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Multi-Objective Optimization: Ranking and Diversity 

 

Welcome to the session on Multi-Objective Optimization. This particular session, we will 

be focusing on Ranking and Diversity. So, basically convergence and diversity, these two 

aspects we will discuss. 
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So, the outline of this particular session is we will start with the concept of a dominance 

as a recap. Thereafter, we will be addressing the two goals or the two issues or the two 

challenges that we need to tackle when we want to use EC techniques for multi-objective 

optimization. So, first will be dominance-based ranking followed by the diversity, and then 

we will conclude this session. 
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So, before we start let us have a recap of the previous session. In that particular session, 

we have gone through the introduction of multi-objective optimization. And thereafter, we 

discuss about the approaches of multi-objective optimization said that includes preference-

based multi-objective optimization, and ideal multi-objective optimization approach. 

We also talk about the role of EC techniques for multi-objective optimization. Under the 

multi-objective optimization topic, we discussed the mathematical formulation followed 

by the principles. Under the principle, we discussed the Pareto-optimality, Pareto-optimal 

solutions, the goals, non-conflicting objectives as well as the difference between single 

and multi-objective optimization.  

And at the last we discussed about the dominance and Pareto-optimality, where we focused 

on concept of dominance, properties of dominance relationship, Pareto-optimality, strong 

dominance and weak Pareto-optimality as well as the special solution. 
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1.    𝑓𝑗 (𝑥(1)) ▷/  𝑓𝑗(𝑥(2))     ∀ 𝑗 = 1,2, … , 𝑀, 𝑎𝑛𝑑 

2.    𝑓 𝑗̅(𝑥(1))  ▷   𝑓𝑗̅(𝑥(2))    𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗̅   ∈   {1,2, … , 𝑀}. 

Now, let us begin with the concept of a dominance. This particular dominance this concept 

we have already understood it. So, let us discuss one more time as a recap. Here when we 

say the solution x 1 dominates solution x 2, it means that x 1 is no worse than x 2 in all 

objectives.  

And x 1 is a strictly better than x 2 in at least one objective. So, by following this particular 

definition, mathematically we can see in equation number 1 that x 1 is dominating x 2, so 

that it should not be worse in any of the objective, and it should be; it should be strictly 

better in at least one objective. So, that way we can say x 1 is dominating x 2. 
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As we have understood that there are two goals for solving a multi-objective optimization. 

So, the first goal is we should have a convergence; another goal is we should have a 

diversity. So, if we look into the example here, so the solution should converge to the 

Pareto-optimal solutions.  

In this case, when we are solving, so as we can see the solution, for example, generated by 

the algorithm, they are diverse, but they have not converge to the Pareto-optimal set. So, 

our first objective is these solutions should converge to the Pareto-optimal set. The second 

goal is the solution should be diverse as possible. 

Now, if we look it look at into, if we look at the figure on the right hand side, we can see 

there are set of solutions which are converged, but they are representing a small set of 

Pareto optimal front. So, in this case, our algorithm should able to generate the solution 

that must be nicely distributed on the Pareto-optimal solution. And therefore, while solving 

a multi-objective optimization problem, we have to satisfy or cater two goals that is the 

convergence and diversity. 

In this particular session, for convergence, we will focus our discussion on dominance-

based rankings. These dominance-based ranking uses Pareto-optimality or the concept of 

a dominance for comparing the solution. So, the first goal as we have the first goal, the 

convergence, we will discuss the dominance-based ranking now. 
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Here the as we discussed earlier the first goal of multi-objective optimization is to 

converge to the Pareto-optimal set. There are various ways we can prefer this particular 

convergence. The first way is the dominance-rank. It suggests that how many individuals 

is an individual dominated by and then we are adding plus 1.  

Now, as we have; as we remember we are referring as a we are referring the members of 

a population as solutions some time points, and sometimes individual. So, here when we 

are referring to an individual, it means we are talking about a solution. So, what this 

dominance-rank says that how many solution is an individual or a solution dominated by.  

Second is the dominance count it says that how many individuals does an individual 

dominate. Now, you can make a difference between these two definitions as the first 

definition says that how many individuals is an individual dominated by, and the second 

says that how many individual does an individual dominate. 

