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Non-Dominated Genetic Algorithm NSGA-II Simulations 

 

Welcome to the part 2 of NSGA II. In the previous session, we have gone through, the we 

have gone through the introduction about NSGA II. We performed some hand calculations, 

mainly we perform the non dominated sorting on a set of a solution by taking an example. 

And afterwards, we also calculated the crowding distance for every front. Thereafter, we 

have reached to the first step, where we check the termination condition. 

Since it was the first generation, so we continue to the selection operator. So, in this 

particular session, we will start from the selection operator followed by the other operator, 

that will come inside the loop of generation. Let us begin with the selection operator. So, 

as we remember, the purpose of the selection operator is to identify good above average 

solutions. 

So, in this scenario, where we have multiple objectives and when we are ranking them; we 

have rank as well as crowding distance. 
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So, NSGA II uses crowded binary tournament selection operator; in tournament selection 

operator we remember, we discussed with binary coded GA as well as real coded GA. 

There is a small modification with the crowded binary tournament selection. So, let us see 

how we can use it for multi objective optimization. 

So, as we can see here, inside crowded binary tournament selection operator; we chose 

two solutions say for example, solution i and solution j and both of them are chosen 

randomly. Once we chose them, we are going to compare their rank. The solution which 

is having a better rank get selected. So, in NSGA II the rank 1 solutions are considered 

better than rank 2 solution. So, if the rank of any of these two solution is smaller, the 

solution with a better rank get selected. 

Second case is, if the rank of these two solution is the same. So, in that case, we will be 

comparing their crowding distance. The solution which is having the larger crowding 

distance get selected. And in the third case suppose the rank as well as the crowding 

distance of solution i and j are same; then we are going to select one solution randomly.  

So, here looking at these three condition, it can be these conditions can be implemented 

using if, else if, and else condition. And we can use the binary tournament selection for 

the with the NSGA II. 
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So, let us take the same solutions that for which we have calculated the rank. So, as we 

can see in the table on the top, the solution is given, rank is given and CD means the 

crowding distance. So, for every solution, we have shown the rank and the crowding 

distance. 

So, as we remember that in the tournament selection, we will be selecting two solutions 

randomly. Let us take this as our first tournament. Let the randomly selected pair for binary 

tournament selection are 2, 4; 8, 3; 5, 1, and 6, 7; meaning that, we are going to compare 

2 and a 4 first and followed by 8 and a 3 and the other solution as given in the pair.  

So, let us compare one by one now. If we compare solution number 2 and a 4. So, solution 

number 2 and 4; if we look their rank, they both of them have a rank 2. So, meaning that 

they are, they have the same rank. And if we look at the crowding distance that, that comes 

out to be infinite infinity; meaning that these solutions are the extreme solution in front 2. 

In this scenario, since we have same rank and same crowding distance; we are going to 

choose one solution randomly. Let us assume that we select solution number 4. The 

another pair of solution for performing binary tournament is 8 and 3. If we compare 

solution 8 and 3, now we can see that the rank of these two solutions is the same; but if we 

look at the crowding distance of these two solution now, here we can see that solution 3 is 

having more crowding distance value than solution 8. 

Meaning that, we are going to select solution 3. The another pair which we selected 

randomly is 5 and a 1. So, solution 5 and a 1 can be seen here. Looking at their rank we 

can see that the solution 5 will be selected, because it has a better rank. Finally, the two 

solution which are left out are 6 and a 7.  

If we compare solution number 6 and 7, so the rank of these two solution is the same. But 

we look at the crowding distance value, so we can see that the solution 7 has more 

crowding distance and therefore, the solution 7 is selected. 

We can see that since it is the first tournament selection, so we selected solution number 

4, 3, then 5 and finally, the 7. So, basically we selected four solution. 
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So, now as we remember, we are going to perform the tournament selection one more time, 

so that the selected solution will become equal to n, which is the size of the population. 

So, this is the second tournament which we are going to perform. Let us assume that the 

we have picked randomly 5 and a 7 in a pair, then 6 and a 1, 8 and a 2 and 4 and a 3. So, 

let us compare these solutions one by one. 

So, when there is a tournament between solution number 5 and 7; so we can see 5 and a 7, 

solution 5 has a better rank. So the solution this solution will be selected. Thereafter, we 

have 6 and a 1; so looking at solution number 6 and a 1, we can see solution 6 has a better 

rank, therefore it is selected.  

Now, randomly picked solution 8 and a 2 when we compare, so solution 8 and solution 

number 2. Now, we can see solution number 8 has a better rank. So, therefore, this solution 

is selected. Finally the last pair is 4 and a 3. When we are going to compare them, we can 

see the solution 3 has a better rank than solution 4.  

So, in this case, we will be selecting the solution 3. So, from our discussion we can see 

that, whenever we are comparing two randomly chosen solution, first we look at their rank; 

if the rank is different, the solution which is having a better rank will be selected. 

However, if the these two solutions have the same rank, then we look into the crowding 

distance. And after comparing it, the solution which is having a larger crowding distance 



is selected. And in a very rare condition if rank and crowding distance both are same, then 

we are going to select any of the solution randomly. 

So, we remember that as per our algorithm, the step inside the loop of generation; we 

started with the selection and thereafter comes variation. So, the first operator which we 

apply under variation is crossover operator. 
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So, let us discuss this crossover operator now. Now, as we know that the crossover operator 

is responsible for creating new solutions. These new solutions explore the search space. 

