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Lecture - 14 

Constraint Handling with Evolutionary Computing Techniques 

 

Welcome to the session on Constraint Handling with Evolutionary Computation. In this 

particular session, we will target two types of ways in which we can handle constrained in 

our Optimization problem. 
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So, one of the way is to handle the constraint is to separate objective function and 

constraints and deal those constraint with them. The second method is using the concept 

of multi-objective optimization. So, in this session, we will start with these two approaches 

and then we will close this session. 
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So, as a recap till now what we have covered in a constraint optimization. We started with 

a constraint optimization formulation which consist of an objective function subjected to 

inequality constraint, equality constraint, and the variable bounds. There after we discuss 

the methods of multipliers for constrained optimization.  

In this particular method, we converted a constraint optimization problem in to an 

unconstrained optimization problem by using Lagrangian multiplier. So, for both equality 

and inequality constraints, we find the optimality condition for that unconstraint problem 

using Lagrangian multiplier. 

There after we also discuss the Karush Kuhn Tucker condition in which is also known as 

KKT condition, that KKT condition we have written for an optimization or a constraint 

optimization problem having both type of constraint that is inequality and equality 

constraints. There after we discuss about the one of the famous method or in which that is 

called penalty function methods.  

In this penalty function method. We have gone through various kinds of method such as 

death penalty static penalty dynamic penalty and adaptive penalty. So, we have gone 

through various kinds of penalty function methods; we perform the hand calculations using 

static and dynamic penalty, so that we can understand how these penalty function methods 

can be used with the constraint optimization with EC techniques. 



Now, let us move to the another way to handle the constraint. So, before we begin let us 

have an introduction again. 
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In this particular introduction, we will see that a constrained optimization problem can be 

written as we want to minimize an objective function and this objective function is 

subjected to various constraint. As can be seen in equation number 1, we can have 

inequality constraints, we can have equality constraints and the problem is having the 

variable bounds. So, this is typically a constrained optimization problem that we can write 

in a generalized form. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑔𝑗(𝑥) ≥  0, 𝑗 =  1, 2, … , 𝐽, 

 ℎ𝑘(𝑥) =  0, 𝑘 =  1, 2, … , 𝐾,     

 𝑥𝑖
(𝐿) ≤  𝑥𝑖 ≤ 𝑥𝑖

(𝑈), 𝑖 = 1, 2, … , 𝑁.   

𝑃(𝑥, 𝑅)  =  𝑓(𝑥)  + Ω (𝑅, 𝑔(𝑥), ℎ(𝑥)) 

 

In the previous session, we have understood a penalty function method in which we 

combine penalty of violated constrain to the objective function to calculate the fitness of a 



solution. In this case, the penalty function method which is given in a in equation number 

2 as P of x R equals to the objective function plus the penalty term.  

In this particular penalty term, it is made of the penalty parameter called R, we can have 

inequality constraint as well as we can have equality constraint. So, in this particular case, 

we find this omega which is the penalty term, we choose this term in order to favor the 

selection of feasible point over infeasible point and that is the whole objective here, that 

whenever when we are working with EC techniques we have multiple solutions. 

At certain stage, we can have feasible solutions as well as infeasible solution. So, how we 

can differentiate them or how we can assign a fitness to them? So, in this case, when we 

are adding a penalty to infeasible solution, so that fitness always favor the feasible solution 

over infeasible solution as and when we perform selection or the survival stage. Now, let 

us move to the new way to handle the constraint handling that is separation of objective 

function and constraint. 
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𝐹(𝑥) =

{
 
 

 
 𝑓(𝑥), if x  is feasible

𝑓(𝑥) +  𝑅 (∑|〈 𝑔𝑗(𝑥)〉|

𝐽

𝑗=1

  +∑ |ℎ𝑘((𝑥))| 

𝐾

𝑘=1

 ) + 𝜆 (𝑡, 𝑥), otherwise
 

Now, this particular the approaches that comes that comes under this category, they handle 

the objective function and constraints separately. So, in this category, we have superiority 



of feasible solution over infeasible solution. So, we will start with one of the approach is 

called Powell and Skolnick approach. 

In this case, let us assume we have a minimization problem. For a given problem, we can 

calculate the fitness of a solution as given in equation number 3. We can see that the fitness 

of a solution which is capital of F of x this is equals to the objective function when a 

solution is feasible. So, we are considering the fitness same as objective function when the 

solution is feasible, otherwise means the solution is infeasible.  

