fitness plus the diversity D i. In the current scenario we can see that even without 

calculating the diversity D i we can copy the 8 solution without any tie.  

However, if any scenario comes where there is a tie and we do not know how many which 

solution we have to copy in order to fill the archive. Then we have to find out this D i and 

then we are going to copy the solution based on the fitness. So, that finishes the survivor 

stage of SPEA2. 
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And if we look into the figure now here you can see that we have we started with the initial 

archive as shown in the left-hand side figure and thereafter after 1 generation we can see 

the updated archive. On the same scale of f 2 and f 1 we can see that the solution after 1 

generation they started moving towards the pareto optimal front and that is what we are 

expecting.  

That generation by generation the archive will be updated and the non-dominated solution 

will be emphasized. And these solutions will be moving towards the pareto front and 

finally, converges on the front. Once the survivor stage is over we increase the counter by 

1. 
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So, we can see here that we increase the counter by 1. So, we get t is equal to t plus 1 2 

and still we are in the while loop of generation. So, in the 2nd generation again we are 

going to apply the same set of operators such as tournament selection operator, crossover 

and mutation and then finally, the survivor stage we are going to apply till the termination 

condition get satisfied. 
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Now, in the current example which we have taken the population was evolved in such a 

way that we can see that the case 2 where the number of non-dominated solution was less 



than the archive size was encounter. So, in that case we copied the non-dominated solution 

followed by the dominated solution in order to fill the archive. But what we expect is when 

we are running SPEA2 for further generation then we may realize that there are many non-

dominated solution in the combined population. 

So, at that particular stage we have to copy N bar equal to 8 solution for the given problem. 

So, as a representation basis we have taken one more example in order to understand the 

case 3 when the number of non-dominated solution is more than the archive size. We can 

see from the slide here that we will be understanding the truncation operator for case 3. 

So, the in the figure which is shown in the left-hand side here we assume that this is the 

combined population after few generations. So, here we have taken say all 16 solutions as 

you can see in this particular figure. Now in the current situation as we know we have to 

choose the best N bar solution which is 8 for updating the archive. 

So, from the figure it can be observed that all the solutions are the non-dominated solution. 

So, here as a special representation we have shown this particular dashed line to show that 

all these solutions are the non-dominated solution. So, since the number of non-dominated 

solution currently is 16 which is greater than the N bar. So, we are going to use the 

truncation operator which is the case III. 

In this case we are going to use k-th nearest neighbor approach and in this method we will 

be calculating the sigma i k value. So, let us see how it is working. So, first of all we have 

to find out the minimum and maximum in both the objective. It is only because we want 

to calculate the distance in the normalized objective space. 

So, from this figure f 1 min and f 1 max are shown are written here. Similarly f 2 min and 

f 2 max are given here. 



(Refer Slide Time: 26:09) 

 

Now, let us calculate the normalized distance between solutions 1 and 2. When we are 

going to calculate this distance is coming out to be 0.147. So, the distance means we are 

talking about the Euclidean distance in the objective space. Similarly, I can find the 

distance of a solution 1 with the other solution. So, the representation such as d 1, 3 

meaning the distance between 1 and 3.  

Similarly, 1 and a 4, 1, 5 etcetera. Now after sorting the distance we can find the k-th 

element. So, sigma 1 k equals to 4. So, we remember that this k, k-th element we find with 

the rule that k is equal to under root of N plus N bar. N is the population size and N bar is 

the archive size. So, after sorting we get the sigma 1 k value  
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Similarly, if we are going to calculate sigma i k values for other solutions. So, we have 

tabulated all these values. So, for all 16 solutions sigma i k values are given. As per the 

truncation operator we have to find which is having the minimum sigma i k value. So, 

from this particular table we can see that the solution 5 has the minimum sigma i k value 

and therefore, it should be removed. 

So, here if we look into the figure on the left-hand side this particular solution 5 should be 

remove from the current set. 
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If we remove it, we can see the updated figure right now. In this figure you can see the 

solution 5 is missing. Now since the solution 5 is removed we have to again calculate the 

sigma i k value for the updated population. 

So, it is an important point that as soon as we are deleting any solution, we have to 

recalculate sigma i k value for the updated population given in the figure. So, let us this 

these are the again sorted list of the sigma i k value for the rest of the 15 solution. From 

this particular table we can see the minimum value is corresponding to solution number 8 

that has to be removed. So, we are going to remove the solution number 8. 
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So, what we can expect? At the last is when we will be removing these solutions one by 

one. So, we are going to get the diverse set of solutions here that will be updating our 

archive. So, here these are the diverse solutions which we can see after removing the 

solution one by one using the sigma i k value. 