We generally perform crossover with a probability called p c. So, the crossover probability 

and we kept the value of a p c high, so that it can support exploration of the search space.  

From the binary tournament selection or we can say crowded binary tournament selection 

with NSGA II. We selected first four solution as we can see on the on the first column of 

the table. So, these are the solutions selected from the first tournament; thereafter we 

selected another four solutions in the second tournament. 

Now, the same solutions which are now copied into the mating pool, we are giving a new 

index as given in the second column of the table. There x 1 x 2 value and as well as the f 

1, f 2 values are also shown. It is important to note that, we do not need f 1 and f 2 as of 

now; because the crossover is performed with the decision vector. So, therefore, f 1, f 2 

has no role; but we are showing as a representation purpose. 
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𝑝(𝛽𝑖 ) = {

0.5(𝜂𝑐 + 1)𝛽𝑖
𝜂𝑐 , 𝑖𝑓 𝛽𝑖 ≤  1

0.5(𝜂𝑐 + 1)
1

𝛽𝑖
𝜂𝑐+2

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝛽𝑖  =

{
 

 (2𝑢𝑖)
1

𝜂𝑐+1                            𝑖𝑓 𝑢𝑖  ≤   0.5

(
1

2(1 − 𝑢𝑖)
)

1
𝜂𝑐+1

                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑥𝑖
(1,𝑡+1)

 =   0.5 [(𝑥𝑖
(1,𝑡)

+ 𝑥𝑖
(2,𝑡)

) − 𝛽𝑖( 𝑥𝑖
(2,𝑡)

− 𝑥𝑖
(1,𝑡)

 )] 

𝑥𝑖
(2,𝑡+1)

 =  0.5 [(𝑥𝑖
(1,𝑡)

+ 𝑥𝑖
(2,𝑡)

) + 𝛽𝑖( 𝑥𝑖
(2,𝑡)

− 𝑥𝑖
(1,𝑡)

 )]          

NSGA II 2 uses SBX cross over operator; this crossover operator we have understood 

while going through the real coded GA. As a recap of simulated binary crossover which is 

known as SBX cross over operator, let us see how it works. So, the probability distribution 

function for SBX operator is given here as we can see.  

Now, this is a non-linear probability function, which can be seen in the figure on the right 

hand side. In order to calculate this beta, we calculate by equating the area under the 

probability curve to u i, and u i is a random number between u 0 to 1. As we can see on 



the figure on the right hand side that, when we are equating the area and try to find out 

what is beta i. 

After simplification based on the u i value, which is a random number, that will be 

generated by the computer for us; if the random number is smaller than or equal to 0.5 we 

will be using the formula on the top and otherwise we will be using the another formula.  

We remember that, this eta c has a role here; because that will tell about the spread of the 

curve. Using the value of a beta i, we are taking the average of the two parents. So, as we 

understood that, we selected parent 1, parent 2 and we find the average of it minus times 

of beta of the difference between the two parents. 

Similarly, the second, second offspring will be generated by taking the average; but now 

we are adding this beta i and the difference of these two parents solution. 
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Since, we perform the hand calculation using SBX operator with real coded genetic 

algorithm; we directly present solution after crossover. So, the table which we can see 

here, these are the solutions; so basically x 1 and x 2 value, the modified values after 

crossover we can see here. Just for the representation purpose, we are showing the f 1 and 

f 2 values. 

Once we perform the crossover operator, under the variation we perform mutation. So, the 

mutation as we remember, the purpose of the mutation is exploiting the search space by 



perturbing the solution. So, let us have a recap of the mutation and then we will follow our 

hand calculation. 
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𝑦𝑖
(1,𝑡+1)

= 𝑥𝑖
(1,𝑡+1)

+ (𝑥𝑖
(𝑈)
− 𝑥𝑖

(𝐿)
)𝛿𝑖̅ 

So, the purpose of this mutation operator is to create new solution in a population with the 

row with the low probability p m. So, we remember that, this probability p m is known as 

the probability of mutation and which we generally kept as probability of mutation is 1 

divided by n, n is the number of variable. So, it is a thumb rule. 

𝑃(𝛿) = 0.5(𝜂𝑚 + 1)(1 − |𝛿|)
𝜂𝑚 ∶ 

And this mutation will be helpful for exploitation. NSGA II uses polynomial mutation 

operator; we remember that if the solution which is generated by the crossover operator, 

that is added with the delta i which is multiplied with the upper and lower bound of the 

variable. And this will give me the mutated solution using polynomial mutation operator. 

 

𝛿𝑖̅ = {
(2𝑟𝑖)

1
𝜂𝑚+1 − 1,                     𝑖𝑓 𝑟𝑖  <  0.5 

1 − [2(1 − 𝑟𝑖)]
1

𝜂𝑚+1 ,       𝑖𝑓 𝑟𝑖 ≥  0.5

 



The probability function for polynomial mutation is again shown here, which is a non-

linear function. Now, in this case as we can see on the right hand side, this particular 

function, probability distribution function we are going to use to calculate the value of 

delta i.  

Similar to the previous SBX operator, we are going to calculate delta i by equating the area 

under the probability curve equals to r i. And r i is again a random number between 0 and 

1. So, basically when we are equating here. So, the area under the curve we are equating 

with the random number.  