In this case, we have the objective function then we can see this particular term as we have 

understood that we this R is the penalty parameters, the terms inside this big bracket, so 

these terms represents the constraint violation, and at the last we are adding lambda t, x. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥1, 𝑥2)  =  (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 −  7)2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  (𝑥1 −  5)
2 + 𝑥2

2 ≤  26 

 4𝑥1 + 𝑥2 ≤  20     

 0 ≤  𝑥1, 𝑥2 ≤  6 

So, let us understand this equation in detail now. So, in this particular equation, R is the 

penalty factor, lambda t, x is the difference between the worst feasible solution and the 



best static penalized function value among all infeasible solutions. So, here what we can 

see that the value of a lambda we will be calculating with respect to the worst feasible 

solution in the given population and at the current iterations at t.  

Similarly, in the same iteration what is the best infeasible solution. So, that we have to 

choose or we have to find carefully and that will represents the value of lambda here. Now, 

here the significance of such kind of a fitness is that this significance is that the best 

infeasible solution in the population will have the same fitness value as the worst feasible 

solution in the population.  

So, the lambda value will be adjusted in a such a way that these two solution; that is worst 

feasible solution and the best infeasible solution both are going to have the same fitness 

value. So, let us understand this method using the Himmelblau function.  

So, the Himmelblau function is an unconstrained problem in which we want to minimize 

the function as given. But this particular problem now subjected to two constraint and both 

of them are inequality constraint. Now, the first constraint is a quadratic form and the 

second constraint is a leaner form. For our simplicity let us assume that x 1 and x 2 will 

take a value between 0 to 6. 
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So, let us consider the solutions one by one. Here we choose the first solution as given in 

the table. And at this particular solution we can find the objective function by putting the 



value of x 1 and x 2 component. there after the same solution if we put in g 1 constraint 

the value is 3.089 and the same solution when we include in g 2 it is 0.765. 

𝐹𝑠(𝑥)  =  𝑓(𝑥) +  𝑅 (∑|〈 𝑔𝑗(𝑥)〉 |

𝐽

𝑗=1

 +∑|ℎ𝑘(𝑥)| 

𝐾

𝑘=1

  )  

So, in this case what we are going to do here is, for a given example we are generating 8 

solutions. Meaning that we are considering this x 1 and x 2 component of each solution 

and we created randomly between 0 minus x. And for every solution we are finding the fit 

function value. We are finding the constraint g 1 value as well as g 2 value. 

Now, in order to find the fitness let us consider we have R equals to 2. So, as you can see 

in the previous equation that the R will remain the same. Now, the value, so the fitness 

using the static penalty function is; so, we are using this term called F under F s, s is in the 

subscript, so F of x is equals to the objective function we have one penalty parameter which 

is currently 2 and we have a constraint violation. So, let us identify or calculate the static 

penalty function value using this formula. 
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We will start with solution number 1. In this particular solution, as we have already 

calculated the objective function the g 1 value and the g 2 value. Now, here looking at the 

value of g 1 and a g 2 we can see that both the constraints are satisfied for a solution 



number 1. So, we can say the particular solution is feasible solution and therefore, the 

fitness of the solution is equals to the objective function which is 364.823. 

Now, let us consider the solution number 2. Now, here the solution number 2 we already 

calculated the objective function value, similarly the g 1 and the g 2 value. What is the 

observation here is the g 1 value is negative meaning that this particular constraint is not 

satisfied for x 2, therefore the solution is infeasible.  

Since, the solution is infeasible let us calculate the penalty function value here the penalty 

function value as we have we know it is made of objective function plus the constraint 

violation multiplied by R. Now, looking at the value here we have the objective function 

value as 692.216 plus.  

Now, if we look inside the bracket, now we know that g 1 is not satisfied, but g 2 is 

satisfied. Since g 1 is not satisfied we are putting the value here, and g 2 is not satisfied 

and this bracket operator as we remember that f the value of a g 2 is 0 or positive it is going 

to be 0. By considering those things, we can have two times of g 1 value and since g 2 is 

already satisfied, so we are taking a 0 value. So, the penalty function value for the solution 

2 is given here as 715.797. 

Similar exercise we will do for solution number 3 here. Now, as you can see the solution 

number 3 is given, we already calculated the objective function the constraint g 1 and the 

g 2. Now, the observation here is this g 2 is negative meaning that the solution is infeasible.  

