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Dr. Deepak Sharma
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Lecture - 14

Constraint Handling with Evolutionary Computing Techniques

Welcome to the session on Constraint Handling with Evolutionary Computation. In this
particular session, we will target two types of ways in which we can handle constrained in

our Optimization problem.
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So, one of the way is to handle the constraint is to separate objective function and
constraints and deal those constraint with them. The second method is using the concept
of multi-objective optimization. So, in this session, we will start with these two approaches

and then we will close this session.
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So, as a recap till now what we have covered in a constraint optimization. We started with
a constraint optimization formulation which consist of an objective function subjected to
inequality constraint, equality constraint, and the variable bounds. There after we discuss

the methods of multipliers for constrained optimization.

In this particular method, we converted a constraint optimization problem in to an
unconstrained optimization problem by using Lagrangian multiplier. So, for both equality
and inequality constraints, we find the optimality condition for that unconstraint problem

using Lagrangian multiplier.

There after we also discuss the Karush Kuhn Tucker condition in which is also known as
KKT condition, that KKT condition we have written for an optimization or a constraint
optimization problem having both type of constraint that is inequality and equality
constraints. There after we discuss about the one of the famous method or in which that is

called penalty function methods.

In this penalty function method. We have gone through various kinds of method such as
death penalty static penalty dynamic penalty and adaptive penalty. So, we have gone
through various kinds of penalty function methods; we perform the hand calculations using
static and dynamic penalty, so that we can understand how these penalty function methods

can be used with the constraint optimization with EC techniques.



Now, let us move to the another way to handle the constraint. So, before we begin let us

have an introduction again.

(Refer Slide Time: 03:28)
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Introduction
@ A constrained optimization problem can be written as

Minimize ~ f(z),

subject to, g;(x) >0, = SRl i
hi(z) =0, k=12,...,K M
d<ai<all =12, N

i
o The penalty function method combines penalty of violated constraints to the objective
B e e P

function to m a solution
——TTN TN

NN~
P(z,R) = f(z) + Q(R, g(z), h(z), 0)
AN AW
where R s a set of penalty parameters, {1 is the penalty term chosen to favo_r'ﬁ\_e
selection of feasible point over infeasible point. «
WVV\A‘—" NN LN,
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In this particular introduction, we will see that a constrained optimization problem can be
written as we want to minimize an objective function and this objective function is
subjected to various constraint. As can be seen in equation number 1, we can have
inequality constraints, we can have equality constraints and the problem is having the
variable bounds. So, this is typically a constrained optimization problem that we can write

in a generalized form.
Minimize f(x),
subject to, gj(x) = 0, j=12..,],
h(x)=0  k=12.,K,

P << i=12.,N

P(x,R) = f(x) +0 (R g(x),h(x))

In the previous session, we have understood a penalty function method in which we

combine penalty of violated constrain to the objective function to calculate the fitness of a



solution. In this case, the penalty function method which is given in a in equation number

2 as P of x R equals to the objective function plus the penalty term.

In this particular penalty term, it is made of the penalty parameter called R, we can have
inequality constraint as well as we can have equality constraint. So, in this particular case,
we find this omega which is the penalty term, we choose this term in order to favor the
selection of feasible point over infeasible point and that is the whole objective here, that

whenever when we are working with EC techniques we have multiple solutions.

At certain stage, we can have feasible solutions as well as infeasible solution. So, how we
can differentiate them or how we can assign a fitness to them? So, in this case, when we
are adding a penalty to infeasible solution, so that fitness always favor the feasible solution
over infeasible solution as and when we perform selection or the survival stage. Now, let
us move to the new way to handle the constraint handling that is separation of objective

function and constraint.

(Refer Slide Time: 05:57)
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Separation of Objective Function and Constraints .

@ These approaches handle objective function and constraints separately.

Superiority of Feasible Solutions over Infeasible J

Powell and Skolnick Approach

o Considering minimization problem, fitness F'(z) of a solution is calculated as

(o s sl
Flo) = Vi K / . ©)
w  |f@+R Z|(g_,-(1‘))|+Z|hk(x)| +A(t,z), otherwise,

8 A——

D. Sharma (dsharmaQiitg.ac.in) Constraint Handling. 1/

( f(x), if x is feasible

S
F(x) =  FG) + R Z|<gj(x))| + Z |hk((x))| +1(t,x), otherwise
k j=1 k=1

Now, this particular the approaches that comes that comes under this category, they handle

the objective function and constraints separately. So, in this category, we have superiority



of feasible solution over infeasible solution. So, we will start with one of the approach is
called Powell and Skolnick approach.

In this case, let us assume we have a minimization problem. For a given problem, we can
calculate the fitness of a solution as given in equation number 3. We can see that the fitness
of a solution which is capital of F of x this is equals to the objective function when a
solution is feasible. So, we are considering the fitness same as objective function when the

solution is feasible, otherwise means the solution is infeasible.

