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Lecture - 20 

Classical Multi-Objective Optimization Methods 

 

Welcome to the session on Classical Multi-Objective Optimization Method. As of now, 

we have discussed about the introduction of multi-objective optimization in which we 

discuss the concept of dominance, the Pareto-optimality. We also discussed approaches to 

multi-objective optimization. In this particular session, we will be focusing on some of the 

methods that can be used to solve multi-objective optimization problems. 

Now, here we refer these method as classical methods, it is only because we want to 

differentiate these methods with EC techniques. Also, these methods are relatively older 

or we can say EC techniques are relatively newer and therefore, we are calling this method 

as a classical optimization method. 
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In this particular session, we will be going through the introduction and thereafter we will 

discuss few methods. The method includes weighted-sum method, epsilon constraint 

method, weighted metric method, and Benson method. Although, there is a large class of 

methods that can be considered as a classical methods, we will be focusing on these 4 

methods. Thereafter, we will close this session.  
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑀(𝑥) )𝑇    

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑔𝑗(𝑥) ≥  0, 𝑗 = 1,2, … , 𝐽, 

 ℎ𝑘(𝑥)  =  0, 𝑘 = 1,2, … , 𝐾 

 𝑥𝑖
(𝐿)

≤  𝑥𝑖   ≤  𝑥𝑖
(𝑈)

, 𝑖 =  1,2, … , 𝑛 

Let us begin with introduction. As we remember a multi-objective optimization problem 

can be written as, as we can look into the equation number 1, we want to minimize the 

objective function. So, we have multiple functions here. Now, in this particular case, we 

have written all the functions as a vector.  

So, we can consider we have a vector of objective function. This particular function is 

subjected to inequality constraint, equality constraint, and we have a variable bounds. 

Now, here when we are referring any f m, it means that we are referring to the m-th 

objective in the objective vector and the size of the objective vector is capital M.  

Similarly, we can have inequality constraint that is up to J, and we can have equality 

constraint up to capital K. The variable vector x, it is a column vector having a dimension 

n. Similarly, we have bounds that is lower and upper bound on each decision variable. 
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We know that there are two approaches that can be used to solve multi-objective 

optimization problem. One is called preference-based approach; another is called ideal 

multi-objective optimization approach. As we can see here the classical method are based 

on preference-based multi-objective optimization method in which we generally convert a 

multi-objective optimization problem into single-objective optimization problem.  

There are other methods as well, such as generating methods. These methods can also be 

considered as classical methods for multi-objective optimization. Since, the classical 

methods are based on the preference-based approach. So, let us have a recap of what we 

mean by preference-based approach. 
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So, if we look at here, suppose we have M number of objectives all of them are conflicting 

in nature and these objectives are subjected to constraints. Thereafter, we use some higher 

level information that information will help us to convert this multi-objective optimization 

problem into single objective optimization or we can make some other composite functions 

that can be solved. 

Now, since the problem is single objective optimization, we can use any single objective 

optimization technique to solve them. And finally, we are going to get one optimum 

solution as we can see here and this optimum solution will be one of the Pareto-optimal 

solution. This approach is found to be simple and why because we are converting all the 

objectives into a single objective.  

Since, we have to convert into a single objective we need higher level information as we 

discussed, and one of the way is called weights that when that can be used with the 

different objectives and we can make a composite function. With this introduction let us 

understand these classical methods for multi-objective optimization. We will start our 

discussion with weighted-sum approach. 
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As it can be seen here the weighted sum approach in which we will be making a composite 

function by adding the weight into the objective function and then we take a summation 

over all the objective. Here these w’s for every objective will constitute a weight vector 

which is generally written as omega. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) =  ∑ 𝑤_𝑚 𝑓𝑚(𝑥)

𝑀

𝑚=1

  

This omega is a weight vector and the important point is that all the weight vectors that is 

for each objective that should take the value between 0 to 1. Moreover, the summation of 

the weights should be equals to 1. So, in this case then we will be using the weighted sum 

method we will be multiplying the weight into the objective function, we will be taking 

this summation.  

However, we have to be careful or we have to taken into an account that the omega values 

for each objective should lie between 0 to 1 and the summation of all omegas should be 1. 

Let us take a case of two objective problem now, in this case our composite function F x 

can be written as omega 1 f 1, similarly omega 2 f 2. Looking at this particular equation 

we can see it is a linear combination of f 1 and f 2. 

 If we look into the figure on the right-hand side here we want to minimize the f 1, 

minimize f 2, in this case since these are the linear combination. So, the contours which 



are represented by a, b, c, and d, so, these are the contours of the composite function f. 