So, we are going to use the static penalty function here using the same formula as given 

here we will do first we will consider the objective function plus now the 0 is written for 

a g 1. Why? Because it is already satisfied plus 2 times of now as you can see that constraint 

g 2 is not satisfied, so we are taking a positive value. In this case, the fitness of the solution 

number 3 is given as 273.133. 
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Now, since we have done calculation for 3 solutions let us move ahead. So, in this case, 

we are considering the R equals to 2, we have performed our calculation for solution 1 and 

as we understood that since this particular solution is feasible, so the objective function 

value will become the penalty function value as you can see in the column number 3 and 

column number 6. 

Look at the solution number 2 here. Now, as you we can see here g 1 is g 1 is not satisfied, 

g 2 is satisfied, so it is an infeasible solution and using this static penalty we found that 

this is going to be 715.797. Similar calculation we did it for solution number 3 and in this 

particular solution we can see that g 2 is not satisfied, so the solution is infeasible. By using 

the formula, we calculated these static penalty function value. 

Now, looking at equation looking at solution number 4, we can see that the objective 

function is given here the constraint g 1 as well as constraint g 2 for solution number 4, 

both of them are not satisfied. So, in this case the both the constraint violations are included 

and multiply by 2 and added into the objective function value. Same procedure we follow 

and we can calculate the static function value for all the solution.  

Now, for solution number 5 since it is a feasible solution. So, the objective function value 

is the same or the fitness is the same as the objective function value. For solution number 

6 and 7 as we can see that g 1 constraint is not satisfied. So, these two solutions are 

infeasible and accordingly we calculated the fitness value for both of them. And the 



solution number 8 it is feasible, so we can see the fitness is the same as the objective 

function value. 

The infeasible from the table we can see that we have solution 2, 3, 4, 6, and 7 are the 

infeasible solution. Now, as we remember that in this particular approach, we have to find 

the value of a lambda as well. Now, the lambda will be calculated with respect to the worst 

feasible solution and the best infeasible solution.  

So, we have to identify both of them. So, let us see a let us see the table again here. In this 

particular table, as we know the solution number 1, solution number 6, and solution 

number 8 are feasible solution. Among these 3 solution number 1 is the worst feasible 

solution looking at their fitness value. Similarly, if we look at the infeasible solution, we 

have to find which is the best solution. 

Now, the among the infeasible solution as we have used these colours, we can see that the 

solution number 7 is the best infeasible solution which has the fitness value 140.438. So, 

this particular solution we are considering because it is the best infeasible solution 

similarly.  

Similarly, we have a worst feasible solution as we have discussed earlier. Looking at the 

fitness value the solution 1 is going to be the worst feasible solution. So, we have selected 

solution number 1 and solution number 7 to calculate the value of lambda. 
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So, let us move forward and find the value of a lambda here. The lambda value is the worst 

feasible solution minus the best infeasible solution. If we take a difference this is what we 

are going to get a value of lambda. 

𝜆(𝑡, 𝑥)   =  364.823 − 140.438 =  224.385. 

 

 𝐹(𝑥(2))  =  715.797 + 𝜆(𝑡, (𝑥))  =  940.182 

Now, let us use the value of a lambda in order to calculate the fitness using this approach. 

Now, as we know solution 1 is the feasible solution, so the fitness will remain same as the 

objective function value. Now, consider the solution number 2, the static penalty function 

value as we calculated earlier it is given as 715.797.  

So, the fitness of solution number 2 is the static penalty function value plus the lambda 

value that is giving me 940.182. So, the final fitness of solution 2 we are going to calculate 

with respect to lambda because a solution 2 was a infeasible solution. So, by following the 

same procedure we can assign fitness to each solution using Powell and Skolnick approach 

here. 

Now, solution 1 as we know this is the feasible solution, so that is why the fitness value as 

you can see in the last column is the same as the objective function value. The solution 

number 2 as we know that in the previous calculation, we have already calculated the 

penalty function value. Now, we are adding a lambda, so in the last column we can see the 

fitness of a solution 2 as 940.182. 

If we follow the same step for solution number 3, as we know solution number 3 is 

infeasible, so we are going to add this we have this penalty function value we are going to 

add a lambda here and the final fitness of this particular solution is 497.518. If we follow 

the same procedure, now you can see that solution number 4, 6, and 7 they are infeasible 

solution.  