The third method that we can use is called say dominance depth. Now, this says that at 

which front is an individual located. So, basically kind of a sorting we are going to use 

there. So, computationally implementing one of these ranking method is an in a specific 

multi-objective evolutionary computing technique design is, a straightforward.  



However, given a particular problem domain, preference performance basically the 

efficiency and the effectiveness that can have a considerable variance. So, let us discuss 

these three methods one by one. We will start our discussion with dominance-rank. 
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As we have understood dominance-rank says that how many individual is an individual 

dominated by, and then we are adding plus 1. So, let us take a case in which we want to 

minimize f 1 and minimize f 2, and we have taken some solution in this objective space. 

Now, as it says that how many individual is an individual dominated by.  

So, let me take this particular solution. So, we have to find whether this solution is 

dominated by any member. So, what we can use is a, the concept of dominance can be 

used and we can see. Since it is two objective problem we have f 1 and f 2, and both of 

them are minimization.  

So, the easiest way is to if to find whether any solution is dominating this or a not. So, 

from this particular solution, if I look at the origin, then we will see is there any solution 

which is lying in this particular rectangle or not. So, this is only valid for minimization 

problem and to objective problem. So, as we can see that there is nothing available. 

So, this means that this solution is the non-dominated solution. So, no one is there. So, 0 

plus 1. So, the dominance-rank of this solution is 1. As a second case let me take the 

another solution. Now, this particular solution again if I see that from this particular 



solution if I look towards the origin, now as you can see in this particular rectangle we do 

not have any solutions. This means this is not dominated by anyone. So, the rank of this 

solution is 0 plus 1, 1. So, the 1 which I am writing in this particular figure meaning that 

it has a rank 1. 
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Let me take another case. Now, here we have taken this particular solution. As per our 

previous discussion since we have both objectives and both are minimization time, if I 

look at the towards the origin and then we draw this particular a rectangular box. Here in 

this particular box as we can see there are three solutions, 1, 2, and 3. These three solutions 

are actually dominating our solution. So, the rank of this solution will become 3 plus 1 

equals to 4 that I have mentioned here. 
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If we are going to follow the same definition, we can find that the solutions where 1 is 

written these are the non-dominated solutions; because these solutions are not dominated 

by anyone. Thereafter, we have other solutions where 2, 3, 5, 4, 4, 8 and 9 are written. So, 

these are the dominance-rank. 

Now, what is the important point about the dominance-rank here is, if we look at the rank, 

so after rank number 5, we have 8. So, there is no rank which 6 and 7. So, the solutions 

having rank 6 and 7 are missing. So, this can create sometimes issues when we are 

selecting the solution with the EC techniques.  

And therefore, we need some kind of linear scaling that can be used with the dominance-

rank method. The best part of this particular method is that the solutions which are having 

rank 1, all of them are non-dominated solution. 
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Now, let us discuss the second method which is called dominance count. As it says how 

many individual does an individual dominate. So, we will be taking the same set of 

solutions as f 1 and f 2 we want to minimize, and we have the same set of solutions now. 

Now, let me take a solution which is given here on the top.  

Now, in this particular solution, in our previous discussion, we are going to use concept of 

a dominance to find out whether this particular solution is dominating anyone. So, in this 

case, what we will be doing is, we will be looking at the diagonally opposite corner of this 

origin. And if we look into this particular direction and that is going to make a rectangular 

box here.  

And inside this particular box, if there is no solution meaning that this solution is not 

dominating anyone. And therefore, we have written 0. Similarly, if I take the another 

solution, for this also, there is nothing, so it is not dominating anyone. And similarly the 

third solution. So, therefore, their rank are 0. 
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Let me take the another solution now. In this particular solution and the extreme diagonally 

opposite corner of the from the diagonal, now if we look into it, we are going to get this 

particular rectangle. Inside this rectangle, I can see there are three solutions 1, 2 and 3.  

Since this particular solution is dominating 3 solution, so the dominance count for this 

solution is 3. Similarly, if we are going to find the dominance count for every solution, 

what we can find is we have the solution with a 0 count; means not dominating any one, 

solution count with a 1 means dominating only 1 solution and so on. 