Now, here we can see that a specific value of say omega 1 and omega 2 will decide the 

slope of the contour as we can see on the top.  

So, this particular slope will be telling us that for example, we want to minimize the F x, 

so these contours will be moving as we can see here and finally, the optimal solution for 

the corresponding omega that will be A. And from this particular figure what we can 

understand that if we change the value of omega 1 and omega 2, in this case, we are going 

to get a different slope that different slope will help us to find out the other solution on the 

Pareto-optimal front.  

So, in any case, we are, we want to generate multiple solutions on the Pareto-optimal front 

then we need to take different sets of omega 1 and omega 2 that will help us to find those 

points. Now, since our problem can have multiple constraints as well, so the modified 

multi-objective optimization problem can be written into the single objective form. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) =  ∑ 𝑤_𝑚 𝑓𝑚(𝑥)

𝑀

𝑚=1

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑔𝑗(𝑥) ≥  0, 𝑗 = 1,2, … , 𝐽, 

 ℎ𝑘(𝑥)  =  0, 𝑘 = 1,2, … , 𝐾 



 𝑥𝑖
(𝐿)

≤  𝑥𝑖   ≤  𝑥𝑖
(𝑈)

, 𝑖 =  1,2, … , 𝑛 

 

We can see in equation number 3, that we want to minimize the composite function which 

is given as capital F x and while minimizing this we also have to take care of the constraints 

as well as the variable bound. Let us discuss theorem number 1, in this particular theorem, 

it says that the solution to the problem represented by equation 3 is a Pareto-optimal, if the 

weight is positive for all objective.  

So, as we can see in the equation number 3, this is the modified single objective 

optimization problem. If we are going to have all the weights positive, then it is going to 

give us a one optimum solution. We also have theorem 2, in which if x star is the Pareto-

optimal solution of a convex multi-objective optimization problem, then there exist a non-

zero positive weight vector w such that x star is the solution to the problem given by 

equation number 3.  

So, what we can understand from the theorem number 1, that if we are going to take 

positive value of omega or we have this omega vector, if we are going to have the positive 

value that will be corresponding to one optimal solution. However, in the theorem 2, it 

says that if the problem is a convex problem, then for every Pareto-optimal solution there 

is a non-zero omega vector that can help us to find that particular solution. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓1(𝑥)  =  𝑥1 

                                                  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓2(𝑥) =  1 +  𝑥1 + 𝑥2
2 − 0.2 sin(𝜋𝑥1) 

                                                  𝑏𝑜𝑢𝑛𝑑𝑠           0 ≤  𝑥1 ≤  1     𝑎𝑛𝑑 − 2 ≤  𝑥2  ≤  2  

𝐹(𝑥) =  𝑤1𝑥1  +  𝑤2(1 +  𝑥2
2  −  𝑥1  − 0.2  𝑠𝑖𝑛(𝜋 𝑥1)) 

𝜕𝐹

𝜕𝑥1
  =  𝑤1  +  𝑤2 [−1 − 0.2 𝜋  𝑐𝑜𝑠(𝜋 𝑥1)]  =  0, 

 

Now, having understanding about the weighted sum method let us perform some hand 

calculation. For this, we have taken a simple case in which we have just two objectives. 

As we can see that we want to minimize f 1, we want to minimize f 2 and both the variables 

which are x 1 and x 2 they are lying between 0 to 1 and minus 2 to plus 2. 

This particular example, we have taken from the book Multi-objective optimization using 

evolutionary algorithm by Professor Deb. So, what we can do here is that the step 1 suggest 

we have to form the composite function F x using weights which is w 1 and w 2.  

So, since we know the form, we can directly write the capital F x is equals to omega 1 x 1 

omega 2 f of 2. So, since the equation of f 2 is given on the top, we construct this objective 

function. Now, as we know that the current problem which we have converted into the 

single objective optimization, it is a unconstrained problem. So, for this particular problem 

which is unconstrained and single objective, we can use our optimality conditions.  

The first optimality condition is the necessary optimality condition that we can find it by 

making the gradient of the function equals to 0. In this case, the first component will 

become dou F by dou x 1. So, basically, we are differentiating this capital F with respect 

to x 1 only. And this will give us the equation as we can see here and we have to put it 

equals to 0. 
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The 2nd component we will get it when we will again differentiate the capital F with 

respect to x 2 and this coming out to be 2 omega 2 x 2 that is also equals to 0. So, both the 

components we are making equal to 0, so that we can find the value of x 1 and x 2. 

(Refer Slide Time: 15:33) 

Type equation here. 