Now, we will be looking at the simulations of SPEA2. So, till now we have done the hand 

calculation for one generation of SPEA2. We also took a case of truncation method in 

which we are removing the solution one by one when the number of non-dominated 

solution is more than the archive size. 

Now, we will be testing this SPEA2 on the set of multi objective optimization problem 

under simulation. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓1(𝑥) 

𝑓2(𝑥)  =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

0 ≤   𝑥𝑖  ≤ 𝑞 1, 𝑖 = 1, … , 𝑛. 

 

So, we will see the simulations now. We will take the first case first problem set as a ZDT 

problems. These problem says that we will be minimizing the f 1 objective and the f 2 

objective will be written in terms of g and the function h which is again made of f 1 and g. 

All the variables are lying between 0 to 1. 

So, the details of the ZDT problems can be found in the given paper. The parameters which 

we have set for ZDT problem we have taken population size 100. If we are going to run 

for 200 generation crossover probability 0.9, mutation probability 1 by n eta c 15, eta m 

20 and since we have the archive in SPEA 2. 

So, we are keeping the same archive size as the population. So, currently it is 100. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓1  (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2 (𝑥)  =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =   1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

   

ℎ(𝑓1, 𝑔)   =   1 −  √
𝑓1

𝑔
 

 

Let us begin with the first problem which is known as ZDT1 problem. Here the f 1 

objective is x 1 and the f 2 objective which is made of the function g and h are given here. 

This is a 30 variable problem and since it is a mathematical problem. So, we know where 

is the pareto optimal front and it is a convex pareto front. 
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We can see this is the initial population and the red line represents the pareto front for the 

given problem. So, the solutions are distributed and they are far from the front and after 

200 generations we can see the solutions are well converged and there is a diversity as well 

among the solutions that are converged on the pareto front. 
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Let us look into the simulation now. Here we can see these solutions are moving towards 

the front. And when they are close we can see the solutions have distributed nicely over 

the Pareto front which is shown in the red line. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =  1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

  

ℎ(𝑓1, 𝑔)  =   1 −  (
𝑓1

𝑔
)

2

 

Now, we will go to the another problem which is called ZDT2 problem. In this case we 

can see that the form of g has been it has been the same, but the h is different and because 

of this h the f 2 and f 1 nature is going to be different. And for the given problem we are 

going to get the non-convex pareto optimal front this problem is also a 30-variable 

problem. 
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So, as we can see the initial population is started a little far from the pareto front and after 

running the algorithm for 200 generation the solutions are converged. So, we can see that 

SPEA2 can very well solve the problem which has non-convex pareto optimal front. Let 

us see the simulation for the same problem. 
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So, here we can see the solutions are kind of at the 2 corners. But when the solutions are 

moving towards the front they are nicely distributed and slowly and slowly they are 

moving towards the pareto optimal front which is shown in the red line. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =  1 +
9

𝑛 − 1
∑ 𝑥𝑖

𝑛

𝑖=2

  

ℎ(𝑓1, 𝑔)  =  1 −  √
𝑓1

𝑔
 −  (

𝑓1

𝑔
) 𝑠𝑖𝑛 (10𝜋𝑓1) . 

 

Moving to the 3rd class of a problem which is ZDT3 here again the form of f 1, f 2 and g 

are the same. But h has been changed and in this case since the sin x function is included. 

So, we can expect some disconnected pareto optimal front for the given problem. This 

problem is also solved for 30 variable problem. 
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And here the solutions are distributed as you can see the range of f 2 is from 6.5 to 2. After 

200 generation the solutions are distributed on the disconnected front and the range of f 2. 

We can see from 1 to minus 0.8 and f 1 is lying between 0 to 0.9. If we see how these 

solutions are moving towards the pareto front. 
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Now, we can see initial at the beginning itself these solutions are distributed in the 

disconnected front and slowly and slowly they are moving towards the pareto front. And 



at the bottom we can see we are going to get all the 5 disconnected front for the given 

problem. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =   1 + 10(𝑛 − 1) + ∑(𝑥𝑖
2  −  10 𝑐𝑜𝑠(4𝜋 𝑥𝑖)) 

𝑛

𝑖=2

  

ℎ(𝑓1, 𝑔)   =  1 −  √
𝑓1

𝑔
. 