Since this random number will be generated by a computer. So, we are going to get two 

values of or two equations of delta i. If r i is smaller than 0.5, then we will be using the 

formula given on the top. If r i is greater than an equals to 0.5, then we will be using the 

another formula. Here as per our discussion earlier, eta m is a user defined parameter that 

we set and that also takes cares of the spread of this probability distribution curve. 
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Since we performed hand calculation using polynomial mutation with real coded GA, we 

directly present our solution. So, here we are referring this particular population as 

offspring population and the solution with the modified value of x 1 and x 2 are given in 

the table.  



Since we perform the mutation at a low rate, so we will see that some variable will be 

modified and some variable will remain the same. As a representation purpose, f 1, f 2 

values are shown. 
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Now, once the offspring population is generated; at this particular stage, we have parent 

population as well as the offspring population. So, NSGA II has come up with the survival 

or elimination stage, where it takes the front or the solution with their rank as well as 

crowding distance. 

So, let us understand how this survival stage is performed with NSGA II. So, here the 

purpose of this stage is, we choose better solution for the next generation. NSGA II 

combines parent and offspring population and among the set, we are going to choose the 

best N solution and we remember that N is the population size.  

For the current example, N is equals to 8. If we see how the survival or the elimination is 

performed; so we can see we have parent population which is of size N, similarly we have 

offspring population which is of size N. 

So, basically we have a size of 2 N and the task is we have to select the N best solution 

under P t plus 1. So, what we do here is, we combine them and on this combined population 

of P plus Q, we perform non dominated sorting. As graphically we can understand that, 

some solution will be lying in F 1, similarly in F 2, F 3 and the other fronts as well. 



Thereafter, we will be selecting the solution one by one. Say here, as we can see that the 

size of F 1 is small, it can be accommodated within N. Similarly, we can copy the solutions 

of F 2 and F 3 as well. So, these three front solutions, we can very well accommodate into 

P t plus 1 of size capital N. Now, since still there is a space available to make the size N, 

we are going to include the front 4 now. 

Now, as we look, there are many solutions which are lying in a front 4 and when we want 

to copy, we cannot copy all of them. So, in this particular case, we since we have already 

calculated the crowding distance. So, based on the crowding distance, the solutions will 

be sorted in a descending order. So, the solutions which are coming on the top; they will 

be selected here, so that all these solutions will constitute population size of N. 

Now, in this particular elimination; we can see that below this particular line, all these 

solutions and as well as the front which are worse than F 4 all of them will be rejected. So, 

meaning that, if we are adding P plus Q, so we have 2 N population. So, combinedly let 

us find their rank, let them let all these solution sorted in different fronts and thereafter we 

are going to calculate the crowding distance. 

So, we will copy front by front these solution into the new population, which is called P t 

plus 1. So, as we can understand from the graphical example here, we will be copying the 

front 1. Since the size of front 1 is small, means the number of solution is less than the size 

of capital N, we will copy them, thereafter F 2 and similarly F 3. 

Once the solution from F 4 are going to be selected; since the number is large, so we 

selected using the crowding distance, the solution having more crowding distance will be 

selected. And that is why we sorted the solution in front 4 based on the larger crowding 

distance, basically in a descending order. 



(Refer Slide Time: 23:36) 

 

Now, let us take the same solutions that are generated after crossover and a mutation that 

is offspring and the initial population which we consider as a parent population for the 

given example. As we can see here now, both the population are combined for ranking and 

crowding distance. Now, here the representation says that, if we are writing for example, 

P 2; this means this is the second solution of parent population.  

Similarly, if we look solution say O 1; this means, it is the offspring solution and that is 

the first solution in the offspring population. This particular notation we are using, so that 

we can differentiate the parent population and offspring population for understanding how 

this elimination works.  

Now, in this case as you can see that, we have 2 N solution. So, basically we have 16 

solutions here. Now, we are going to rank them and then find the crowding distance. 
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Now, since this problem is minimization of f 1 and minimization of f 2. As per our earlier 

discussion, if we take for example, solution number O 1, means offspring 1. If we look, if 

we consider this as a reference solution and looking into the first quadrant of solution O 1; 

if there is any solution means that, those solutions will be dominated by O 1. 

Now, looking at the present case, since there is no solution in the first quadrant of O 1; so 

as we can see that S O 1 is empty set. Similarly, if we take the reference O 1 and look into 

the third quadrant, so these are the solutions such as P 3, O 8, O 2, P 8 and O 7; these 

solutions will be dominating solution O 1.  

So, if we count them, it is 1, 2, 3, 4 and 5 solution and therefore, n O 1 is 5. To understand 

the rank of the or the non-dominated sorting of these solutions. We are using the same 

notation of the non-dominated sorting; that is the set S p and we also calculate n p, S p 

refers to the set in which the solutions are dominated by the solution P. 

Similarly, the counter n Q refers to the number which says that, how many solutions are 

dominating solution P. So, we are following exactly the same notation here and we will 

take, we are calculating the S set as well as n counter for every solution. 
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Now, let us take the solution number O 2. Now, when we are taking this as a reference and 

looking into the first quadrant of O 2; we can say that solution P 2, O 1, P 6, P 7, O 6, P 1, 

O 3, O 4, P 4, and P 5.  

All these solutions are dominated by solution O 2. And therefore, at the bottom we can 

see, the set S O 2 is comprising of all these solution. Taking the reference of O 2 and 

looking into the third quadrant. We can see n O 2 and this n O 2 is 0; because there is no 

solution which is dominating O 2. 
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If we take the another case to understand about the ranking, the non-dominated sorting. 