In this case, we have the objective function then we can see this particular term as we have
understood that we this R is the penalty parameters, the terms inside this big bracket, so
these terms represents the constraint violation, and at the last we are adding lambda t, x.

(Refer Slide Time: 07:31)
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Powell and Skolnick Approach "
@ The fitness is given as
fl), if 2 is feasible

J K
F(z) = ‘
1@)+ R Y [l @)] + Y Ihe(@)] | +At,2),  otherwise,
j=1 k=1
0 Here, R is the penalty factor, and A(t,z) is the difference between the worst feasible
solution and the best static penalized function value among all infeasible solutions.
o The significance is that the best infeasible solution in the population will have the same
fitness value as that of the worst feasible solution in the population.

Himmelblau Function,
Minimize f(x1,22) = (23 + 29 — 11)* + (21 + 23 - 7)%, &—
subject to (ac;—vg)2 + m% <%
4oy + 29 <20,/
0 S £1,T2 S G¢
e

PP ————— P v
Minimize f(x;,x,) = (x2+ x, —11)2 + (x; + x2 — 7)?
subjectto (x; — 5)?> +x2 < 26
4x, + x, < 20
0< x1,x, < 6

So, let us understand this equation in detail now. So, in this particular equation, R is the

penalty factor, lambda t, x is the difference between the worst feasible solution and the



best static penalized function value among all infeasible solutions. So, here what we can
see that the value of a lambda we will be calculating with respect to the worst feasible

solution in the given population and at the current iterations at t.

Similarly, in the same iteration what is the best infeasible solution. So, that we have to
choose or we have to find carefully and that will represents the value of lambda here. Now,
here the significance of such kind of a fitness is that this significance is that the best
infeasible solution in the population will have the same fitness value as the worst feasible

solution in the population.

So, the lambda value will be adjusted in a such a way that these two solution; that is worst
feasible solution and the best infeasible solution both are going to have the same fitness
value. So, let us understand this method using the Himmelblau function.

So, the Himmelblau function is an unconstrained problem in which we want to minimize
the function as given. But this particular problem now subjected to two constraint and both
of them are inequality constraint. Now, the first constraint is a quadratic form and the
second constraint is a leaner form. For our simplicity let us assume that x 1 and x 2 will

take a value between 0 to 6.

(Refer Slide Time: 09:45)
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Hand Calculations .
o Let is consider the following solutions.
ndexi) @O 16¥) g6l g@d)
1 (3.660, 4. 590)T 364.823  3.089  0.765
2 (2.380, 5. 561) 692.216 -11.791 4917
3 (4.698, 3. 219) 269.112 15548 —2.010
4 (3.755, 5. 151) 610.196 -2.081 —0.169
h} (1.976, 1704) 32.329  13.780  10.342
6 (3.654, 5. 160) 598.194 2434  0.225
i (0.100, 3. 858) 114.638 -12.900 15.743
8 (2.446,0. 880) 31.385 18704  9.335
o Let us consider R = 2.
o For caIcuIatlng the fitness, the static penalty function is
Fye)= +R(z, o) + T )
\/\M’\M/\’
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So, let us consider the solutions one by one. Here we choose the first solution as given in

the table. And at this particular solution we can find the objective function by putting the



value of x 1 and x 2 component. there after the same solution if we put in g 1 constraint
the value is 3.089 and the same solution when we include in g 2 it is 0.765.

J K
G = f0+ R Y [(gieo) | + ) o
j=1 k=1

So, in this case what we are going to do here is, for a given example we are generating 8
solutions. Meaning that we are considering this x 1 and x 2 component of each solution
and we created randomly between 0 minus x. And for every solution we are finding the fit

function value. We are finding the constraint g 1 value as well as g 2 value.

Now, in order to find the fitness let us consider we have R equals to 2. So, as you can see
in the previous equation that the R will remain the same. Now, the value, so the fitness
using the static penalty function is; so, we are using this term called F under F s, s is in the
subscript, so F of x is equals to the objective function we have one penalty parameter which
is currently 2 and we have a constraint violation. So, let us identify or calculate the static

penalty function value using this formula.

(Refer Slide Time: 11:37)
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o Let us consider solution 1, z(V) = (3.660,4.595)", f(z"V) = 364.823, g1 (=) = 3.089
and gy (1)) = 0.765.

o Since it s a feasible solution, Fy(2(V)) = f(2(!)) = 364.823.

o Let us consider solution 2, 22 = (2.380,5.561)T, f(z(?)) = 692.216, g;(21®)) = —11.791
and gy(2?)) = 4.917.

o It is an infeasible solution.

o The penalty function value is Fy(2®) = £(2®) + R(|{g1 ()| + |(g2(=®))])
=692.216 + 2(11.791) + 0 = 715.797.

o Let us consider solution 3, 2®) = (4.698,3.219)", f(x®®)) = 269.112, g () = 15.548
and g (%)) = =2.010.

o It is an infeasible solution.

o The penalty function value is Fy(2®)) = £(2®)) + R(|{g1(«®)] + |(g2(=®))])
R R
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We will start with solution number 1. In this particular solution, as we have already
calculated the objective function the g 1 value and the g 2 value. Now, here looking at the

value of g 1 and a g 2 we can see that both the constraints are satisfied for a solution



number 1. So, we can say the particular solution is feasible solution and therefore, the
fitness of the solution is equals to the objective function which is 364.823.