So, in this case we are going to add lambda with the penalty function and then we will get 

the final fitness as given in the last column. And for the other solution since they are 

feasible solutions, so we know that the fitness of the solution is the same as the objective 

function value. 



So, from this table what is what is our observation? As it is mentioned earlier, the solution 

number 7 was the was the best infeasible solution, and solution 1 was the worst feasible 

solution. Looking at their fitness value we can see that both of them have the same fitness 

value and that is what this method does, that fitness of the worst feasible solution is the 

same as the fitness of the best infeasible solution. 
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Now, here we perform the previous analysis with a small value of a R which is 2. If we 

consider R equals to 100, then let us observe what are the changes in the fitness value since 

we are going to take R very large value. So, we know that the static penalty function value 

will be large. So, let us observe the changes with a same solution, but considering R equals 

to 100. 

 

 𝜆(𝑡, 𝑥)   =  364.823 − 470.149 =  −105.326 

Now, looking at the table now here, so we are considering R is equals to 100 now. Solution 

1 so it is a same solution we are considering, since this g 1 and g 2 are satisfied, so we 

know that it is going to be feasible and that is why the static penalty function value is the 

same as the objective function value. 

Now, coming to the solution number 2 here. Now, solution 2 is infeasible as we can see 

here g 1 is not satisfied. Since g 1 is not satisfied and by using the formula of a static 



penalty the fitness value or the static penalty function value is given in the last column. 

So, the observation here is as and when we are going to increase the value of R, the static 

penalty function value increases according to the R which is currently a large value.  

Similarly, we can calculate the fitness static fitness value for solution number 3 which is 

infeasible right now, 4 is also infeasible, 6 and 7 are also infeasible. Now, according to 

that by taking R equals to 100, we are going to get the values as mentioned here, in the last 

column of the table. 

Now, since we have calculated the static penalty function value let us calculate what should 

be the value of a lambda. Now, as we know the definition of a lambda, we have to search 

two solutions. So, let us identify the worst feasible solution and the best infeasible solution 

from the table. 

Now, looking at this particular table we can see that looking at the all the infeasible 

solution, the worst infeasible solution is corresponding to the solution number 3 having a 

fitness of 470.149. Similarly. if we look at the best feasible, so we have used in the last 

column two colour coding.  

So, the best feasible solution the best infeasible solution is corresponding to solution 

number 3 and the worst feasible solution is corresponding to solution number 1. So, when 

we have identified solution 1 and solution 3, we can calculate lambda. So, as we know the 

worst feasible solution fitness minus, the best infeasible solution and we get a value of a 

lambda as minus 105.326. 

So, what is the observation here? With respect to the previous example where we have 

taken R equals to 2 there the value of a lambda was a positive. So, basically, we are 

penalizing those constraint with the small value of R. But as and when, we take a large 

value of a R then the fitness or the static function value is large and in the current case we 

have lambda as a negative value. 
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Now, let us calculate the fitness of each solution when R is equals to 100. Starting with 

the solution number 1 we know the it is a feasible solution, so the fitness and the objective 

function value are the same. Solution number 2 is a infeasible solution as we can see g 1 

is not satisfied, so we are going to add the value of a lambda which is which was a negative 

value into the penalty function value.  

Similarly, for a solution number 3, which is infeasible as g 2 is not satisfied, so we have 

we have this lambda value which we added into the penalty function value. Similarly, we 

have we perform the same calculation for solution number 4, 5, 6, 6, 7, and 8 here, and by 

using the negative value of a lambda we find the fitness of every solution in the last 

column. 

Now, as we remember for the given case of R equals to 100, solution 3 was the best 

infeasible solution and solution 1 was the worst feasible solution. Now, looking at their 

fitness value both of them are the same and that is what this method does that both the 

fitness should be the same in this particular case. 
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Now, in this particular case as you can observe that we are handling the objective function 

and constraint values separately. In this case, as and when the objective function is feasible 

we always consider the function value as a fitness value. And when the solution is 

infeasible, so that constraint violation we are going to add into the objective function value. 

Since we are dealing the constraint and objective function separately, so this is one of the 

efficient methods that can handle constraint with the EC technique. 

𝐹(𝑥) =

{
 

 
𝑓(𝑥), if x  is feasible

𝑓𝑚𝑎𝑥    +∑ |〈 𝑔𝑗(𝑥)〉|

𝐽

𝑗=1

 +∑|ℎ𝑘(𝑥)|

𝐾

𝑘=1

 , otherwise
 

Following the similar concept, we have another method called Deb’s approach. So, let us 

see what is that. In this Deb’s approach, this is you will find it is similar to Powell and 

Skolnick approach; however, in this particular approach it does not require an in any 

penalty parameter called R or lambda.  