So, here we have solutions say P 3. So, we have taken this solution P 3; it is only because 

just to see that, when we are taking the parent solution, there the solutions, the number of 

solution which it will be dominating or it will be dominated by that will change. 

Looking at P 3 now; in the first quadrant of P 3, we can see there are many solutions such 

as P 2, O 1, P 6, P 7, O 6, P 1, O 3, and O 4, all these solutions will be dominated by P 3. 

So, at the bottom we can see that S P 3 is given. Similarly, if we look at the third quadrant, 

only solution O 8 is going to dominate P 3 and therefore, n P 3 is 1.  

So, the observation is that, the solution P 3 when we perform the ranking at the beginning 

to evaluate the rank as well as the crowding distance, solution P 3 was the non-dominated 

solution. But after performing crossover and a mutation; we have better solutions such as 

solution O 8, which is now dominating P 3. 
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By following the similar procedure of finding the S P set and n P and following the 

procedure as we have discussed here. We can see the 16 solutions are now sorted into six 

fronts from F 1 to F 6. By following those thing we can see the front 1 consist of O 8, O 2 

and O 5; similarly front 2 consist of P 3, P 8, O 7 and P 5; and similarly the other front is 

given at the bottom of the slide. 
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Now, once we have calculated the rank of all the solution; now we have to calculate the 

crowding distance of each solution. We will begin the crowding distance of the solution 

which are lying in front 1, basically the rank 1 solution. So, the front 1 solution r given in 

the figure so O 8, O 2 and O 5 are here. Since it is a two objective problem we can find it 

out that, the solution number 8 and solution number 5 both are extreme solutions. 
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Since these are extreme solutions, so we are going to give a crowding distance value as a 

infinite value. Now, we have to just calculate the crowding distance of a remaining 



solution, which is O 2. Since it is only the one solution, we know that the crowding distance 

is going to be 2 for the given solution. 
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Similar to the crowding distance of front 1; now let us calculate the crowding distance of 

solution having the rank 2, means the front 2. In the figure, we can see the solutions are 

we have in this front are P 3, P 8, O 7 and P 5. In this particular case, we can find that the 

solution P 3 and the solution P 5 they are extreme solution. So, we are going to give them 

in a infinite value as a crowding distance. 

Now, by performing the calculation for say cuboid 1 and cuboid 2; so as we remember our 

crowding distance that says that, the that says that the crowding distance basically tells 

about the perimeter.  

So, in this case the perimeter of a cube 1 will become crowding distance of solution say P 

8 and the perimeter of cuboid 2 will become the will become the crowding distance of O 

7. After calculating the crowding distance, we get the crowding distance of P 8 is 1.004 

and crowing distance of 7 is 0.977. 
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Similarly, we are going to calculate the crowding distance for the front 3 solutions. Now, 

in this case looking at this front; solution number P 2 and solution number P 4 they are 

extreme solutions, so they are going to get infinite crowding distance value theoretically. 

We are assuming that we can calculate the crowding distance of the other solution that are 

lying in the front 3 as well as in the front other fronts. 
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Now, let us apply the survival or the elimination of NSGA II. Looking at the figure, we 

set P t plus 1 as a empty set and we have to copy N equals to 8; because the size of the 

population is 8. 

Now, let us take front 1. So, as per the figure, we will take front 1 now. Now, in this 

particular front we have three solutions. Now, since the remaining size in P t plus 1 is 8; 

so we can accommodate all the solution of F 1 in P t plus 1, meaning that P t plus 1 is 

equals to P t plus 1 union F 1. So, these three solution are copied into the next generation 

population. 

Once it is done, now let us consider the front 2; because front 1 is already copied. Looking 

at front 2 now, it has 4 solutions and the size of P t plus 1 is 3; meaning that 4 plus 3 means 

7. So, we can accommodate all the solution of F t F 2 into P t plus 1. So, therefore, we are 

adding the solution of P 2; we are adding the solution of F 2 into P t plus 1. So, as we can 

see the P t plus 1 is now accommodating 7 solutions. 
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Now, since the size of P t plus 1 is 7, it can accommodate one more solution. Now, looking 

at the F 3 which is currently consisting of 6 solution; so the remaining size is 1, the 

available solutions are 6. So, we cannot accommodate all of the solution. As per the 

suggestions we are, we have to sort our front as per the crowding distance in a descending 

order and then we have to choose the solution. So, we sort all the solution of F 3 in an in 



a descending order of their crowding distance; since d P 2 and d P 4 is equal to infinity, it 

is only because the solutions were the extreme solutions. 

So, we have to copy one of them. So, we choose one solution at random, let us take P 2. 

So, in this case, or in this scenario, the final P t plus 1 equals to P t plus 1 union P 2; 

meaning that we have added the P 2 solution now and it consist of 8 N equals to 8 solution.  

So, from this particular elimination we can see that, when we are adding the parent 

population and offspring population and combined combinedly doing the ranking as well 

as the crowding distance calculation. This allows us to choose the best solution or we can 

say good solution.  

When we are adding and selecting good solution; in this case, we will be always having 

good solution and we are not going to miss any of the any good solution from the, either 

from the parent population or from the offspring population. 

In the scenario, when suppose we run NSGA II for a longer time and solving the same 

problem; we can get a scenario when the front one itself consists of 16 solution. So, in this 

case when the front 1 can have all the solution and there is no front 2, front 3, front 4; then 

all these solutions are going to have the same rank. And this front 1 cannot be 

accommodated into P t plus 1.  