𝑥1
∗   =

1

𝜋
  𝑐𝑜𝑠−1 [

1

0.2 𝜋
(

𝑤1

𝑤2
 −  1 )]  



𝑥2
∗   =  0,   

When we equate both the component of the gradient of the capital F equals to 0, we will 

get this stationary point. As we can see here, the stationary point x 1 star is given and x 2 

star also given. Now, in this, for this particular problem x 2 star is always 0 and x 1 star 

has the value that depends on omega 1 and omega 2. 

Since, we know that the stationary point can be maxima or minima or it can be an inflection 

point, so we need to find out the Hessian. So, using this sufficient optimality condition, we 

find the Hessian of Hessian matrix, since it is a two-variable problem, so the Hessian 

matrix is 2 by 2. Since, the matrix is simple we will be looking into the principal 

components only. 

Now, here to H to be the positive definite, so we can see that the component which is given 

as 2 omega 2 that should be greater than and equals to 0. By putting this condition that 

omega 2 should be greater than and equals to 0, the another principal component should 

also be greater than 0.  

If we take only the function with respect to x 1, we will say that the sin of pi of x 1 should 

be greater than 0. Now, by looking into the condition and we want to make H should be 

positive definite, we can say that the point the stationary point which we get at the top 

which is x 1 star and x 2 star becomes the minimum point. 

Now, here if we look at this particular condition when we have sin of pi x 1 greater than 

equals to 0, this particular condition suggest that the x i should lie between 2 i and 2 i plus 

1 for all the values of i starting from 0 to 1, but at the same time we also know that x 1 

should lie between 0 to 1, therefore, the optimum solution for the given problem is only 

valid when we take i equals to 0.  

So, in this case we can see that the optimum solution will be lying when we say that x 1 

star is lying between 0 to 1. So, for the given problem the range of x 1 is given whenever 

it is lying between 0 to 1. It is going to give us an Pareto-optimal solution along with that 

x 2 star should be 0.  

In the previous equation, we found that x 1 is calculated with respect to the values of omega 

1 and omega 2 and x 2 star was 0. So, in this case, we can see that what value of omega 1 



and omega 2 can give us the extreme solution on the Pareto-optimal front. So, when we 

say extreme solution meaning that the solution which is corresponding to the minimum of 

f 1, on the Pareto-optimal front, similarly the other solution which is minimum of f 2 on 

the Pareto-optimal solution.  

So, let us identify these two extreme solutions as well as what are the corresponding values 

of omega 1 and omega 2. 
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𝑥1
∗   =  

1

𝜋
 𝑐𝑜𝑠−1 [

1

0.2 𝜋
 (

𝑤1

𝑤2
 −  1 )] , 𝑥2

∗  =  0 

𝑥1
∗  =  0;      𝑤1  =  0.620, 𝑤2  =  0.380 

𝑥1
∗  =  1;     𝑤1  =  0.271, 𝑤2  =  0.729 

 

0.271 ≤  𝑤1 ≤  0.620, 𝑤2  =  1 −  𝑤1 

 

 

So, in the previous slide we understood that x 1 star depends on omega 1 and omega 2 and 

x 2 star should always be 0. Now, since, one of the extreme will be lying on x 1 is equals 



to 0, if we equate this particular condition into the equation here, so what we can find is 

that cos 0 is 1, by equating it we will get this omega 1 by omega 2 is 1.628. 

The another extreme solution will be lying at x 1 star equals to 1. When we are putting this 

condition in the given equation here we can find the value of omega 1 and omega 2 will 

become 0.372. So, here from these two expression, we can find that what could be the 

range of omega 1 and omega 2. 

So, for both extreme points we can use omega 1 plus omega 2 equals to 1. Meaning that 1 

will be 1 will be independent variable and omega 2 can be found in terms of omega 1. So, 

let us take x 1 star equals to 0. In this case, since we are using omega 1 plus omega 2 equals 

to 1 and the ratio which is given on the top by using these two equation we can get omega 

is equals to 0.620 and omega 2 is 0.380. 

Similarly, for another extreme solution where we write x 1 star as 1, and using the two 

equation as omega 1 plus omega 2 0 and omega 1 divided by omega 2 as 0.372, it will give 

us omega 1 as 0.271 and omega 2 as 0.729. So, if we choose any combination of the 

weights in the following range, we can find the corresponding optimal solution.  

Meaning that from the above condition as we can see x 1 star equal to 0 and x 1 star equals 

to 1 that will give us this particular range that when we are going to change omega 1 from 

0.271 to 0.620. And we can find the value of omega 2 by substituting into the equation. 