Here the interesting observation is as we have understood from the dominance-rank 

method, the solution the following solutions these solutions are the non-dominated 

solution. Let me mark them as A, B, C, D, and E, all these solutions are the non-dominated 

solutions as we have understood using dominance-rank.  

Now, if we look at their rank, now all these solutions can have a different rank. So, the 

dominance count method will give me different rank for the non-dominated solution, so 

that is why at the bottom we have mentioned non-dominated solutions are getting different 

rank. 

Another observation is if we look at say for example, these two solutions, now both the 

solutions have dominance count 3. But we know solution E is the non-dominated solution; 



however, solution this particular solution is the dominated solution. Since both have the 

same rank, we cannot differentiate which solution is the dominating solution.  

So, therefore, with the dominance count method, we have to devise a way so that we can 

differentiate what solutions are the non-dominated solutions as compared to the other 

solutions. Now, we will move to the third method that is called dominance depth. 
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In this particular dominance depth method, we are taking the same set of solution for 

minimizing f 1 and f 2. So, in this one, let us use the dominance-rank method first, and 

find the non-dominated solution. Since this particular process we did it earlier. So, we 

know that the solutions which are marked with 1 all are having rank 1, and they are become 

the non-dominated solution. So, what we will do is we will copy all the rank 1 solution in 

front-1. 
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So, we are copying into the front-1. Now, once it is copied we will remove these rank 1 

solution from the population meaning that since these solutions are copied, so we are going 

to remove them from the population. Now, if we remove them, we are left with the solution 

as we can see on the right hand side.  

Now, on the remaining solution, we will again perform the dominance-rank, and find the 

non-dominated solution from the remaining population. If we do so, we will get these 

solutions as our non-dominated set. Since, we know that we have already saved rank 1 

solution. So, we will save the solution as rank 2 solution, and we will be copying them 

into front-2. 
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Since we now in the next step, we will be removing them those solutions we are left with 

these solutions. Again we will use say dominance-rank and find the non-dominated 

solution in the remaining population. As we can see these are the solutions which are non-

dominated as of now. And rank 1 and rank 2 are already assigned. So, we assigned rank 3 

and all these solution will be copied to front-3. 

If we follow this particular procedure, we can see on the right hand side that the solutions 

are copied into front-1, front-2, front-3, and front-4, or we can say the solutions are sorted 

into the different fronts. The solutions which are lying in say front-1 all of them have rank 

1; similarly the solutions which are lying in rank 2, so they are they have a rank 2; and 

similarly rank 3 and rank 4 solution. 

So, here when we are going to compare these two solution, so we know we know that 

solution having a rank one is better than 2. So, we will be emphasizing the rank 1 solution. 

So, with these three methods, we can use the concept of a dominance in the different ways, 

we can identify the good solutions or the non-dominated in solution over the other 

solutions.  

These three methods we can use for the better convergence in order to satisfy the first goal 

of multi-objective optimization that is the convergence to the Pareto-optimal set. Now, we 

are moving towards the second goal. And the second goal is we should have the diversity 

among the solutions. And to achieve that, diversity we have different methods. 
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So, in this, now we are going to discuss the diversity. The second goal as we have 

mentioned for multi-objective optimization is to keep the diversity among the solution, so 

that these solutions will be distributed well along the Pareto-optimal front and that is the 

whole objective or the second objective for multi-objective optimization. This can be 

achieved by selecting the solutions from the less crowded region. 

Now, since we have to maintain the diversity, and also we know that we have two spaces 

one is called variable space and other is called the objective space. So, we can maintain 

the diversity in the variable space or in the objective space. So, let us understand that how 

we can maintain the diversity among the solution. So, the very first method is called 

weighted-vector method. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐹(𝑥) =  ∑ 𝑤_𝑚 𝑓𝑚(𝑥)

𝑀

𝑚=1

  

The weighted-vector or a weighted-sum approach is the preference based multi-objective 

optimization approach in which a problem is converted to a single objective optimization. 

As we can see in equation number 2, we are minimizing say capital F of x that is nothing 

but the summation of the all the objectives from 1 to M, and these objective functions are 

multiplied by the weights called w m.  