 

After ZDT3 we have ZDT4 problem in the ZDT4 problem we can see the form of g is 

changed and h is the same as ZDT1. In this case we will be solving a problem with a 10 

variable. Here except for x 1 meaning that x 1 will be lying between 0 to 1 and the rest of 

the solutions will be lying between minus 5 to 5. 

The problem which we are going to solve has a convex pareto optimal front and there will 

be lot of local pareto optimal solution. Such as 21 to the power 9 or about 8 into 10 to the 

power 11 local pareto optimal solutions. 
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The initial population for ZDT1 can be seen that it is started in f 2 around 250 to 100 and 

f 1 is in the range of 0 to 1 always. And after running this particular algorithm for many 

generations. So, we can see that the solutions are well converged to the pareto front. 
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So, we can see how SPEA2 is performing on the given problem as we can see the solutions 

are move to the one of the corner and as soon as these solutions are moving towards the 

pareto front. So, these solutions get distributed along the front and slowly and slowly these 

solutions will be converged on the pareto front. 



For the given problem since it is complex we have run SPEA2 for 300 generations to get 

the pareto to get the solutions converged on the pareto optimal front. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓1 (𝑥)   =  1 −  𝑒𝑥𝑝(−4𝑥1)𝑠𝑖𝑛(6𝜋 𝑥1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒             𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =   1 + 9 [
(∑ 𝑥𝑖

𝑛
𝑖=2 )

9
]

0.25

 

ℎ(𝑓1, 𝑔)   =  1 − (
𝑓1

𝑔
)

2

. 

The last problem which we will be solving in ZDT problems that is called ZDT6. Now in 

the ZDT6 the form of f 1 has been changed. Similarly, we can see there is a change in g 

function as well as the h function. Since h is similar to ZDT2 the pareto optimal front will 

be non-convex we are going to solve this particular problem for 10 number of variables. 
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So, as we can see the range of f 2 the initial population is generated close to 8, 9 and f 1 

value between 0 from 0.2 to 1 and most of the solutions are generated on the one side of 

the objective space. And after running this SPEA2 for many generations as we can see that 

the solutions are converged on the pareto front. If we see the simulation of SPEA2 for the 

given problem. 
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So, we can see that the solutions are actually converged on the corner of this objective 

space as soon as these solutions are converging towards the front we can see the there is a 

good diversity and since the problem is difficult.  

So, we are running for more number of generation and we can see slowly and slowly these 

solutions have converged on the pareto front. So, in this case we have run SPEA2 for 400 

generation to get the solution on the pareto optimal front. 
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After the class of ZDT problems as we have understood, that these ZDT problems are 2 

objective problems and some problems are easy to solve, some problems are non-convex, 

some problem have lot of local pareto optimum solutions and. So, on, but these ZDT 

problems are always 2 objective problem. 

So, the another class of problem on which we will see the performance of SPEA2 is the 

DTLZ problem. These DTLZ problems are the scalable problem meaning that we can 

solve for any number of objective function. So, let us look into the DTLZ problem now. 

So, these problems are proposed by the 4th 4 authors and from their surname it came the 

name came out as a DTLZ problem. 

The parameters which we have chosen to check the performance of SPEA2. The 

population size is 300, generation is 500, crossover probability we kept it 1, probability of 



mutation is 1 by n, eta c 30, eta m 20. And here also we are keeping the archives size same 

as the population size which is 300. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝑓1(𝑥)  =  
1

2
𝑥1𝑥2 … 𝑥𝑀−1(1 + 𝑔(𝑥𝑀)) 

         𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓2(𝑥)  = 𝑥1𝑥2 … (1 − 𝑥𝑀−1)(1 + 𝑔(𝑥𝑀)) 

⋮ ⋮ 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓(𝑀−1)(𝑥)   =   
1

2
 (1 − 𝑥2)(1 + 𝑔(𝑥𝑀)) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                      𝑓𝑀(𝑥)  =  
1

2
(1 − 𝑥1)(1 + 𝑔(𝑥𝑀)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                   0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒             𝑔(𝑥𝑀)  =  100 (|𝑥𝑀| + ∑ (𝑥𝑖 − 0.5)2

𝑥𝑖∈𝑥𝑀

   −  𝑐𝑜𝑠(20𝜋 (𝑥𝑖  −  0.5))) , 

 



Let us see the DTL1 first since the problem is scalable. So, we can see that how we can 

write objective from f 1 to f M. So, capital M represents the number of objective. In this 

DTLZ1 all the variables are lying between 0 to 1. If we look into the form we have g 

function which is written in the various objective function. 