The solution corresponding to these different values of omega within the range can find 

the Pareto-optimal solution for the given problem. 

Now, since this particular method is found to be quite simple and straight forward, and we 

can always use our concepts for single objective optimization this method offers various 

advantages. So, let us look at the advantages first and then we will discuss the 

disadvantages. 
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So, the first very first advantage is this is the simplest way to solve any multi-objective 

optimization problem. The problem, which we have solved that help us to understand that 

converting multi-objective problem into single objective, it is actually reducing the 

complexity of the problem and making into a single objective. 

Second advantage could be that for the problems having convex Pareto-optimal front. This 

method guarantees generating solution on the entire Pareto-optimal set. So, we discuss the 

theorem number 2 in which these if we are solving a convex problem. Convex problems 

mean the problem having convex Pareto-optimal front.  

So, when we are choosing the value of omega 1 and omega 2, it will be corresponding to 

one of the Pareto-optimal solution on the front. Now, let us discuss what could be the 

disadvantages with this particular method. So, first disadvantage is a uniformly distributed 

set of the weights does not guarantee to generate a well distributed set of solution on the 

Pareto-optimal front. It is due to the non-linear relation among the variables and the 

weights. 

Second is, different weights do not ensure that we get the different Pareto-optimal solution 

by this method. It means that the omega 1, omega 2 value for a one particular set of solution 

and another omega 1, omega 2, omega 3 values for another solution, if we run it our 

optimization algorithm, they may not give you two distinct solution. Sometimes this 

solution can converge to a one Pareto-optimal solution. 
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Let us discuss the third which is an important disadvantage for the given method that this 

method cannot generate certain Pareto-optimal solution in case of non-convex objective 

space. So, let us understand that. In the figure, we can see that the red line is represented 

by the Pareto-optimal front. Now, if we look at the point A, we are going to get a contour 

as written by the small a value.  

Similarly, if you find the contour at the point b then we are going to get another contour. 

Now, the problem is as and when we are trying to find out any contour that is tangent to 

the feasible objective space, for example, such as at the middle now. Now, at this particular 

point we cannot find the tangent and therefore, if inside this particular segment BC, we 

cannot get any solution in the line segment BC. 

Now, if we look at this particular Pareto front, in this example only the segment BC is the 

non-convex and the other portion of the Pareto-optimal front is the convex one. So, the 

different weights of omega 1 and omega 2, can generate the solution other than the segment 

BC.  

So, therefore, here as and when we are solving a problem which is having a non-convex 

Pareto-optimal front, this method cannot generate the optimal solution in that particular 

segment which could be the important limitation, since many problems could have non-

convex Pareto-optimal front. 



As of now, we have discussed the very simplest method and we found that this particular 

method we cannot use for non-convex Pareto-optimal front. So, in order to eliminate this 

particular problem, we have an important method which is called epsilon constraint 

method. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:   𝑓𝜇(𝑥)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:    𝑓𝑚(𝑥) ≤  𝜖𝑚             𝑚 = 1,2, … , 𝑀 𝑎𝑛𝑑 𝑚 ≠ 𝜇   

𝑔𝑗(𝑥)  ≥  0,                                  𝑗 = 1,2, … , 𝐽 

ℎ𝑘(𝑥) =  0,                                𝑘 = 1,2, … , 𝐾 

𝑥𝑖
(𝐿)

≤  𝑥𝑖   ≤  𝑥𝑖
(𝑈)

,                   𝑖 = 1,2, … , 𝑛. 

 

So, what is this? So, in this particular epsilon-constraint method, we can generate solutions 

for the problems having non-convex Pareto-optimal front. This particular method converts 

the multi-objective optimization problem by considering only one objective to minimize 

and rest of the objectives we will be having some constraint.  

Now, as can be seen here that the objectives from m equal to 1 to capital M and this small 

m should not be the same as mu. So, as we can see that we have chosen f mu to minimize, 



so this particular objective we are removing, but for rest of the objectives we are putting a 

constraint here. Apart from that we can have the constraints like g j of X these are the 

original constraint of the problem as well as the equality constraints and the a variable 

bound. 

So, here if we looked at this particular value called epsilon m, so generally we use this 

epsilon m value as a small value, but in the case of epsilon constraint method we are using 

or we are representing epsilon m value as an upper limit on the objective function which 

can be a bigger value. And therefore, we can see that epsilon m represents an upper bound 

of the value f m. As I mentioned earlier, epsilon m does not need to be a small value close 

to 0. So, this we have to be careful. 
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Now, let us understand this method graphically. So, we can see the figure on the left-hand 

side in which we want to minimize f 1, minimize f 2, and the red line is represented by the 

Pareto-optimal solution. So, for a given problem let us take f 2 as an objective function 

and we are going to put a constraint on f 1 as f 1 is equals to or smaller than epsilon 1.  