The condition is that all the weights should lie between 0 to 1, and also the summation of 

the weights should be equals to 1. So, with these two conditions, we can convert our multi-

objective problem into single objective optimization problem using equation number 2. 
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Now, if we look into the figure on the right hand side, we have taken two points. As we 

can see here that the first point is the point 1, another point is point 2. Now, at this particular 

point, if we are assigning say omega 1 and omega 2, and different set of omega 1 and 

omega 2, you can see that these two different sets of omega 1 and omega 2 will allow these 

two solutions 1 and a 2 to converge to the different set of points on the Pareto-optimal set. 

Therefore, the different combination of omega 1 and omega 2 defined define different 

directions in order to bias the search and move away solution from the neighbourhood; 

meaning that, if I am going to; if I take different values of omega 1 and omega 2 for all the 

points, when we are using different values of omega 1 and omega 2, we are biasing the 

search for different solutions. So, for example, different value of omega 1 and omega 2 

will bias the search for solution 1, so that it will converge to a given point as shown in the 

figure. 

Similarly, if we take different values of omega 1 and omega 2 for solution 2, it will be 

biasing the search where we can see the solution number 2. Moreover, these two different 

values of omega 1 and omega 2 will move away these solutions in its neighborhood. So, 

that way we can have the diversity among the solution. 

A weighted-vector set as we have understood is used to attempt to diversify solution of the 

Pareto front. So, we keep on changing the value of a w 1 and w 2 for different solutions, 



and we can expect that these solutions will be converge to the different points on the 

Pareto-optimal set. 
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𝑆ℎ(𝑑𝑖𝑗)  =  {1 −  
𝑑𝑖𝑗

𝜎𝑠ℎ𝑎𝑟𝑒
      𝑑𝑖𝑗  ≤  𝜎𝑠ℎ𝑎𝑟𝑒

 0                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The another method by which we can emphasis the diversity among the solution is called 

fitness sharing or niche approach. In this particular approach, the size of the size or 

sometimes we call it as a radius of a neighborhood is controlled through a one parameter 

called sigma share. So, we are going to find this is called a niche radius. In this way, we 

will be calculating the sharing function as given as the sharing function for a solution i 

with respect to j. 

So, this says that d ij. So, d ij is a Euclidean distance between solution i and solution d j. 

If the distance between them is a smaller than and equals to the sigma share say the radius, 

then we will be calculating the sharing function as given here. If it is already far means the 

solutions are far from each other, then this sharing function has a 0 value. 
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𝑛𝑐𝑖  =  𝑆ℎ(𝑑𝑖1) + 𝑆ℎ(𝑑𝑖2) + ⋯ +  𝑆ℎ(𝑑𝑖𝑁) 

Now, when we calculate this sharing function? Now, we can count. So, basically we can 

count how many solutions are located within the same niche, and the fitness is reduce 

proportional to the number of individual sharing the same neighborhood. Now, here since 

we have calculated the sharing function, so as you can see here we for a solution i, if we 

count the niche count as given as nc i, this is equals to sharing function value i with respect 

to 1, then with respect to 2, and similarly for all the solution in the population. 

And the updated fitness of the solution will become f divided by the niche count. So, let 

us understand this particular method with the help of a figure here. Now, as we can see the 

solution 1, 2 and other solution they are quite far. Since they are quite far, so they are niche 

count is 1.  

𝑓′  =  𝑓/𝑛𝑐𝑖 

But if we look at the solution number 7 and solution number 8 here, these solutions are 

quite close to each other. Now, using these radius, the red the circles which are drawn 

using red lines, now here you can see that these two solutions having they are closed and 

therefore, they are sharing fitness which we have referred as Sh d ij these values will not 

be 0. 



Once we are doing this, so the niche count for these two solutions have a value more than 

1. So, at the end, the fitness of the solution number 7 and a solution number 8 will be 

reduced, why, because these two solutions are close to each other.  So, as we can 

understood from this particular method that when the solutions are club together or they 

are clustered in a same region, these solutions will be having the reduced fitness value.  

Since it is going to be reduced fitness value, then the selection of these solution will be 

less as compare if we take a solution which is lying in a isolated region, and that is the 

whole objective that we should prefer the solution from the less crowded region as 

compared to the solutions which are lying in the crowded region. 