So, the solutions which we are going to select is, we will sort all the solution in front 1 

based on the crowding distance. And then after sorting them in a descending order, we are 

going to choose the top N solution for the next generation population. And this is the way, 

we will be selecting good solution generation by generation. 
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So, this is the last step in the NSGA II and thereafter we increase the counter. As we can 

see here now, t is equals to t plus 1 equals to 2; so this means it is going to be the second 

generation. Generally, we allow many number of a generation, so that the algorithm should 

converge to the pareto front. So, inside this loop in the second generation, we will again 

be applying the crowding distance tournament followed by crossover, mutation and the 

survivor operators till the termination condition get satisfied. 

We now start the simulation of NSGA II; the first set of problems which we have taken is 

from the ZDT set. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓1(𝑥) 

𝑓2(𝑥)  =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

0 ≤   𝑥𝑖  ≤ 𝑞 1, 𝑖 = 1,… , 𝑛. 

Now, as we can see here ZDT is stands for the Zitzler, Deb, Thiele; these are the author of 

these problems, so their surnames are used as ZDT test problems. These ZDT problems 

are two objective problem, where we want to minimize f 1 and minimize f 2 which is 

composed of functions say g and h.  

All the variables are lying between 0 to 1 and we can see that all these test problems can 

be found on the paper given here. The ZDT problems are considered as the benchmark 

problems; because when we develop any multi objective evolutionary algorithm, we want 

to test our algorithm whether the algorithm or EC technique is working fine or not. 

Second thing is we can see that these ZDT problems they do not have any constraints, they 

have only the variable bounds. Therefore these problems are also called as box constrained 

optimization problem. For solving all these ZDT problems, we have taken NSGA II 

parameters as the population size is 100.  



The generation is 200, probability of crossover is 0.9, probability of mutation is 1 by n; 

this is the thumb rule we are following. For s b SBX operator eta c is 15, for polynomial 

mutation the eta m is 20. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓2 (𝑥)  =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =   1 +
9

𝑛 − 1
∑𝑥𝑖

𝑛

𝑖=2

   

ℎ(𝑓1, 𝑔)   =   1 −  √
𝑓1

𝑔
 

So, let us begin our first problem that is ZDT 1 problem. As we can see the first objective 

is simple, which is x 1 only and f 2; f 2 objective is comprised of g and h function. So, g 

function is given as the summation of x i’s from i equal to 2 to n and this is multiplied by 

n divided by n minus 1. 

Now, h is also under the square root of f 1 divided by g. This particular problem is solved 

for 30 number of variables. The characteristic of this problem is that, it has a convex pareto 

optimal front. 
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So, let us see the result of NSGA II on ZDT 1 problem. Here we can see that this is the 

initial population and the solutions are randomly generated. And the and these solutions 

are now shown in the objective space of f 1 and f 2. In these simulations, we will be 

showing the solution in the objective space only.  

The red line in this particular figure represents the pareto optimal front for the given 

problem. Since it is a mathematical problem, so we already know where is the pareto 

optimal front. So, after 200 generation, we can see that the solutions are well converged to 

the pareto front and they are also distributed from one corner to the another corner. So, let 

us see the simulation of NSGA II on ZDT 1 problem. 
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So, as we can see that the solutions are distributed, they are slowly moving towards the 

pareto optimal front. And when we are close to the pareto optimal front, they converges 

little slowly as compared to their initial phase. And finally, all these solutions will be 

converge to the pareto optimal front as we can see after 200 generation. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 



𝑔(𝑥)   =  1 +
9

𝑛 − 1
∑𝑥𝑖

𝑛

𝑖=2

  

ℎ(𝑓1 , 𝑔)  =   1 −  (
𝑓1

𝑔
)
2

 

So, this is the simple problem which is very well solved by z by the NSGA II. Now, we 

will take the another problem that is called ZDT 2. The f 1 objective remains the same, the 

format of f 2 remains the same. So, the g is also same as ZDT 1; but h has been changed.  

So, we can see that 1 minus; now we have f 1 divided by g square and in this particular 

problem, this h will make our pareto optimal front non-convex. So, as we remember, there 

are many classical optimization techniques or methods which cannot be used for non-

convex pareto optimal front. 

So, now we have to see whether NSGA II can solve this problem or a not. We have n 

equals to 30 variable for the given problem. 
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Again we can see the distribution of the solution, which are generated randomly under the 

initial population. And after 200 generations, we can see the solutions are distributed or 

converged to the pareto optimal front and also distributed are on the pareto optimal front. 

Let us see the simulation. How these solutions are converged to the pareto front? 
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As we can see the group of solutions they are converging slowly and the algorithm phase 

no problem in converging for the non-convex pareto optimal front. And we can see at the 

end of 200 generation, all the solutions are converged to the pareto optimal front. So, we 

get a we, the solutions are converged as well as distributed on the pareto front. 

(Refer Slide Time: 45:29) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 



𝑔(𝑥)   =  1 +
9

𝑛 − 1
∑𝑥𝑖

𝑛

𝑖=2

  

ℎ(𝑓1 , 𝑔)  =  1 −  √
𝑓1

𝑔
 −  (

𝑓1

𝑔
) 𝑠𝑖𝑛 (10𝜋𝑓1) . 