In this Deb’s approach, what they have done, looking at the equation number 4 the fitness 

of the function is equals to the objective function value when the solution is feasible. So, 

this is similar to the previous approach; however, if the solution is infeasible, so there is a 

term called f max, and then we are adding the constraint violation in to this f max. So, in 

this case what is f max? So, f max is the objective function value of the worst feasible 

solution in the population. 



Now, you remember that the lambda was calculated with respect to the two solutions, in 

this particular approach the infeasible solution is not considered at all. Only, the solutions 

which are feasible among those feasible solution we identify which is the worst solution 

and we take the objective function value of the worst feasible solution as f max. As and 

when we get f max value we add the constraint violation into it and that constraint violation 

without a value of R.  

So, in this particular formulation you can see that we have not used any penalty parameter 

called R, so therefore, this approach is also known as as we can see the penalty parameter 

less approach. This is also one of the famous constraint handling technique for 

evolutionary computation techniques. 
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So, let us see how this method work. In this case, we are going to take the same set of a 

solutions which we have considered in our previous case. So, in this case, let us see the 

solution. Now, in the given table all 8 solutions are given their x value, similarly their 

function value, g 1 and a g 2 values are given.  

Now, as we remember we have to just consider the feasible solution. So, in this in this 

case, we have solution number 1, solution number 5, and solution number 8 as our feasible 

solution. In order to calculate the f max value, we have to find what is the worst feasible 

solution. 



Looking at the feasible solution, now we are looking at the green part here. Now, if we 

compare the objective function values of these three solution, we can find that the solution 

number 1, is the worst feasible solution and its objective function value is 364.823. So, 

this is going to be our f max in our formulation. So, let us see what will be the fitness here. 
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So, let us consider solution one by one here. Solution number 1, as we have calculated 

earlier g 1 and g 2 as satisfied, so it is a feasible solution, and since it is a feasible solution 

the fitness of the solution is the same as the objective function value. Let us consider now 

solution number 2, now for solution number 2 we know that the constraint g 1 is not 

satisfied. Meaning that the solution 2 is infeasible.  

𝑥(1)  =  (3.660,4.595)𝑇, 𝑓(𝑥(1))  =  364.823,

𝑔1(𝑥
(1))  =  3.089 𝑎𝑛𝑑 𝑔2(𝑥

(1))  =  0.765 

 

𝐹(𝑥(1))  =  𝑓(𝑥(1))  =  364.823 

 

𝑥(2)  =  (2.380,5.561)𝑇 , 𝑓(𝑥(2))  =  692.216 ,

𝑔1(𝑥
(2))  =  −11.791     𝑎𝑛𝑑 𝑔2(𝑥

(2))  =  4.917 



 

𝐹(𝑥(2))  =  |〈 𝑔1(𝑥
(2)) 〉|  +  |〈 𝑔2(𝑥

(2)) 〉|  +  𝑓𝑚𝑎𝑥  =  11.791 +  364.823 

=  376.614 

 

𝑥(3)  =  (4.698,3.219)𝑇, 𝑓(𝑥(3))  =  269.112,

𝑔1(𝑥
(3))  =  15.548      𝑎𝑛𝑑 𝑔2(𝑥

(3))  =  −2.010 

 

𝐹(𝑥(3))  =  |〈 𝑔1(𝑥
(3)) 〉| + |〈 𝑔2(𝑥

(3)) 〉|   +  𝑓𝑚𝑎𝑥 =  2.010 +  364.823 =  366.833 

So, by using a formula given by Deb’s approach, so we have the constraint violation and 

then we are adding a f max value. In this case, since only one constraint is infeasible, one 

constraint is not satisfied, so the positive value we have taken and the worst f max value, 

so we get the fitness here. So, what is the observation here is we are not considering the 

objective function value of an infeasible solution. We are finding the fitness with respect 

to f max plus the constraint violation. 