So, when we are selecting in this way, so in generation by generation with EC techniques, 

we will be preferring these diverse solutions and these diversity will be maintained 

throughout the generation. And at the end, we can expect that our EC technique will be 

able to give us a well distributed set of a solution on the Pareto-optimal set. 

Now, here the aim of this particular method is to promote solutions lying in the least 

populated region of the search space. Now, the what is the critical point about this 

particular method is the sigma share. Why? Because this value has to be chosen by us.  

The other point which we can understood is that we have seen in the current example that 

the niching or the sharing function we applied in the objective space which is f 1 versus f 

2, this can also be done in the variable space. So, we are free to use this niching either in 

the objective space or in the variable space. Generally, in multi-objective optimization, we 

prefer the fitness sharing or niching approach in the objective space. 
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𝑑𝑖𝑗  = √ ∑ (
𝑓𝑚

(𝑖)
− 𝑓𝑚

(𝑗)

𝑓𝑚
𝑚𝑎𝑥 − 𝑓𝑚

𝑚𝑖𝑛
)

2𝑀

𝑚=1

   

Under the fitness sharing approach, we have different ways to perform the sharing fitness 

or if we can find the niching approach. One of the approach is called the Kernel approach. 

In this particular approach, the density estimator is based on the summation of f values 

where f is the function of the distance vector which is measured either in the genotype or 

in the phenotype.  

As per our discussion in this particular course, that genotype will be defined in terms of 

the variable, and phenotype what we see physically. So, we can perform this Kernel 

approach anywhere. Now, as you remember that in the previous method we were 

calculating this d ij as an Euclidean distance that as also can be calculated as given in the 

equation number 4 where we are subtracting the objective function value between i and j, 

and we are dividing with f m of maximum value f m of minimum value.  

We are taking the square and taking the summation, so that is going to give us the distance 

between the two solution i and a j. We have another approach called nearest neighboring 

approach. In this case, the density estimator is based on the volume of the hyper rectangle 

defined by the nearest neighbors.  



So, in this case, we will be finding who are the neighbor of the say solution i, and then we 

will be finding the hyper volume. Now, the solution which will be having less hyper 

volume meaning that solution is more crowded, so that will give us the indication of d ij 

with this approach. 

And at the last we have the histogram approach. In this particular approach, the density 

estimator is based on the number of solution that lie within the same hyper box. So, in this 

particular approach, we are going to define the hyper box or hyper space. Inside that hyper 

space, if any solution is lying on more than solution more than one solution is lying, so 

accordingly we will say that the estimator will be based on the number of solution line in 

a one hyperspace. 

So, what is the difference between histogram approach and nearest neighbor approach? In 

the nearest neighbor approach, we calculate the hyper volume. And here we have already 

defined a hyper volume or hyperspace. And in this case, we are looking how many 

solutions are lying. And accordingly the fitness will be shared among the solutions which 

are lying in the same hyper space, so that is called fitness sharing or niching approach. 
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Now, we are moving to the another approach called crowding and a clustering approach. 

As we can see here that we can select the surviving solution according to the region 

crowdedness metric measured in the objective space. So, let us take an example here. We 



have we want to minimize f 1, we want to minimize f 2. Let us take two solution as solution 

k and solution i. 

Now, if we want to find what is the crowdedness of this solution. So, let us take solution 

number k. So, what we will do is, we will find the neighbor. So, the neighbor of solution 

k is k minus 1 and k plus 1. Now, we will see how far they are. Like k minus 1 and k plus 

1, how much they are far from each other.  

So, this is small rectangle which you can see here this particular rectangle will tell the gap 

between k minus 1 and a k plus 1. Similarly, for solution i, we have neighbor say i minus 

1 and i plus 1. And then if we see how they are far say i minus 1 and i plus 1 though this 

particular rectangle will help us to find it out. 

Now, looking at these two rectangle, we can say that the solution i is less crowded as 

compared to the solution k. Now, since it is two objective the way we have discussed the 

crowdedness, we can easily or we can visually identify that the solution k is more crowded 

as compared to solution i. But we have to remember that when we are going to implement 

in the code or in our programming, then we need a certain value based on that we can say 

which one is less crowded. 