Now, let us consider the solution number 2. Now, here the solution number 2 we already
calculated the objective function value, similarly the g 1 and the g 2 value. What is the
observation here is the g 1 value is negative meaning that this particular constraint is not
satisfied for x 2, therefore the solution is infeasible.

Since, the solution is infeasible let us calculate the penalty function value here the penalty
function value as we have we know it is made of objective function plus the constraint
violation multiplied by R. Now, looking at the value here we have the objective function
value as 692.216 plus.

Now, if we look inside the bracket, now we know that g 1 is not satisfied, but g 2 is
satisfied. Since g 1 is not satisfied we are putting the value here, and g 2 is not satisfied
and this bracket operator as we remember that f the value of a g 2 is 0 or positive it is going
to be 0. By considering those things, we can have two times of g 1 value and since g 2 is
already satisfied, so we are taking a 0 value. So, the penalty function value for the solution
2 is given here as 715.797.

Similar exercise we will do for solution number 3 here. Now, as you can see the solution
number 3 is given, we already calculated the objective function the constraint g 1 and the

g 2. Now, the observation here is this g 2 is negative meaning that the solution is infeasible.

So, we are going to use the static penalty function here using the same formula as given
here we will do first we will consider the objective function plus now the 0 is written for
ag 1. Why? Because it is already satisfied plus 2 times of now as you can see that constraint
g 2 is not satisfied, so we are taking a positive value. In this case, the fitness of the solution

number 3 is given as 273.133.
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o Let us consider R = 2, ‘ ' ‘ ‘
Index(i) (@7 ;@) g@®) g(e®) Static Penalty, Fy(z[)

T (3.660,4595)7 364823 3.080  0.765 361823 <
2 (23%0,5.561)7 692.216 4917 T15.797

3 (4698,3219)7 260112 15,548 273133

4 (3755,5.15)7 610196 614.697

5 (L976,L754)7 32320 13780 10342 32.329

6 (3654,5.160)7 598.194 0.225 603.063

7 (0.100,3858) 114.638- 15.743 140.438 —
8 (2446,0880)7 31385 18704  9.335 31385

@ The infeasible solutions are 2', ‘3", ‘4', '6' and '7".

@ The best fitness among the infeasible solutions in the population is 140.438 corresponding
N ——

to solution ‘7",
@ The worst fitness of feasible solution in the population is 364.823 corresponding to
solution ‘1",
ww
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Now, since we have done calculation for 3 solutions let us move ahead. So, in this case,
we are considering the R equals to 2, we have performed our calculation for solution 1 and
as we understood that since this particular solution is feasible, so the objective function
value will become the penalty function value as you can see in the column number 3 and

column number 6.

Look at the solution number 2 here. Now, as you we can see here g 1 is g 1 is not satisfied,
g 2 is satisfied, so it is an infeasible solution and using this static penalty we found that
this is going to be 715.797. Similar calculation we did it for solution number 3 and in this
particular solution we can see that g 2 is not satisfied, so the solution is infeasible. By using

the formula, we calculated these static penalty function value.

Now, looking at equation looking at solution number 4, we can see that the objective
function is given here the constraint g 1 as well as constraint g 2 for solution number 4,
both of them are not satisfied. So, in this case the both the constraint violations are included
and multiply by 2 and added into the objective function value. Same procedure we follow

and we can calculate the static function value for all the solution.

Now, for solution number 5 since it is a feasible solution. So, the objective function value
is the same or the fitness is the same as the objective function value. For solution number
6 and 7 as we can see that g 1 constraint is not satisfied. So, these two solutions are

infeasible and accordingly we calculated the fitness value for both of them. And the



solution number 8 it is feasible, so we can see the fitness is the same as the objective

function value.

The infeasible from the table we can see that we have solution 2, 3, 4, 6, and 7 are the
infeasible solution. Now, as we remember that in this particular approach, we have to find
the value of a lambda as well. Now, the lambda will be calculated with respect to the worst
feasible solution and the best infeasible solution.

So, we have to identify both of them. So, let us see a let us see the table again here. In this
particular table, as we know the solution number 1, solution number 6, and solution
number 8 are feasible solution. Among these 3 solution number 1 is the worst feasible
solution looking at their fitness value. Similarly, if we look at the infeasible solution, we
have to find which is the best solution.

Now, the among the infeasible solution as we have used these colours, we can see that the
solution number 7 is the best infeasible solution which has the fitness value 140.438. So,
this particular solution we are considering because it is the best infeasible solution

similarly.