Now, let us look at the solution number 3 now. Now, solution number 3 as we know the 

constraint g 2 is not satisfied. Since, it is not satisfied this particular solution is a infeasible 

solution. So, in this case, we are adding the constraint violation plus f of f max. Now, since 

g 1 is satisfied it is going to be 0 and positive value of a g 2 we will consider, so we can 

find the fitness of a solution 3 as f max plus the constraint violation. 
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If we are going to follow the same procedure for all of the solution, then we can find the 

fitness. So, let us see one by one in a table. So, here the fitness of each solution using Deb’s 

approach is we have a solution 1, which is a feasible solution. So, therefore, the objective 

function value is and the fitness value are the same.  

For solution number 2 we as we have seen g 1 is not satisfied, so it is a infeasible solution, 

so this is going to be f max plus constraint violation. Similarly, we follow we are getting 

say g 3, g 4, 5, 6, 7, and 8. For all these solutions wherever these are infeasible solution 

we are considering f max plus constraint violation and when a solution is feasible, for 

example, solution number 5, 8, the fitness is the same as the objective function value. 

Now, there are certain observation from the table. Now, the best infeasible solution if we 

find from the table so let us look at the last column of the table. Now, as we know the 

solution number 2, 3, 4, 6, and 7, these are the solution which are infeasible. Among them 

the best infeasible solution is corresponding to solution number 3.  

Now, here this particular solution. So, let us compare the fitness of solution 3 verses 

solution 1. Why 1? Because 1 is the worst feasible solution, and solution 3 is the best 

infeasible solution. So, the observation here is that the best infeasible solution number 3, 

has more fitness value than the worst feasible solution number 1, which suggest that a 

feasible solution is always better than any infeasible solution in the population. 



So, there are certain differences which we can find between the two approaches which we 

have gone through. So, in Deb’s approach first of all we are considering the f max, there 

is no penalty parameter called R, and we do not consider the objective function value of 

infeasible solution.  

In this case, when we use Deb’s approach, the infeasible solution will get more fitness 

value than the if than the if any of the feasible solution. Since we are solving a 

minimization problem, so we know that if the fitness is less, we are going to select that 

solutions favourably. However, in the previous approach we have this lambda term and 

that lambda term is making the fitness the same value of a fitness for both the solutions. 

Now, as of now we have used the first approach as separating the objective function and a 

constraint in which we assign the fitness by giving superiority of feasible solution over 

infeasible solution. In both the approaches, we find that we are calculating the objective 

function and the constraint violation separately and that why these two approaches comes 

into that category. 

Now, we are moving to another category where we again consider objective function and 

constraint separately. This particular approach is motivated from multi-objective concept. 

So, let us begin with that. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥), 



𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   |〈 𝑔1(𝑥)〉|    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   |〈 𝑔2(𝑥)〉|    

 ⋮ 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   |〈 𝑔𝐽(𝑥)〉|    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  &  |ℎ1(𝑥)|    

⋮    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    |ℎ𝐾(𝑥)|    

 𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤  𝑥𝑖

(𝑈), & 𝑖 = 1, 2,… ,𝑁.    

 

So, using the multi-objective concept we are going convert an constrained optimization 

problem. So, this particular problem is converted; as you can see in equation number 5, 

we want to minimize our function that is original objective function value, along with that 

we can minimize the mod of the bracket inside the bracket g 1.  

So, we know that the minimum value for this particular function will be 0. So, as and when 

it is become 0, so the constraint is satisfied. Similarly, we can consider g 2, similarly all 

inequality constraint, and for equality constraint also we are considering this. So, we are 

considering all these constraints as a separate objective function. 

Now, looking at this particular formulation that when we have more than one objective 

this is called multi-objective. Since we are considering constraint as our objective function, 

so we our formulation which was constrained optimization problem that has been 

converted into a multi-objective problem.  

Now, here we do not have any constraint. What we have is only the variable bound. So, 

looking at the equation number 5, we are having multiple objective functions and we have 

the variable bound here. So, this is one of the way, we can convert a constraint optimization 

problem using multi-objective approach. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑓(𝑥),    

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐶𝑉    

𝑥𝑖
(𝐿) ≤ 𝑥𝑖 ≤ 𝑥𝑖

(𝑈), & 𝑖 = 1, 2,… , 𝑁.    

 

∑|〈 𝑔𝑗(𝑥) 〉| 

𝐽

𝑗=1

 +∑|ℎ𝑘(𝑥)|

𝐾

𝑘=1

  

 

What is the another approach? So, instead of having each and every constraint as an 

objective function what we can consider as you can see in equation number 6, we want to 

minimize our original objective function and we want to minimize CV and this particular 

problem is subjected to the variable bounds. 