Let us consider that epsilon 1 is epsilon e c. So, here epsilon e 1 c, we can locate on the f 

1 axis. Now, looking at this particular constraint we can see that the region which is on the 

left-hand side, so basically this region is the feasible region and we have to find what is 

the optimal solution for the given problem? 



Now, since we want to minimize f 2 and we know that this particular region is only the 

feasible region, so here when we will be minimizing f 2, we are going to get a point C, 

which is the minimum solution for the given problem. So, in order to get different points 

on the Pareto-optimal front, we can change the value of say epsilon 1 and we can generate 

solution on the Pareto-optimal front. 

So, if we look into the figure, for example, we have chosen certain value called epsilon 1 

b, when we will be putting this particular constraint and finding the minimum solution for 

it we are going to get a solution B. Now, let us consider another epsilon value as epsilon 1 

d.  

In this case, what we will find that this particular epsilon value is actually out of the 

feasible objective space, but when we are putting as we know that region on the left-hand 

side is the feasible region when we are going to minimize the f 2 objective with this 

constraint the solution which we are going to get is the solution D. 

Let us look into the another situation now. Suppose, we have taken epsilon 1 a, now here 

when we are using it and we remember that the left-hand side of this line is the feasible 

one; when we are going to solve this problem, we know that we are not going to get any 

solution because all solutions are become infeasible solution.  

So, from this discussion we can see that when we are taking epsilon at say point C and at 

point B we are going to get a different value of epsilon. In one case, when we take a point 

D in terms of epsilon on the left-hand side we are going to get one of the extreme solution 

on the Pareto front. 

On the other hand, when we take a point A in terms of epsilon this particular situation 

cannot generate a solution for us because there is no feasible search space for the 

algorithm. Meaning that when we are deciding the epsilon value, we have to be careful 

what value of epsilon should be taken within the range, so that it should generate Pareto-

optimal solution for the given problem. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓1(𝑥)   =  𝑥1 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      𝑓2(𝑥)  =  1 +  𝑥2
2  −  𝑥1  − 0.2 𝑠𝑖𝑛(3𝜋 𝑥1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜              0 ≤  𝑥1 ≤  1, −2 ≤  𝑥2 ≤  2. 

 Now, let us solve a problem using the epsilon constraint method. We are considering the 

same problem which we have solved earlier. We want to minimize f 1, we want to 

minimize f 2 and this problem has just two variable bounds which are x 1 will be lying 

between 0 to 1 and x 2 will be lying between minus 2 to plus 2. We now have to convert 

this multi-objective problem into the modified single objective optimization problem.  

So, let us consider that we want to minimize f 2, we are putting a constraint on f 1 which 

is f 1 should be smaller than epsilon 1 and we have the ranges. So, let us consider that we 

have just one constraint which we are representing as g 1 and we are writing rewriting this 

constraint as epsilon 1 minus f 1 should be greater than and equals to 0.  

Here, we should note that that we are not considering the variable bounds as constraint 

only for the simplification. However, if we are solving some other kind of a problem, we 

should consider the variable bounds as our constraints. 
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∇ 𝑓2  −  𝑢2 ∇ 𝑔1   =  0, 

𝑔1 ≥  0, 

𝑢1𝑔1  =  0, 

𝑢1 ≥  0. 

Now, we know that when we will be solving a constraint optimization problem the 

optimality condition can be found using Karush Kuhn-Tucker conditions. So, these 

conditions are also known as KKT condition. Let us assume that we are taking u 1 as a 

Lagrangian multiplier for the constraint g 1. 

−1 −  0.3 𝜋  𝑐𝑜𝑠(3𝜋𝑥1)  +  𝑢1   =  0, 

2𝑥2  ≥  0, 

𝑢1 (𝜖1  −  𝑥1)   =  0, 

                                                                              𝑢1  ≥  0.  

So, using the KKT condition, the first condition is the optimality condition where we will 

be finding the gradient of the Lagrangian function, then we have this constraint equation, 



third is the complementary slackness condition, and finally, the Lagrangian multiplier can 

take u 1 greater than an equals to 0.  

By using this KKT conditions we can write the equations. So, as we can see, the first 

equation is representing the optimality condition, second equation is our variable bound, 

the third equation is the complementary slackness and the fourth equation is u 1 greater 

than equals to 0.  