Similarly, we have a worst feasible solution as we have discussed earlier. Looking at the
fitness value the solution 1 is going to be the worst feasible solution. So, we have selected

solution number 1 and solution number 7 to calculate the value of lambda.

(Refer Slide Time: 19:36)
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o Therefore, A(t, ) = 364.823 — 140.438 = 224.385.
@ Since solution 1 is feasible, the fitness will remain same as objective function value.
o Let us consider solution 2, which has static penalty function value 715.797.
o The fitness of solution 2 is F(z%)) = 715.797 + A(t,z) = 940.182
o The fitness assigned to each solution by Powell and Skolnick approach is

Index(7) (2T f@D)  gi(@®)  go(a®) Penalty function F(z®)
(3.660,4.505)T 364.823 3.089  0.765 364.823 364.823 €
(2.380,5.561)"  692.216 4.917 715.797 940.182
(4.698,3.219)" 269.112 15548 273133 +) | 497.518”
(3.755,5.151)"  610.196 614.697-4 | 839.082v~
( )
( )
( )

2
L976,1754)7 32329 13780 10342 32329 | 32329
3.654,5.160)7  598.194 0225 603.063+) 827448
0.100,3.858)" 114.638- 15,743 140.438-2 9 364823
(2446,0.880)" 31385 18704 9335 31385 313%)

@ The fitness of the best infeasible solution ‘7' and the fitness of the worst feasible solution ‘1" are the same,
D. Sharma_ (dsharmadiitg.ac.in) Constraint Handling /3
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So, let us move forward and find the value of a lambda here. The lambda value is the worst
feasible solution minus the best infeasible solution. If we take a difference this is what we

are going to get a value of lambda.

A(t,x) = 364.823 —140.438 = 224.385.

F(x®) = 715.797 + A(t, (x)) = 940.182

Now, let us use the value of a lambda in order to calculate the fitness using this approach.
Now, as we know solution 1 is the feasible solution, so the fitness will remain same as the
objective function value. Now, consider the solution number 2, the static penalty function

value as we calculated earlier it is given as 715.797.

So, the fitness of solution number 2 is the static penalty function value plus the lambda
value that is giving me 940.182. So, the final fitness of solution 2 we are going to calculate
with respect to lambda because a solution 2 was a infeasible solution. So, by following the
same procedure we can assign fitness to each solution using Powell and Skolnick approach

here.

Now, solution 1 as we know this is the feasible solution, so that is why the fitness value as
you can see in the last column is the same as the objective function value. The solution
number 2 as we know that in the previous calculation, we have already calculated the
penalty function value. Now, we are adding a lambda, so in the last column we can see the
fitness of a solution 2 as 940.182.

If we follow the same step for solution number 3, as we know solution number 3 is
infeasible, so we are going to add this we have this penalty function value we are going to
add a lambda here and the final fitness of this particular solution is 497.518. If we follow
the same procedure, now you can see that solution number 4, 6, and 7 they are infeasible

solution.

So, in this case we are going to add lambda with the penalty function and then we will get
the final fitness as given in the last column. And for the other solution since they are
feasible solutions, so we know that the fitness of the solution is the same as the objective

function value.



So, from this table what is what is our observation? As it is mentioned earlier, the solution
number 7 was the was the best infeasible solution, and solution 1 was the worst feasible
solution. Looking at their fitness value we can see that both of them have the same fitness
value and that is what this method does, that fitness of the worst feasible solution is the

same as the fitness of the best infeasible solution.

(Refer Slide Time: 23:08)
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o Let us consider large value of R = 100.
Index(i) @) f@®) (@) gy(x) Static Penalty, F(a™)

1 (3.660,4.595)T 364.823 3.089  0.765 364.823 &«
2 (2.380,5.561)7 692.216 4.917 1871.286
3 (4.698,3.219)7 269.112 15.548 470.149 &
4 (3.755,5.151)" 610.196 835.214
5 (1976,1.754)7 32320 13.780 10342 32.329
6 (3.654,5.160)T 598.194 0.225 841.635
7 (0100,3.858)7 114,638 15.743 1404632
8 (2.446,0.880)T 31385 18704  9.335 31.385
@ The best fitness among the infeasible solutions in the population is 470.149 corresponding
to solution ‘3'.
o The worst fitness of feasible solution in the population is 364.823 corresponding to
solution_ ‘1",
o Therefore, A(t, ) = 364.823 — 470.149 = —105.326. ,
Sl el e
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Now, here we perform the previous analysis with a small value of a R which is 2. If we
consider R equals to 100, then let us observe what are the changes in the fitness value since
we are going to take R very large value. So, we know that the static penalty function value
will be large. So, let us observe the changes with a same solution, but considering R equals
to 100.

A(t,x) = 364.823 —470.149 = —105.326

Now, looking at the table now here, so we are considering R is equals to 100 now. Solution
1 so it is a same solution we are considering, since this g 1 and g 2 are satisfied, so we
know that it is going to be feasible and that is why the static penalty function value is the

same as the objective function value.