So, identifying the neighbor and coming up with a concept like the boxes of the neighbors, 

then we can identify or calculate some value. Based on that, we can say that the solution i 

is less crowded as compared to solution k. When we have to select one solution between 

the two, the solution which is less crowded that is the solution i will be selected over 

solution k. 
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The another way to preserve the diversity is the relaxed form of the dominance. Now, here 

use a certain solution say i even though it is worse than some solution j in regards to a 

particular objective. This relaxation may be compensated by an improvement in the 

objectives in other objective.  

So, what it means that? So, let us take a case. And in the figure on the left hand side, we 

want to minimize f 1 and f 2 , and we have divided this design domain in terms of as you 

can see in an x-axis epsilon, 2 epsilon, 3 epsilon and so on; similarly, the f 2-axis, epsilon, 

2 epsilon, and 3 epsilon and others. 

So, we have divided this f 1 and f 2 space into the square boxes. Now, as we have 

understood the solution which are lying alone in the boxes as I have mentioned say suppose 

this is solution A, this is B, these are independent these are isolated solutions. So, anyway 

these solutions are going to be selected, so that is why these are in green color. 

Now, let us compare the second box where we are comparing solution 1 versus 2. By 

comparing them, we can find that solution 1 is dominating 2, therefore, solution 1 is 

preferred. And therefore, we are going to select 1 over 2. 
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Now, let us take us case of solution 3 versus 4. Now, looking at this 3 and a 4, we can find 

that these solutions are non-dominated. So, in this case, which particular solution we are 

going to select? So, we will select solution 3, why? Because it is closer to the one of the 

vertex which is 2 epsilon and 2 epsilon. So, therefore, based on this particular corner we 

are selecting solution 3. Now, if we compare solution 5 and a 6, it is clear that 5 is 

dominating 6. Therefore, 5 should be preferred. 
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Now, in this particular approach what we have identified is we are selecting one, one 

solution from the boxes. Now, if we look at the solution number 7, this solution is also an 

isolated solution in its box. Even though we are not selecting this particular solution, it is 

only because the box which is represented by 2 epsilon, 3 epsilon is actually dominated by 

the corner 2 epsilon e epsilon. 

What I mean by that? This particular 2 epsilon, 2 epsilon by 2 epsilon, this is the corner 

which we have taken, and a solution number 3 is already selected. Now, since the solution 

7 is lying in the isolated box. So, the corner which we have is 2 epsilon and 3 epsilon. If 

we are going to compare these two corners and using the concept of a dominance, we know 

that this particular box will be dominating this box. So, therefore, we are not going to select 

solution 7 even though it is lying in the isolated box. 
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One of the interesting way to keep the diversity among the solution is the restricted mating. 

What is that? The diversity is preserved through the avoidance of a certain recombination. 

So, as we remember we perform say crossover with genetic algorithm. So, we will perform 

the crossover in such a way that it should enhance the diversity among the solution. 

So, in this case, the parameters sigma mate is used that defines the minimum distance that 

must separate two individuals, so that they can mate. So, basically, in a crossover, we can 

use it. So, meaning that if the two points which are very close to each other, then the new 



solution will be quite close to them. So, we are not generating any solution that will be 

little diverse from them.  

Therefore, we are defining certain distance say sigma mat. So, if it is far according to the 

sigma mat, then only we are going to perform the crossover between the two solution. So, 

in this particular session, as a part of introduction to multi-objective optimization, we 

focused on convergence and the diversity which are the two goals for multi-objective 

optimization. 
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So, these two goals we have achieved using the dominance-based ranking and the 

diversity. Now, in under the dominance-based ranking, we discussed the dominance-rank 

dominance count and dominance depth. So, we restricted our discussion only on the 

dominance-based.  

Once the goal-1 will be satisfied, then we have to focus the second goal which is the 

diversity. So, the diversity preserving mechanism we have gone through. We started our 

discussion with the weighted-vector approach, and then we discussed the fitness sharing. 

And thereafter, we have this crowding and clustering approach where we look the 

neighbors and find the crowdedness.  

We also discussed the relaxed dominance in which we are selecting a solution from one of 

the boxes and finally, the restricted mating that will be helping us to maintain diversity in 



the given population. Within, with this understanding on the multi-objective optimization 

and achieving both the goals on convergence and diversity for multi-objective 

optimization, I conclude this session. 

Thank you very much. 