 

The next problem is the ZDT 3 problem; f 1 and f 2 formats are the same, similarly g is 

also the same. But in case of h function, we have under root of f 1 g factor as well as we 

have the sin. This problem is also solved for 30 number of a variable; the characteristic of 

this problem is, it has number of disconnected pareto optimal front. 
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So, this is the initial population which is generated; as we can see in front in f 2 which is 

y axis, the solutions are distributed in the range of 2 to 5.5. After 200 generation, these 

solutions are converged to the pareto optimal front. And as we can see, we have these this 

particular front which is disconnected. Let us see the simulation of the algorithm on ZDT 

3 problem. 
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So, from the beginning itself, the solutions are distributed on the different front and after 

few generations, these solutions are converged to the pareto front as well as they have 

distributed in their respective regions. So, we will see one more time, these solutions have 

already converged and now distributed. So, as we can as we understand that, NSGA II 

even can solve the problem which has disconnected pareto optimal front. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1 (𝑥)   =   𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 



𝑔(𝑥)   =   1 + 10(𝑛 − 1) +∑(𝑥𝑖
2  −  10 𝑐𝑜𝑠(4𝜋 𝑥𝑖)) 

𝑛

𝑖=2

  

ℎ(𝑓1, 𝑔)   =  1 −  √
𝑓1

𝑔
. 

Now, we are moving to the fourth problem, which is called ZDT 4 problem. Here the 

format of f 1 and f 2 remain the same; but the g function has been changed. As we can see 

that x i square minus 10 cos of 4 pi x i this factor has been added; h is again 1 minus under 

root of f 1 by g. This problem we have considered for 10 variable, except for x 1 all 

variables will be lying from minus 5 to 5; meaning x 1 will be lying from 0 to 1 and rest 

of the solution will be lying from minus 5 to plus 5. 

It has a convex Pareto optimal front and there exist 21 to the power 9 or about 8 into 10 to 

the power 11 local Pareto optimum solution. So, from this particular characteristic; we can 

understand that this problem is difficult to solve, since it has many local Pareto optimal 

solutions. So, as we can see in the initial population, the solutions are starting very far from 

the Pareto optimal front. 
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And after 200 generation, we can see the solutions are well converged to the front. We will 

see the simulation now. 
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As can be seen that many of the solutions are on the corner on the one of the corner; once 

the solution are coming closer to the Pareto front, these solutions get distributed along the 

front. This for this particular problem, we are running NSGA II for 300 generation; as we 

can see that the solutions are converged and on the Pareto front. 

Now, here again we see that the solutions which were approaching towards the Pareto front 

from the corner, now they are distributed along the Pareto optimal front. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓1 (𝑥)   =  1 −  𝑒𝑥𝑝(−4𝑥1)𝑠𝑖𝑛(6𝜋 𝑥1) 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒             𝑓2 (𝑥)   =  𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥)) 

𝑔(𝑥)   =   1 + 9 [
(∑ 𝑥𝑖

𝑛
𝑖=2 )

9
]

0.25

 

ℎ(𝑓1, 𝑔)   =  1 −  (
𝑓1

𝑔
)
2

. 

Under this class of ZDT problem, we have the last problem which is ZDT 6. For this 

particular problem, the f 1 objective is changed here, which incorporate exponential term 

as well as sin term, and f 2 objective has the same format. And the function g has been 

changed, and h is 1 minus f 1 g square. For the given problem, 10 number of variables are 

considered and this particular problem has a non-convex Pareto optimal front. 
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So, this is the initial population generated for the given problem and we can see that many 

of the solutions are generated on the one side, which we can say that the skewed 

population. And after running this particular algorithm for many generations, we can see 

that the solutions are very well distributed on the Pareto optimal front. Let us see the 

simulation now. 
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Here we can see the solutions are moving along the corners as well as some solution in the 

middle. As and when we are close to the Pareto optimal front, these solutions are 

distributed and slowly and slowly these solutions are moving towards the Pareto front. We 

have run this particular algorithm for more number of a generation as we can see on top; 

it is already 400 generations.  

The problem which we have solved using NSGA II, all of them are by objective problem. 

Just to show the significance of the same algorithm or we can say the performance of the 

given algorithm, we are going to solve some three objective problems. 
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So, the another class of problem which we have chosen for the performance assessment is 

called DTLZ problem. Now, we can see here these DTLZ problem, the name came from 

the surname of the authors of these problems and the details of the paper are given here. 

These problems are called scalable problem; it is only because we can change the number 

of objectives.  

We can consider two, three and many more number of objectives to test our algorithm. 

The NSGA II parameters for DTLZ 2 problem, we can see population is kept 300, 

generation is 500, probability of crossover is 1, probability of mutation is 1 by n, SBX eta 

c value is 30, and eta m for polynomial mutation is 20. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         𝑓1(𝑥)  =  
1

2
𝑥1𝑥2… 𝑥𝑀−1(1 + 𝑔(𝑥𝑀)) 

         𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓2(𝑥)  = 𝑥1𝑥2… (1 − 𝑥𝑀−1)(1 + 𝑔(𝑥𝑀)) 

⋮ ⋮ 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓𝑀−1(𝑥)   =   
1

2
 (1 − 𝑥2)(1 + 𝑔(𝑥𝑀)) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                      𝑓𝑀(𝑥)  =  
1

2
(1 − 𝑥1)(1 + 𝑔(𝑥𝑀)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                   0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛, 

𝑤ℎ𝑒𝑟𝑒             𝑔(𝑥𝑀)  =  100 (|𝑥𝑀| + ∑ (𝑥𝑖 − 0.5)
2

𝑥𝑖∈𝑥𝑀

   −  𝑐𝑜𝑠(20𝜋 (𝑥𝑖  −  0.5))) , 

Let us discuss the DTLZ 1 problem. As we can see, it is a scalable problem. So, we can 

write say M number of objective. So, it is starting from minimizing f 1, f 2 till f M and M 

can be any number. So, the format of this f 1, f 2, f M we can see that we have x 1 x 2 till 

X M and then we have a one function based on g and there is a parameter called X M.  