Now, coming to the solution number 2 here. Now, solution 2 is infeasible as we can see

here g 1 is not satisfied. Since g 1 is not satisfied and by using the formula of a static



penalty the fitness value or the static penalty function value is given in the last column.
So, the observation here is as and when we are going to increase the value of R, the static
penalty function value increases according to the R which is currently a large value.

Similarly, we can calculate the fitness static fitness value for solution number 3 which is
infeasible right now, 4 is also infeasible, 6 and 7 are also infeasible. Now, according to
that by taking R equals to 100, we are going to get the values as mentioned here, in the last

column of the table.

Now, since we have calculated the static penalty function value let us calculate what should
be the value of a lambda. Now, as we know the definition of a lambda, we have to search
two solutions. So, let us identify the worst feasible solution and the best infeasible solution

from the table.

Now, looking at this particular table we can see that looking at the all the infeasible
solution, the worst infeasible solution is corresponding to the solution number 3 having a
fitness of 470.149. Similarly. if we look at the best feasible, so we have used in the last

column two colour coding.

So, the best feasible solution the best infeasible solution is corresponding to solution
number 3 and the worst feasible solution is corresponding to solution number 1. So, when
we have identified solution 1 and solution 3, we can calculate lambda. So, as we know the
worst feasible solution fitness minus, the best infeasible solution and we get a value of a
lambda as minus 105.326.

So, what is the observation here? With respect to the previous example where we have
taken R equals to 2 there the value of a lambda was a positive. So, basically, we are
penalizing those constraint with the small value of R. But as and when, we take a large
value of a R then the fitness or the static function value is large and in the current case we

have lambda as a negative value.



(Refer Slide Time: 27:09)
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@ The fitness assigned to each solution by Powell and Skolnick approach for R = 100 is

Index(i) (2T @) g@D) g@®) F@ED)
3.660,4.595)7 364.823 3.080  0.765  364.823

( )
(2.380,5.561)T  692.216 4917 1765959
(4.608,3.219)7 269.112  15.548 364.823
(3.755,5.151)T 610.196 720.888
( )
( )
( )

1.976,1.754)7 32.329 13780 10342  32.329

3.654,5.160)7  598.194 0.225  736.309

0.100,3.858)7 114638 15.743  1299.305

(2.446.0.880)T 31.385 18704 9335  31.385

o The fitness of the best infeasible solution ‘3" and the fitness of the worst feasible solution
‘1" are the same.

AR SR -
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Now, let us calculate the fitness of each solution when R is equals to 100. Starting with
the solution number 1 we know the it is a feasible solution, so the fitness and the objective
function value are the same. Solution number 2 is a infeasible solution as we can see g 1
is not satisfied, so we are going to add the value of a lambda which is which was a negative

value into the penalty function value.

Similarly, for a solution number 3, which is infeasible as g 2 is not satisfied, so we have
we have this lambda value which we added into the penalty function value. Similarly, we
have we perform the same calculation for solution number 4, 5, 6, 6, 7, and 8 here, and by
using the negative value of a lambda we find the fitness of every solution in the last

column.

Now, as we remember for the given case of R equals to 100, solution 3 was the best
infeasible solution and solution 1 was the worst feasible solution. Now, looking at their
fitness value both of them are the same and that is what this method does that both the

fitness should be the same in this particular case.
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Deb'’s Approach

o Deb's approach is similar to Powell and Skolnick approach. However, it does not require
’W

any penalty parameter, R and A(t, z).
—~ s

f(z), if z is feasible;
F(I) = A~ J K N (4)
A,; Tinaz Z |(g; ()| + Z |hi(2)], Otherwise.

ww =1 k=1

0 Here, fiqq is the objective function value of the worst feasible solution in the population.
et — e

o~ N S ——
o Therefore, this approach is considered as penalty parameter-less approach.
R e i
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Now, in this particular case as you can observe that we are handling the objective function
and constraint values separately. In this case, as and when the objective function is feasible
we always consider the function value as a fitness value. And when the solution is
infeasible, so that constraint violation we are going to add into the objective function value.
Since we are dealing the constraint and objective function separately, so this is one of the

efficient methods that can handle constraint with the EC technique.

( fx), ifx is feasible

J K
F(x) = { )
fmax + |( g(x))| + |h ()], otherwise
k ]Zl: j ; k

Following the similar concept, we have another method called Deb’s approach. So, let us
see what is that. In this Deb’s approach, this is you will find it is similar to Powell and
Skolnick approach; however, in this particular approach it does not require an in any

penalty parameter called R or lambda.

In this Deb’s approach, what they have done, looking at the equation number 4 the fitness
of the function is equals to the objective function value when the solution is feasible. So,
this is similar to the previous approach; however, if the solution is infeasible, so there is a
term called f max, and then we are adding the constraint violation in to this f max. So, in
this case what is f max? So, f max is the objective function value of the worst feasible

solution in the population.