So, here we can see the g function is written which has x i 0.5 whole square and some cos 

term. For solving DTLZ1 problem we have taken a parameter k which is the cardinality of 

x M equals to 5. So, the number of variable for DTLZ problem will become M plus k 

minus 1, M is the number of objective, k is 5 and minus 1.  

Now here the pareto optimal front for DTLZ1 is a plane and the and the difficulty or the 

characteristic of a DTLZ1 problem is it has 11 to the power k minus 1 local pareto optimal 

fronts. 
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We can see the simulation now. So, fist we will see the initial population now we can see 

the range of f 1, f 2 and f 3. So, these solutions are starting very far from the pareto optimal 

surface. Since it is a 3-objective problem. So, we are we call it as a pareto optimal surface.  

And after running for 500 generation, we can see on the right-hand side figure that all these 

solutions are converged to the pareto surface as well as we have a good diversity among 

the solution. So, we will see the simulation of SPEA2 for DTLZ1. 
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So, we can see that the solutions are converging towards the front which are quite far and 

close to 140 generation. Some solutions are converged and the rest of the solutions 

thereafter converged on the pareto surface. Now here these solutions are keep on changing 

their position it is only because we have the truncation method or operator to keep the 

diverse solution on the pareto surface. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒               𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1𝜋 /2)  …   𝑐𝑜𝑠 (𝑥𝑀−1 𝜋 /2), 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                   𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)  )𝑐𝑜𝑠(𝑥1𝜋 /2) …  𝑠𝑖𝑛(𝑥𝑀−1 𝜋 /2)  



⋮  ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝑓𝑀(𝑥)     =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛(𝑥1𝜋 /2) )    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒,              𝑔(𝑥𝑀)   = ∑ (𝑥𝑖 − 0.5)^2

(𝑥𝑖 ∈ 𝑥𝑀)

   

𝑤ℎ𝑒𝑟𝑒 𝑘 = |𝑥𝑀| = 10, 𝑎𝑛𝑑     𝑛 = 𝑀 + 𝑘 − 1  

 

 ∑ (𝑓𝑚
∗ )2 

𝑀

𝑚=1

 = 1, 𝑎𝑛𝑑       𝑥𝑖
∗  =  0.5 ∈  𝑥𝑀 

 

The next class of problem is DTLZ2. Here the form of DTLZ2 is different from DTLZ1 it 

involves cos and sin functions. Similarly, we have this x i the all variables will be lying 

between 0 to 1 and the g function as given here. For solving DTLZ2 problem we have 

taken k equals to 10 the number of variable will be M plus k minus 1, meaning that if we 

take 3 number of objective. 

So, 3 plus 10 minus 1 means the number of variable will become 12. Here the pareto 

optimal front will be f m square for all the objectives and in this case this is going to be 

the quarter of the sphere. 
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We can see the initial population is generated which is quite far and after running SPEA2 

the solutions are converged on the pareto surface which we can see on the right-hand side 

and they are also diverse. 
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We will see the simulation for the given problem. So, we can see within 30 generations 

the solutions are converged to the pareto front and they keep on changing their position 

because the truncation method is selecting the solutions or we can say the truncation 



method deleting those solutions which are crowded. Since we have run SPEA2 for 500 we 

can see that the solutions are converged on the pareto front. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒               𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1𝜋 /2)  …   𝑐𝑜𝑠 (𝑥𝑀−1 𝜋 /2), 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                   𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)  )𝑐𝑜𝑠(𝑥1𝜋 /2) …  𝑠𝑖𝑛(𝑥𝑀−1 𝜋 /2)  

⋮  ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝑓𝑀(𝑥)     =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛(𝑥1𝜋 /2) )    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑤ℎ𝑒𝑟𝑒,       𝑔(𝑥𝑀)  =  100 (|𝑥𝑀|  + ∑ (𝑥𝑖 − 0.5)^2  −  cos (20𝜋 (𝑥𝑖  −  0.5))) 

𝑥𝑖∈𝑥𝑀

  , 

𝑤ℎ𝑒𝑟𝑒     𝑘 = |𝑥𝑀| = 10, 𝑎𝑛𝑑        𝑛 = 𝑀 + 𝑘 − 1 

 

∑ (𝑓𝑚
∗ )2

𝑀

𝑚=1

= 1, 𝑎𝑛𝑑       𝑥𝑖
∗ =  0.5 ∈  𝑥𝑀 

 



The 3rd the another class of problem is called DTLZ3. The form of f 1, f 2, f M again has 

been changed still it has cos and sin functions and the g function which is used with these 

f 1, f 2 till f M, the form has also been changed. 