In this particular problem, the all variables are lying between 0 to 1 and the function g is 

given a here. As we can see it depends on X M value and inside the bracket we have x i 0 

minus 0.5 square as well as we have a cos term. For ZDT 1 problem, it was suggested to 

take k equals to the cardinality of X M which is 5, and the number of variable for the given 

problem is M plus k minus 1.  

M is the number of objective, k is 5 for DTLZ 1 problem and minus 1. The Pareto front of 

this particular problem is the summation of all objective equals to 0.5. So, it is going to 

give us a plane now. The characteristic of this problem is, we are going to have 11 to the 

power k minus 1 local Pareto optimum front. So, as from the problem it is evident that, 

this problem is difficult to solve. 
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So, this is the initial population where NSGA II started and it is quite far; because we 

remember that the Pareto optimal front will be lying at 0.5. And after running for 500 

generation, we can see that the solutions are converged to the Pareto front and they are 

also distributed along that Pareto optimal surface. So, now since it is three objective, we 

call it as a Pareto optimal surface. 
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If we see the simulation of NSGA II for DTLZ 1 problem; we can see that the solutions 

for are coming from very far, and now they are started converging on the Pareto surface 

which is a plane in this given problem And once these solutions are converged here; we 

can see that, the we are that crossover and mutation are generating new solutions on the 

Pareto surface and based on the crowding distance, the solutions were selected. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒               𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1𝜋 /2)  …   𝑐𝑜𝑠 (𝑥𝑀−1 𝜋 /2), 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                   𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)  )𝑐𝑜𝑠(𝑥1𝜋 /2)…  𝑠𝑖𝑛(𝑥𝑀−1 𝜋 /2)  



⋮  ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝑓𝑀(𝑥)     =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛(𝑥1𝜋 /2) )    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛, 

𝑤ℎ𝑒𝑟𝑒,              𝑔(𝑥𝑀)   = ∑ (𝑥𝑖 − 0.5)^2

(𝑥𝑖 ∈ 𝑥𝑀)

   

𝑤ℎ𝑒𝑟𝑒 𝑘 = |𝑥𝑀| = 10, 𝑎𝑛𝑑     𝑛 = 𝑀 + 𝑘 − 1  

 ∑(𝑓𝑚
∗ )2 

𝑀

𝑚=1

 = 1, 𝑎𝑛𝑑       𝑥𝑖
∗  =  0.5 ∈  𝑥𝑀 

Let us move to the second problem which is DTLZ 2 problem; since it is a scalable, the 

format of f 1, f 2 and f M are given. In this particular problem, cos and sin terms are 

included. Again the variable bounds for all the variable is are given as 0 from 0 to 1 and 

the function g is given as x i minus 0.5 square.  

For DTLZ 2 problem, k is considered as 10, number of variable is equals to M plus k minus 

1 and where M is the number of objective and k is taken 10 for DTLZ 2 problem. The 

Pareto optimal front is f star m square, meaning it is going to be hyper sphere for us. And 

all the Pareto optimal solution will be at 0.5, x i equals to 0.5. 
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Now, let us solve this problem, initially the solutions are generated randomly as we can 

see on the figure on the left hand side. And after many after the 500 generation, we can 

see on the right hand side; the solutions are converged to the Pareto optimal front. We will 

see the simulation for the given problem now. 
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Now, we can see the problem is relatively simple and therefore, the solutions quickly 

converged to the Pareto front. Once these solutions are converged here, we can see the 

solutions are keep on changing their position; it is only because all the solutions are rank 

1 and we are selecting the solution using crowding distance now. So, for this particular 

problem, the algorithm converges quickly. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒               𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀))𝑐𝑜𝑠 (𝑥1𝜋 /2)  …   𝑐𝑜𝑠 (𝑥𝑀−1 𝜋 /2), 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                   𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)  )𝑐𝑜𝑠(𝑥1𝜋 /2)…  𝑠𝑖𝑛(𝑥𝑀−1 𝜋 /2)  

⋮  ⋮   

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                  𝑓𝑀(𝑥)     =  (1 + 𝑔(𝑥𝑀))𝑠𝑖𝑛(𝑥1𝜋 /2) )    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                 0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟 𝑖 = 1,2,… , 𝑛, 

𝑤ℎ𝑒𝑟𝑒,       𝑔(𝑥𝑀)  =  100 (|𝑥𝑀|  + ∑ (𝑥𝑖 − 0.5)^2  −  cos (20𝜋 (𝑥𝑖  −  0.5))) 

𝑥𝑖∈𝑥𝑀

  , 

𝑤ℎ𝑒𝑟𝑒     𝑘 = |𝑥𝑀| = 10, 𝑎𝑛𝑑        𝑛 = 𝑀 + 𝑘 − 1 

∑(𝑓𝑚
∗)2

𝑀

𝑚=1

= 1, 𝑎𝑛𝑑       𝑥𝑖
∗ =  0.5 ∈  𝑥𝑀 

Now, coming to the third problem, which is the DTLZ 3 problem. The format of f 1, f 2, f 

m objectives are given in equation number 9; variable bound bounds are the same as 0 and 

a 1 and the function g M is taken similar to the DTLZ 1. Here k is considered as 10, number 

of variable will become M plus k minus 1; the Pareto front will be the same as DTLZ 2.  