Now, you remember that the lambda was calculated with respect to the two solutions, in
this particular approach the infeasible solution is not considered at all. Only, the solutions
which are feasible among those feasible solution we identify which is the worst solution
and we take the objective function value of the worst feasible solution as f max. As and
when we get f max value we add the constraint violation into it and that constraint violation

without a value of R.

So, in this particular formulation you can see that we have not used any penalty parameter
called R, so therefore, this approach is also known as as we can see the penalty parameter
less approach. This is also one of the famous constraint handling technique for

evolutionary computation techniques.

(Refer Slide Time: 31:39)
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Hand Calculations

o Let us consider the following solutions
o) @O @) @) a@)
1 (3.660,4.595)" 364828 3.089  0.765
(2.380,5.561)7 692.216 —11.791 4917
(4.698,3.219)T 269.112 15548 —2.010
(3.755.5.151)T 610.196 -2.081 —0.169
( )
( )
( )

1.976,1.754)7 132320 13780  10.342
3.654,5.160)7 598.194 —2.434 0225
0.100,3.858)7 114,638 —12.900 15.743
8 (2.446,0.850)7 | 31385 18704 9.3

o The feasible solutions in the population are ‘1', ‘5" and ‘8",

~N O Tt = W

o Among them, the worst feasible solution is ‘1" with the objective function value 364.823.
o It means that fq, = 364.823,
O e Attt
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So, let us see how this method work. In this case, we are going to take the same set of a
solutions which we have considered in our previous case. So, in this case, let us see the
solution. Now, in the given table all 8 solutions are given their x value, similarly their

function value, g 1 and a g 2 values are given.

Now, as we remember we have to just consider the feasible solution. So, in this in this
case, we have solution number 1, solution number 5, and solution number 8 as our feasible
solution. In order to calculate the f max value, we have to find what is the worst feasible

solution.



Looking at the feasible solution, now we are looking at the green part here. Now, if we
compare the objective function values of these three solution, we can find that the solution
number 1, is the worst feasible solution and its objective function value is 364.823. So,

this is going to be our f max in our formulation. So, let us see what will be the fitness here.

(Refer Slide Time: 33:05)
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Hand Calculations

o Let us consider solution 1, z(V) = (3.660,4.595)", f(2") = 364.823, g1 (=) = 3.089
and gy(21)) = 0.765.

@ Since it is a feasible solution, F(z(!)) = f(2V)) = 364.823.

o Let us consider solution 2, 2(2) = (2.380,5.561)7, f(2?)) = 692.216, g(2®) = ~11.791
and gg(J:('Z)) =4917.

@ It is an infeasible solution.

o Fitness of solution 2 is
F(2®) = (g1 (a®)| + |(g2(a®))| + frnae = 11.791 + 364.823 = 376.614.

o Let us consider solution 3, 2%) = (4.698,3.219)T, f(x®)) = 269.112, g (%)) = 15.548
and gy(z®) = =2.010.

@ It is an infeasible solution. v L

: o, :
o The fitness solution 3 is F(z®)) = (g1 (z*))| + [{92(=®))| + fnaz
_ R 9 _ ¢ 29 — e
= 2.010 + 364.823 = 366.833.
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So, let us consider solution one by one here. Solution number 1, as we have calculated
earlier g 1 and g 2 as satisfied, so it is a feasible solution, and since it is a feasible solution
the fitness of the solution is the same as the objective function value. Let us consider now
solution number 2, now for solution number 2 we know that the constraint g 1 is not

satisfied. Meaning that the solution 2 is infeasible.

x® = (3.660,4.595)7,  f(xV) = 364.823,
91(x®) = 3.089 and g,(x®) = 0.765

F(x®) = f(x™) = 364.823

x@ = (2.3805.561)7, f(x®@) = 692.216,
91(x@) = —=11.791 and g,(x®@) = 4.917



F(x®) = (g:(x@N)] + [(g2(x@))| + frax = 11791 + 364.823
= 376.614

x® = (4.6983219)", f(x®) = 269.112,
91(x®) = 15548 and g,(x®) = —2.010

F(x®) = [(gi(x®N)] + [(g2(x®))| + frax = 2.010 + 364.823 = 366.833

So, by using a formula given by Deb’s approach, so we have the constraint violation and
then we are adding a f max value. In this case, since only one constraint is infeasible, one
constraint is not satisfied, so the positive value we have taken and the worst f max value,
so we get the fitness here. So, what is the observation here is we are not considering the
objective function value of an infeasible solution. We are finding the fitness with respect

to f max plus the constraint violation.

Now, let us look at the solution number 3 now. Now, solution number 3 as we know the
constraint g 2 is not satisfied. Since, it is not satisfied this particular solution is a infeasible
solution. So, in this case, we are adding the constraint violation plus f of f max. Now, since
g 1 is satisfied it is going to be 0 and positive value of a g 2 we will consider, so we can

find the fitness of a solution 3 as f max plus the constraint violation.