So, this is we have two objective functions and the bounds on the variable. So, what is CV 

here? CV is stands for constraint violation that we can calculated as looking at this we this 

is the constraint violation coming from inequality constraint, and the second term says that 

the constraint violation from the equality constraint.  



So, when we are adding these two terms that will become the constraint violation. Now, 

when we are going to minimize looking at equation number 6, if you are going to 

minimize, so the minimum value will become 0, this means the solution which we are 

going to get is the feasible solution for us. 
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So, there are certain issues, although it looks simple that we can always covert our 

constraint problem into an unconstraint problem using multi-approach objective, but there 

are certain issues. So, let us understand one by one. So, first of all we should have an 

efficient EC technique for solving multi-objective optimization problem.  

So, let us consider the first approach where we want to minimize our objective function as 

well as we want to minimize the constraint violation. If we consider we have 10 constraint, 

so overall the problem will have 10 plus 1, 11 objective functions. Why? Because very 

constraint is converted into an objective function. 

So, in this case we will, we should need an efficient multi-objective optimization algorithm 

that can handle 11 constraints and as we know there are certain practical optimization 

problem which can have multiple constraints, mean meaning that the number is very large. 

So, we do not have or we should need such kind of efficient multi-objective optimization 

algorithm. 



Second is, if in multi-objective techniques, generally we consider this Pareto ranking. In 

this Pareto ranking, what will happen that most of the search will happen in the infeasible 

space thereby wasting the computation. Why? Because when we perform Pareto 

computing or Pareto ranking, we have to do some computation because we compare each 

and every solution in each objective and then we know which solution is non-dominated 

which solution is dominated. 

Now, when we are performing as we know that if the solution is infeasible, so the objective 

function will have certain value. So, every time when we are performing this Pareto 

ranking, we are actually performing for infeasible solution. And therefore, a lot of 

computation will be wasted when we perform this extra computing for single objective 

optimization. 

Third is, the approach may find a feasible solution, but cannot search for the optimum 

solution. Now, remember that we have two ways to handle the constraint optimization, 

either we can have all constraint as independent objective functions or we can take the 

second objective as a constraint violation.  

Now, from these, from both the ways what we can find is that as and when we get a feasible 

solution, the constraint violation is 0, and we can get a some objective function value. In 

this case, we will not be searching, we may not be able to search for an optimum solution 

because the algorithm has find an optimum solution using the multi-objective concept. So, 

therefore, sometimes we may not able to find the optimum solution, but may we may get 

the feasible solution using this approach. 

Now, coming the next issue is when many solutions are feasible, then the Pareto 

dominance relation has no role. So, this is so in this case suppose we have 10 solutions all 

the solutions are feasible. So, this means that the constraint violation is 0. Only the 

objective function value we have it. So, that is minimization of f of x. 

Now, since all the objective function values are 0, that is corresponding to the constraint 

violation, we have only change in the first objective which is minimization of f of x. When 

we perform the Pareto dominance relationship, it has no role because the second objective 

is always 0 for all the solution. So, therefore, it is not helping us to take the solution towards 

the optimum solution. 



So, in this particular section, what we have gone through is another way to handle the 

constraints. In this, in the first category we separated the objective function and a constraint 

and we assigned a fitness when a solution is feasible and infeasible. When it is feasible as 

we understood we are giving the fitness is the same as objective function, when solution 

is infeasible we are adding the constrained violation into it. 
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So, in this particular session, we have gone through these two methods called Powell and 

Skolnick’s approach, and Deb’s approach. Both of them handle the constraints via 

separating the objective function and the constraints we also perform the hand calculation 

for both the approaches and what we have certain observation for both the methods. 

In the first approach, we need value of a R that is the penalty parameter. We also have to 

calculate the value of a lambda using the two solutions, that are worst feasible solution and 

best infeasible solution. But in the second approach that is Deb’s approach, we only 

consider the worst feasible solution we do not need R, and therefore, this approach is used 

with many of EC techniques for handling the constraints. 

Along with that we have also gone through the multi-objective concept, that multi-

objective concept we have discussed very briefly just to understand how this constraint 

problem can be converted into an unconstraint problem by considering all the constraint  

as an objective. So, there are certain issues with a multi-objective approach; however, this 

is one of the ways to handle the constraint optimization method. 



With the detail on these constraint handling techniques, I conclude this session. 

Thank you very much.  