And in this particular DTLZ 3 problem, we will have many local Pareto optimal front. So, 

meaning that, we are adding a complexity into DTLZ 2 problem by introducing many local 

Pareto optimal front. 
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Now, the initial population is generated and in the objective space, we can see that the 

solutions are generated and they are very far from the Pareto surface. After running the 

algorithm for 500 generation, we can see the solutions are distributed; first converged to 

the Pareto surface, and they are also distributed along the surface. Let us see the simulation 

for the given problem now. 
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In this particular problem, we can see the solutions are moving from very far, and slowly 

and slowly they are converging towards the Pareto front. So, after 200 generation, these 

solutions converged to the Pareto optimal front. So, as we can see the solutions are already 

converged. 

So, in this case what we observe that, initially since there were many local Pareto optimal 

front; so that is why the solution are slowly moving to, slowly moving towards the Pareto 

surface. And once they are closed, they are now distributing over the Pareto optimal 

surface. 



(Refer Slide Time: 59:24) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝑓1(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠(𝑥1
𝛼𝜋 /2 ) …  𝑐𝑜𝑠(𝑥𝑀−1

𝛼   𝜋 /2) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓2(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑐𝑜𝑠(𝑥1
𝛼𝜋 /2 ) …  𝑠𝑖𝑛(𝑥𝑀−1

𝛼   𝜋 /2) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝑓𝑀(𝑥)  =  (1 + 𝑔(𝑥𝑀)) 𝑠𝑖𝑛(𝑥1
𝛼𝜋 /2 )  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          0 ≤  𝑥𝑖 ≤  1, 𝑓𝑜𝑟       𝑖 = 1,2, …  , 𝑛 

𝑤ℎ𝑒𝑟𝑒     𝑔(𝑥𝑀)  = ∑ (𝑥𝑖
𝛼  − 0.5)^2

(𝑥𝑖∈ 𝑥𝑀)

, 

𝑤ℎ𝑒𝑟𝑒  𝑘 = |𝑥𝑀| = 10, 𝑛 = 𝑀 + 𝑘 − 1, 𝑎𝑛𝑑 𝛼 = 100 

∑(𝑓𝑚
∗)2

𝑀

𝑚=1

= 1, 𝑎𝑛𝑑 𝑥𝑖
∗  =  0.5 ∈   𝑥𝑀 

We have come to the last problem in the DTLZ family; although there are many DTLZ 

problem, we will show the simulation of NSGA II for this DTLZ 4 as a last problem. Now, 

we can see that this is the same as DTLZ 1, DTLZ 2 problem; however, this alpha term is 

included in every equation of f 1, f 2 and f M, because of that there is a that incorporate 

some complexity for the algorithm to converge.  



Variable bound is again lying between 0 to 1 and g M function is given as x i to the power 

alpha minus 0.5 square. For the given example, given problem we are taken k equals to 

10, number of variable as M plus k minus 1 and alpha is taken as a large value. Now, the 

Pareto optimal front is the same as DTLZ 2, which is a hyper sphere and let us see how 

we are going to solve this problem. 
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So, initially these solutions are generated and as we can see, many of the solutions are on 

one of the corner. And finally, after 500 generation, the solutions are converged to the 

Pareto front and they are distributed as well. 
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So, let us see the simulation of NSGA II for the given problem. So, as we can see, although 

we started from the corner; these solution quickly converged to the Pareto front. And once 

they converged, now they are distributing the solution along the Pareto surface. Now, till 

500 generation, these solutions are changing their position; because all of them are rank 1 

solution. 
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With this simulation, we have come to the closer of the session on NSGA II. In this 

particular session, we discussed about the ideal multi objective optimization approach; 



because in this approach, when we are going to solve the multi objective problem, we will 

be generating the multiple Pareto optimal solutions on the surface. 

After generating those solutions, using the higher level of information; we can always 

choose the desired solution. But the question comes, how we can generate those multiple 

solutions on the Pareto optimal front? And therefore, EC techniques shows upper hand 

over the other algorithm; it is only because we work with the number of solution, which is 

called as a population with EC techniques.  

By appropriately changing the fitness in NSGA II, it was done using the non dominated 

sorting by assigning the rank and sorting the solutions in fronts and thereafter, calculating 

the crowding distance. Once we change the fitness, there are few more changes that has 

been done with NSGA II; that are for example, the crowded binary tournament selection 

and the survival stage, how we are going to select best n solution.  

So, in this particular session, we understood this NSGA II through an example. So, the 

working principle, all the operators which we discussed here that includes the crowded 

tournament selection, non-dominated sorting and crowding distance, and the survivor. The 

performance of NSGA II is tested on two objective and three objective mathematical 

problems; these problems are bench marked, these problems are considered as benchmark 

problems.  

Whenever we come up with the new algorithm, we always test these algorithm on these 

benchmark problems, so that we can assess the performance. And once they are good, we 

can even extend these algorithm to solve some real world problem. With this hand 

calculation, simulation, and graphical understanding of NSGA II, I conclude this session. 

Thank you very much. 