(Refer Slide Time: 35:03)
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Hand Calculations

o The fitness of each solution using Deb's approach is

dei) @O 1Y) g") g@?) FEY)

1 3.660,4.595)7 "364.823 3.089  0.765

2 2.380,5.561)7  692.216 4.917  376.614
4
5
6
7

4.698,3.219)" 269.112  15.548
T 610,196 367.073 —
1.976,1.754)7 32320 13780 10.342 32.329

3.654,5.160)"  598.194 0.225 367257 —
0.100,3.858)" 114.638 15.743 3717.123 —
8 (2446,0.880)" 31385 18704 9335 31385

@ The best infeasible solution ‘3" has more fitness value than the worst feasible solution ‘1",
A — A P e i)

(
(
(
(3.755,5.151
(
(
(

0 A feasible solution is always better than any infeasible solution in the population.
AAANA A N~ D e A~
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If we are going to follow the same procedure for all of the solution, then we can find the
fitness. So, let us see one by one in a table. So, here the fitness of each solution using Deb’s
approach is we have a solution 1, which is a feasible solution. So, therefore, the objective

function value is and the fitness value are the same.

For solution number 2 we as we have seen g 1 is not satisfied, so it is a infeasible solution,
so this is going to be f max plus constraint violation. Similarly, we follow we are getting
say g 3,04,5,6, 7, and 8. For all these solutions wherever these are infeasible solution
we are considering f max plus constraint violation and when a solution is feasible, for

example, solution number 5, 8, the fitness is the same as the objective function value.

Now, there are certain observation from the table. Now, the best infeasible solution if we
find from the table so let us look at the last column of the table. Now, as we know the
solution number 2, 3, 4, 6, and 7, these are the solution which are infeasible. Among them

the best infeasible solution is corresponding to solution number 3.

Now, here this particular solution. So, let us compare the fitness of solution 3 verses
solution 1. Why 1? Because 1 is the worst feasible solution, and solution 3 is the best
infeasible solution. So, the observation here is that the best infeasible solution number 3,
has more fitness value than the worst feasible solution number 1, which suggest that a

feasible solution is always better than any infeasible solution in the population.



So, there are certain differences which we can find between the two approaches which we
have gone through. So, in Deb’s approach first of all we are considering the f max, there
is no penalty parameter called R, and we do not consider the objective function value of

infeasible solution.

In this case, when we use Deb’s approach, the infeasible solution will get more fitness
value than the if than the if any of the feasible solution. Since we are solving a
minimization problem, so we know that if the fitness is less, we are going to select that
solutions favourably. However, in the previous approach we have this lambda term and
that lambda term is making the fitness the same value of a fitness for both the solutions.

Now, as of now we have used the first approach as separating the objective function and a
constraint in which we assign the fitness by giving superiority of feasible solution over
infeasible solution. In both the approaches, we find that we are calculating the objective
function and the constraint violation separately and that why these two approaches comes
into that category.

Now, we are moving to another category where we again consider objective function and
constraint separately. This particular approach is motivated from multi-objective concept.

So, let us begin with that.

(Refer Slide Time: 39:19)
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@ A constrained optimization problem is converted into a multi-objective optimization
method.

Minimize f(l‘)-‘/
Minimize |(gy(z))|
Minimize |{gy())|

Minimize R_(]J (@))| / (5)
\

Minimize |k (2
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Minimize f(x),



Minimize |({ g,(x))|

Minimize |{ g,(x))|

Minimize |{g,(x))|

Minimize & |h,(x)|

Minimize |hyg(x)]

xP < x < x,&i=1,2,..,N.

So, using the multi-objective concept we are going convert an constrained optimization
problem. So, this particular problem is converted; as you can see in equation number 5,
we want to minimize our function that is original objective function value, along with that

we can minimize the mod of the bracket inside the bracket g 1.

So, we know that the minimum value for this particular function will be 0. So, as and when
it is become 0, so the constraint is satisfied. Similarly, we can consider g 2, similarly all
inequality constraint, and for equality constraint also we are considering this. So, we are

considering all these constraints as a separate objective function.

Now, looking at this particular formulation that when we have more than one objective
this is called multi-objective. Since we are considering constraint as our objective function,
so we our formulation which was constrained optimization problem that has been

converted into a multi-objective problem.

Now, here we do not have any constraint. What we have is only the variable bound. So,
looking at the equation number 5, we are having multiple objective functions and we have
the variable bound here. So, this is one of the way, we can convert a constraint optimization

problem using multi-objective approach.



(Refer Slide Time: 40:59)
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@ A constrained optimization problem is converted into a multi-objective optimization

method.
Minimize f(z) /
Minimize CV v~ 0 (6)
dP<m<al, i=12,...,N.
NAA A

° CV stands for constraint violation, which can be calculated as Z| (@) + Z [h ()]
R
GRS
RS
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Minimize f(x),
Minimize CV

P << x,&i=12,..,N.