Now, if we look at the equation number 1 here. So, as we can see that this particular part 

will go on to the right-hand side and for any value of x 1, u 1 will always be greater than 

0. Since, u 1 is going to be 0, looking at the complementary slackness condition the epsilon 

1 minus x 1 should be equals to 0, meaning that x 1 equals to epsilon 1. And the second 

equation: Now, if you look at this particular equation now, this equation suggests that x 2 

should be 0.  

So, from this these KKT conditions suggests that u 1 will be greater than 0, x 1 is equals 

to epsilon 1 and x 2 should be 0. From these condition, we can say that the optimal solution 

is x 1 star is equal to epsilon 1 and x 2 star is equals to 0. And this particular point will be 

lying on the Pareto-optimal front. So, what is the interesting point about this particular 

condition is that if we change the value of epsilon 1, we are going to get different Pareto-

optimal solutions. 
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So, we have another theorem for epsilon-constraint method. This theorem says that the 

unique solution of the epsilon constraint problem stated in equation number 4, that is the 

modified single objective optimization problem using epsilon constraint method is a 

Pareto-optimal for any upper hand bound vector that is given as for a given value of 

epsilon.  

So, that theorem is giving an idea that if we change the value of epsilon these epsilon 

values will be corresponding to different values of the Pareto-optimal solution on the front. 

Now, since as we have understood that this particular method is good in a way that we can 

solve the problems which have convex and non-convex problems. So, therefore, this 

method offers various advantages. So, let us go them one by one. 

First is obvious that different Pareto-optimal solutions can be generated by changing the 

value of epsilon m that can be that can be seen from the theorem 3 as well. Similarly, the 

method can be used for problems having convex as well as non-convex Pareto front. From 

our analysis we have understood that this method is good, it can be used for any kind of 

multi-objective optimization problems, but there are certain disadvantages.  

So, the major disadvantage is the solution is largely dependent on the chosen value of 

epsilon m, therefore it must be chosen, so that it lies within the minimum or the maximum 

value of the individual objective function value. So, as we have discussed earlier with the 

help of a figure that we took 4 points, 4 epsilon values corresponding to A, B, C and D. 

When the values are chosen such as B and C, we are going to get the Pareto-optimal 

solution and both of them are different.  

But when we are taking other values which are out of the bound, so as we can understand 

from the epsilon value corresponding to the point t that in that case whenever we will be 

minimizing f 2, we are going to get a same solution which is D. So, in this case, if we are 

taking many such epsilon values which are out of the bound and in all of the cases, we are 

going to get the same solution. 

On the other hand, if we take epsilon value corresponding to point A, then we are not going 

to get any solution because there is no feasible objective space. Therefore, we have to be 

careful when we have to use the epsilon value. So, we should know what is the range of 

epsilon value so that we can generate different Pareto-optimal solution on the front. 
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  )
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𝑝

 , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   𝑔𝑗((𝑥))   ≥  0, 𝑗 = 1,2, … , 𝐽 

ℎ𝑘((𝑥))  =  0, 𝑘 = 1,2, … , 𝐾; 

 𝑥𝑖
(𝐿)

 ≤  𝑥𝑖  ≤  𝑥𝑖
(𝑈)

, 𝑖 = 1,2, … , 𝑛. 

We will now discuss the weighted metric method. As we can see here the weighted l p 

distance that measure is that distance measure of any solution x from the ideal point z star 

and that we want to minimize. Now, looking at this equation, so we are writing this l p x, 

here we can see that we are finding the difference between the solution x with respect to 

the ideal point z.  

And this difference is multiplied with the weight vector which is omega m and then we are 

taking a summation and finally, we will have 1 by p. Now, this weighted l p, l p distance 

this particular objective function, now we can see that we have converted multi-objective 

optimization problem into a composite function which is l p and this particular problem 

can also be subjected to the problem constraints and the variable bound. 



Now, here looking at the equation number 5, the value of a p can take any value between 

1 to infinite. Now, when we are changing the value from 1 to infinite, the function l p will 

behave differently. So, let us look into it. So, when p equals to 1 is used, the resulting 

problem is equivalent to weighted-sum method. So, as we can see in equation number 5, 

when p equals to 1 meaning that we are taking a difference between these two values and 

then multiplying with the omega m.  

So, that is very similar, why because our ideal point will not change in our simulation, 

only corresponding to the value of x the objective function will change. So, therefore, it is 

quite similar to the weighted-sum method. So, p equals to 2 become the Euclidean distance 

of any point in the objective space from the ideal point and this we are going to minimize 

as per the weighted metric method. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑙∞(𝑥)   =   𝑚𝑎𝑥𝑚=1
𝑀  𝑤𝑚 |𝑓𝑚(𝑥) − 𝑧𝑚

∗   |, 

Since, p can take any value from 1 to infinite let us take a large value. So, when we take p 

large, the problem has a special name that is called the weighted Tchebycheff problem. 