In this case by solving DTLZ3 problem we are taking k equals to 10, number of variable 

is equals to M plus k minus 1 which is the same as in our previous problems. And the if 

we look at the pareto front it is going to be the same as DTLZ3. However, this particular 

problem is going to have many local pareto optimal fronts. 
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This is the initial population which we can see on the left-hand side. If we look at the f 1, 

f 2 and f 3 values we can see that these solutions are very far from the pareto surface. And 

after running this SPEA2 algorithm for 500 generation the solutions have well converged 

on the pareto surface and there is a enough diversity to represent the surface. 



(Refer Slide Time: 46:04) 

 

Let us see the simulation now. We can see these solutions are keep on improving and 

moving towards the pareto surface and after few generations these solutions will be trying 

to converge on the pareto surface. So, close to 360 generations. These solutions are now 

converged and we can see that not only convergence there is a good diversity among the 

solutions which are converged on the pareto surface. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠(𝑥1
𝛼𝜋 /2 ) …  𝑐𝑜𝑠(𝑥𝑀−1

𝛼   𝜋 /2) 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       & 𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠(𝑥1
𝛼𝜋 /2 ) …  𝑠𝑖𝑛(𝑥𝑀−1

𝛼   𝜋 /2) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       & 𝑓𝑀(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑠𝑖𝑛(𝑥1
𝛼𝜋 /2 )  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟       𝑖 = 1,2, …  , 𝑛 

𝑤ℎ𝑒𝑟𝑒     𝑔(𝑥𝑀)  = ∑ (𝑥𝑖
𝛼  − 0.5)^2

(𝑥𝑖∈ 𝑥𝑀)

, 

𝑤ℎ𝑒𝑟𝑒  𝑘 = |𝑥𝑀| = 10, 𝑛 = 𝑀 + 𝑘 − 1, 𝑎𝑛𝑑 𝛼 = 100 

∑ (𝑓𝑚
∗ )2

𝑀

𝑚=1

= 1, 𝑎𝑛𝑑 𝑥𝑖
∗  =  0.5 ∈   𝑥𝑀 

 

Come to the last problem which we have taken in this particular session this is DTLZ4. In 

this DTLZ4 problem we can see the form of f 1, f 2, f m that have been changed. Now 

although these are cos and sin function, but inside it the x i to the power alpha. So, the 

alpha has been introduced here and the variables are going to be lying between 0 to 1 and 

g M form is also changed. 

For solving this DTLZ4 problem we have taken k equals to 10 number of variable as the 

same which is M plus k minus 1. Alpha has been taken 100. The pareto optimal front for 

the given problem is the same as DTLZ2 and we are going to see how SPEA2 is going to 

perform. 
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The initial population as we can see it is generated. On the one side of the objective space 

and after running this algorithm for 500 generation we can see that the solutions are 

converged on the pareto surface. We will see this simulation now. 
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Now, we can see the quickly within 50 generation these solutions are converged to the 

pareto surface. So, initially this solution is started from the 1 of the corners of the objective 

space, but as soon as these solution converge to the front they the solution get distributed 

on the on the pareto optimal surface. 
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So, from in this session which we have dedicated to SPEA2. We have come to the closer 

of this session. In this particular session we started understanding the SPEA2 on our 

generalized framework. On this framework since SPEA2 uses different kind of ranking as 

well as a diversity.  

We understood SPEA2 through a working example. So, in this session we discussed about 

the fine-grained fitness through strength and raw fitness. We also did hand calculation for 

k-th nearest neighbor approach for diversity.  

We also discussed about the archive truncation method and we discussed the survivor 

stage. The SPEA2 the original version incorporates the SBX crossover operator and 

mutation operator for generating the offspring population. As well as the binary 

tournament selection was used that is with replacement. In order to see the performance of 

SPEA2 we tested on the 2 test problems which are ZDT problem set and the DTLZ 

problem set.  

From the simulations we can see that when the problem has the non-convex front convex 

front it is connected front or there are many local pareto optimal solutions are front. In 

those different situations SPEA2 was able to converge in all of the solutions and there was 

a good diversity among the solution. So, with this understanding on SPEA2, I conclude 

the session on this algorithm which is called SPEA2. 



Thank you very much.  