J K
D UG+ ) (o)
j=1 k=1

What is the another approach? So, instead of having each and every constraint as an

objective function what we can consider as you can see in equation number 6, we want to

minimize our original objective function and we want to minimize CV and this particular

problem is subjected to the variable bounds.

So, this is we have two objective functions and the bounds on the variable. So, what is CV

here? CV is stands for constraint violation that we can calculated as looking at this we this

is the constraint violation coming from inequality constraint, and the second term says that

the constraint violation from the equality constraint.



So, when we are adding these two terms that will become the constraint violation. Now,
when we are going to minimize looking at equation number 6, if you are going to
minimize, so the minimum value will become 0, this means the solution which we are

going to get is the feasible solution for us.

(Refer Slide Time: 42:14)
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Issues with Multi-objective Optimization Approaches

@ We need an efficient EC technique for solving multi-objective optimization problem.

o Using the Pareto-ranking, most of the search will happen in infeasible space, thereby
wasting the computation.

@ The approach may find a feasible solution but cannot search for optimal solution.

@ When many solutions are feasible, the Pareto-dominance relationship has ndg role.
~—— e — —————.———
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So, there are certain issues, although it looks simple that we can always covert our
constraint problem into an unconstraint problem using multi-approach objective, but there
are certain issues. So, let us understand one by one. So, first of all we should have an

efficient EC technique for solving multi-objective optimization problem.

So, let us consider the first approach where we want to minimize our objective function as
well as we want to minimize the constraint violation. If we consider we have 10 constraint,
so overall the problem will have 10 plus 1, 11 objective functions. Why? Because very

constraint is converted into an objective function.

So, in this case we will, we should need an efficient multi-objective optimization algorithm
that can handle 11 constraints and as we know there are certain practical optimization
problem which can have multiple constraints, mean meaning that the number is very large.
So, we do not have or we should need such kind of efficient multi-objective optimization

algorithm.



Second is, if in multi-objective techniques, generally we consider this Pareto ranking. In
this Pareto ranking, what will happen that most of the search will happen in the infeasible
space thereby wasting the computation. Why? Because when we perform Pareto
computing or Pareto ranking, we have to do some computation because we compare each
and every solution in each objective and then we know which solution is non-dominated

which solution is dominated.

Now, when we are performing as we know that if the solution is infeasible, so the objective
function will have certain value. So, every time when we are performing this Pareto
ranking, we are actually performing for infeasible solution. And therefore, a lot of
computation will be wasted when we perform this extra computing for single objective

optimization.

Third is, the approach may find a feasible solution, but cannot search for the optimum
solution. Now, remember that we have two ways to handle the constraint optimization,
either we can have all constraint as independent objective functions or we can take the

second objective as a constraint violation.

Now, from these, from both the ways what we can find is that as and when we get a feasible
solution, the constraint violation is 0, and we can get a some objective function value. In
this case, we will not be searching, we may not be able to search for an optimum solution
because the algorithm has find an optimum solution using the multi-objective concept. So,
therefore, sometimes we may not able to find the optimum solution, but may we may get

the feasible solution using this approach.

Now, coming the next issue is when many solutions are feasible, then the Pareto
dominance relation has no role. So, this is so in this case suppose we have 10 solutions all
the solutions are feasible. So, this means that the constraint violation is 0. Only the

objective function value we have it. So, that is minimization of f of x.

Now, since all the objective function values are 0, that is corresponding to the constraint
violation, we have only change in the first objective which is minimization of f of x. When
we perform the Pareto dominance relationship, it has no role because the second objective
is always 0 for all the solution. So, therefore, it is not helping us to take the solution towards

the optimum solution.



So, in this particular section, what we have gone through is another way to handle the
constraints. In this, in the first category we separated the objective function and a constraint
and we assigned a fitness when a solution is feasible and infeasible. When it is feasible as
we understood we are giving the fitness is the same as objective function, when solution

is infeasible we are adding the constrained violation into it.

(Refer Slide Time: 47:16)
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@ Hand calculations for both the approaches

o Constraint handling via multi-objective optimization concepts
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So, in this particular session, we have gone through these two methods called Powell and
Skolnick’s approach, and Deb’s approach. Both of them handle the constraints via
separating the objective function and the constraints we also perform the hand calculation

for both the approaches and what we have certain observation for both the methods.

In the first approach, we need value of a R that is the penalty parameter. We also have to
calculate the value of a lambda using the two solutions, that are worst feasible solution and
best infeasible solution. But in the second approach that is Deb’s approach, we only
consider the worst feasible solution we do not need R, and therefore, this approach is used

with many of EC techniques for handling the constraints.

Along with that we have also gone through the multi-objective concept, that multi-
objective concept we have discussed very briefly just to understand how this constraint
problem can be converted into an unconstraint problem by considering all the constraint
as an objective. So, there are certain issues with a multi-objective approach; however, this

is one of the ways to handle the constraint optimization method.



With the detail on these constraint handling techniques, | conclude this session.

Thank you very much.