So, this particular problem is now converted as, so as we can see this is l infinite x and 

here we have the maximum m from 1 to capital M and we are finding which has the 

maximum value of w m or omega m and the difference between f m minus z m star.  



Meaning that suppose I have 3 objective problem, so, we will be calculating the difference 

for all the objective function. So, let us write it here and the third one is the third objective. 

Now, if we get any value, so we will be looking which particular value has the maximum 

value, so that particular value is taken here and this value the maximum value which we 

want to minimize here. 
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Now, as we remember that after converting the multi-objective problem into single 

objective problem, we could have our original constraints as inequality and equality 

constraint with the variable bounds. 
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So, let us see the contours of the weighted metric method with the different values of p. 

Let us consider p equals to 1. Now, when we consider p equals to 1. Now, as we remember 

it is similar to the weighted metric method. So, therefore, as you can see the contours are 

like these straight lines. So, as we take a point A, we are going to get a contour as we can 

see in the picture. Similarly, at a point D also, if we look then we are going to get a different 

contour. 

The important point is these contour cannot be generated between the range of or between 

the segment B and C. And therefore, when we keep p equals to 1, we may not able to 

generate any solution between segment B and C, let us take a another case where we have 

p equals to 2.  

Now, when p equals to 2 means we are finding an Euclidean distance, the l, the metric 

function will become an ellipse; as of now here as we can see the contour at A is one 

ellipse, contour at point D is another ellipse, that are going to give us the point A and D. 

However, again in this particular segment B and C, we cannot generate such contour and 

therefore, we cannot find any point in between B and C. 
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Suppose, we take a infinite value of a p, and as we remember when we consider p equals 

to infinite the problem or the method is referred as Tchebycheff function, the metric 

method with p equals to infinite the contours can be seen here.  

Now, these contours, looking at these contours we can easily see that even if there is a 

point inside, we can have such kind of a rectangular box meaning that different values of 

omega can help us to find out the solution between the segment B and C.  

So, from our previous discussion, we understand that we can generate any solution from 

the one extremes to the point B, similarly another extreme to point C which are easy to 

find. However, when we talk about any point between in the segment B and C, it cannot 

be generated. But with the weighted metric method having p equals to infinite, we can 

even generate a solution on the non-convex Pareto front. 

So, based on that we have our fourth theorem right now, it says that let x star be the Pareto-

optimal solution then there exist a positive weight vector such that x star is the solution of 

weighted Tchebycheff problem in equation 6, where the reference point is the utopian 

objective vector z double star. So, as we remember the difference between the ideal point 

and the utopian point is that when we minimize the objective function independently, that 

will give us the ideal point.  



When we are subtracting the epsilon values into the ideal point, we will get the utopian 

point. We have discussed this weighted matrix method as we can understand the different 

values of a p can generate different value different Pareto-optimal solution, especially 

when we take p equals to infinite value then we can generate solution on the non-convex 

Pareto-optimal front. So, as we can understand that there are certain advantages with this 

method, let us discuss those advantages one by one. 
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So, first advantage is the weighted Tchebycheff metric guarantees finding each and every 

Pareto-optimal solution when z star is an utopian point and that is what we discussed in 

the theorem. So, we keep on changing the weights, we will get the different Pareto-optimal 

solution. The weighted Tchebycheff method can be used for solving problems having both 

or convex or a non-convex Pareto-optimal front, which is an important property because 

the problem can have different nature of Pareto-optimal front.  

But there are certain disadvantages with this method. So, the first major disadvantage is 

the objective function needs to be normalized. Second is the ideal or the utopian objective 

vector needs to be calculated. Now, since we have mentioned here that the objective 

function should be normalized this is also valid for the weighted sum method.  

Since, this normalization is needed because our search should not biased towards any of 

the objective function, so we need normalization, meaning that we have to perform extra 

computation to normalize it. Similarly, the calculations are done with respect to the z star 



or sometimes z star star which is ideal utopian point. So, these points need to be calculated 

before we start our optimization. 
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, & 𝑖 = 1,2, … , 𝑛. 

As of now we have discussed 3 methods, now let us discuss the last method as a part of 

this session which is Benson method. This method is similar to weighted metric method 

except that the reference solution is taken as a feasible non-Pareto-optimal solution, 

meaning that, we are going to choose a solution z 0 which should which is a feasible, but 

non-Pareto-optimal solution from the feasible region. 

When we use Benson method the modified single objective optimization problem can be 

written as we can see we want to maximize. So, there is a first change we can see. Second 

is we want to minimize for the summation m equals to 1 to capital M and we are looking 



for the maximum value between 0 or the difference between the point which we have 

chosen minus the objective function value.  

Along with that we also have another constraint such as f m of x should be smaller than 

and equals to z m. So, this extra constraint will also be included into the formulation. Along 

with that we can have problem constraints and the variable bounds. So, that can be seen 

here that these two changes are needed into the multi-objective optimization formulation. 
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Let us understand with the help of an of a graphical example here. Here we want to 

minimize f 1 as well as minimize f 2, for this particular problem the feasible objective 

space is given, Pareto-optimal front is also given. Now, let us have this solution x. Now, 

generally when we choose solution z 0, so solution x must weakly dominate the solution 

at z 0.  

So, that is the first condition. And second is this particular problem as we have discussed 

this is a maximization problem. So, this problem is similar to finding hyper cube with a 

maximum parameter. As can be seen in this figure that we have say z 0 and we have the 

solution z x and we can see since it is a minimization problem z 0 is dominated by x. 

Now, when we are solving a maximization problem or maximizing the parameter as we 

can see here meaning that we are basically pushing this solution, so that the solution x 



should hit on the Pareto surface and will become the Pareto-optimal solution for their given 

problem.  

So, one interesting point that we can observe after going through the weighted metric 

method and Benson method, in weighted matrix method we are actually minimizing the 

difference with respect to the point z star which is an ideal point. We know that z star 

cannot be achieved. So, minimizing that difference means we are pulling a point x towards 

the z star.  

So, when there is a, so this particular point will be converging and finally, we will converge 

to the Pareto-optimal front because it cannot reach to the z star. In the Benson case, we are 

maximizing the difference of a point x with respect to z 0 which is which should be weakly 

dominated at least.  

So, in this case, we are pushing this particular solution x 0 with respect to z 0, so that after 

some iteration this point will hit the Pareto-optimal front and will become the Pareto-

optimal solution. Now, let us understand what could be the advantages of using the Benson 

method. 
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So, the first advantage is by changing the weight vectors the different Pareto-optimal 

solutions can be generated. Second, if we choose this z 0 properly this method can be used 

to solve problems having non-convex Pareto-optimal front which is an important property 



for us because we do not know the problem has a convex or a non-convex Pareto-optimal 

front, so we have to choose z 0 accordingly. 

Since, there are certain advantages, but there are certain disadvantages as well with this 

method. First is additional number of constraints is added into the problem that can make 

it complex. So, as we have remember, in our formulation when we are when we are 

maximizing the Benson method, but the at the same time we put a limit on the objective 

functions as well. So, we are actually including extra constraint.  

As we remember in the epsilon constraint method as well we are including the extra 

constraints into the formulation and that can also make it complex. Second its advantage 

is that we have to choose the value of z 0, because if this selection is not proper, we cannot 

solve the non-convex Pareto-optimal front so problems having non-convex Pareto-optimal 

front.  

So, as we can see at one point of a time when this Benson method is giving us the 

advantages based on z 0 that could be disadvantages if we do not choose z 0 properly. 
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Now, we have come to the closure of this session. What we have seen that the classical 

methods for solving multi-objective optimization problems are based on multi-objective 

optimization approach. So, using this preference-based multi-objective optimization 

approach all these methods converted the multi-objective problem into single objective 

optimization problem. 

While doing so, we have discussed various methods in which the weighted sum method 

was used where omega m, f m, and the summation over it was used epsilon constraint 

method keep one objective and rest of the objective will become constraints. Weighted 

metric method introduces the ideal point and the parameter p, and that was used for 

generating the solution using different weights.  

Similarly, the Benson method introduced a one point called z 0 that is a dominated or 

weakly dominated point with respect to the current point. And all these methods we have 

discussed all of them the graphically, so that we can understand their behavior, their 

methodology, and we perform hand calculation for two of the method such as weighted 

sum method and epsilon constraint method. 

So, in this particular session, what we have understood? That the given multi-objective 

optimization problem can be solved using preference-based approach and a and the 

approaches which we have discussed everyone needs certain information either in terms 



of weights which are omega 1, omega 2, omega 3 etcetera or we need details about epsilon 

which in which is in the case of epsilon constraint.  

Once these higher-level information is available the problem is a single objective problem 

and we can solve those problem using any of the EC techniques which we have discussed 

so far. With having understanding on the classical multi-objective methods, now I 

conclude this session. 

Thank you.  


