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Welcome to the session on Penalty Function Methods for Evolutionary Computation 

Technique. In this particular session we will be going through the introduction of the 

penalty function methods there after we will discuss some of the methods, such as static 

penalty, death penalty, dynamic penalty method and so on. There after we will perform 

some hand calculations. So, that we will understand how this penalty function method 

works and finally, we will conclude this session. 
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So, let us start with the recap in the previous session we started with the constraint 

optimization formulation in which our objective function was subjected to inequality 

constraint, equality constraints and the variable bound. So, for this particular problem or 

the constraint optimization problems we have gone through the visualization of different 

types of spaces that will be made by the constraints.  

So, we had continuous search space followed by we can have discontinuous search space. 

We have also gone through the different types of constraint such as linear, non-linear as 

well as equality and inequality constraints. After that we started with the optimality 



condition for unconstrained optimization because that laid down the basis for finding the 

KKT condition or the optimality condition for constrained optimization. 

We used Taylor series function, Taylor series to find the sufficient optimality condition 

for an unconstrained problem, which suggest that at a stationary point say x bar gradient 

of the function should be 0. There after we have gone through the sufficient condition in 

this sufficient condition. We come up with the Hessian matrix and as and when this 

Hessian matrix is positive definite we say that the stationary point is a local minima for 

the function.  

Similarly, we also conclude about the maximization when the Hessian of the matrix is 

positive definite, if the matrix is not positive not negative then we have to say the point is 

a saddle point. Thereafter we discussed about the method of multipliers, in that method of 

multipliers we divided that section into two part.  

First part was that we took an objective function with equality constraint, since it was easy 

we came up with the optimality condition via adding the Lagrangian multiplier or the 

multiplier with the constraint. So, each constraint with Lagrangian multiplier was added 

into the objective function and one unconstrained function was made.  

After finding the optimality condition with respect to the decision variable of the problem 

and with respect to the Lagrangian multiplier we got the conditions. Similarly when we 

took the objective function with respect to the inequality constraint we first converted the 

inequality constraint into equality constraint with the help of slack variable and then we 

followed the similar procedure.  

Finally, using the basis of method of multiplier we came up with the KKT condition which 

is referred as Karush Kuhn Tucker conditions these conditions we have written for the one 

constraint optimization problem, that involves both inequality as well as equality 

constraint. So, apart from all those conditions we also had complimentary slackness 

conditions and the Lagrangian multiplier with respect to the inequality constraint should 

be greater than 0.  

In that particular KKT condition we found that the point which is satisfying all the KKT 

conditions it is a likely candidate for the optimum. However, if the point is not satisfying 



any of the KKT condition we can always conclude that the point cannot be an optimal 

solution.  

Thereafter we have gone through the necessary condition and the sufficient condition and 

in that sufficient condition again the function should be convex, the inequality, active 

inequality constraints should be concave and we should have linear equality constraint. 

For that particular point if any point satisfying the KKT condition in that scenario we can 

always say that a point is a local minima.  

And the convexity of the function we defined with the help of a relationship and also if we 

find the Hessian of the matrix at a given point looking at the positive definite of the matrix, 

we can conclude whether the function is convex or a not. So, that a mathematical 

understanding on the optimality of unconstrained, as well as constrained optimization. 

Now, we will discuss the penalty function method. So, let us begin with the introduction 

here. 
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So, here we can see first of all we have to find why the constraint handling is needed with 

evolutionary computation technique. So, as we can see that EC techniques are population-

based technique meaning that, we will be working with many of the points. In this case 

you can see on the figure on the right hand side that we are using multiple solution or the 

points as we used in EC techniques. 



Now looking at this figure we have box constraint based on X 1 and X 2. Similarly we 

also have the constraint as you can see here. So, because of this constraint few solutions 

are feasible, which are represented by the green dots and few solutions are infeasible, 

which are shown in the red dots. 

Now, the question comes that if we are working on multiple points how we can 

differentiate the feasible solution verses infeasible solutions. Therefore, we have to we 

need some way to find out that who are feasible solutions and who are infeasible solution. 

And accordingly we should assign a fitness to those solution. So, that is why we need 

constraint handling 

Second important point is that we know that most of the practical optimization problem 

involve constraint. It can be one constraint or it can be multiple constraint, since we want 

to solve those practical optimization problem we want to know what is the optimum 

solution for that. So, we need constraint handling techniques with EC techniques. 
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So, there are different types of constraint handling technique here this is one of the good 

paper given by professor Coello, although it is quite old which was published in 2002, but 

this particular paper has almost has covered most of the constraint handling techniques 

that can be used with EC techniques. 



So, on the basis of that paper we can have different kinds of constraint handling methods. 

For example, we can have penalty based methods. We can have special representation and 

operators so, that we can find feasible solutions. Similarly we can have separation of 

constraint and objectives. And finally, we can also come up with the hybrid methods. 

So, since there are various methods available some methods we can use it directly into our 

formulation. So, the objective here again is how we can find a fitness and then how we can 

differentiate the feasible solution verses the infeasible solution. In this particular session 

we will be focusing on Penalty Function Methods. 
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Now, penalty function methods these are found to be simple and most popular methods 

for handling the constraints. In these methods, if a solution violates any of the constraints, 

the solution is penalized by adding penalty with the objective function. So, as the statement 

says that, when a solution is infeasible, so, we will try to find out that how much it is 

infeasible.  

So, the term which we use is called constraint violation. So, based on that constraint 

violation we add penalty to the objective function. See suppose we are solving a 

minimization problem, in that case we will be adding a penalty into the objective function 

value, so, that the infeasible solution will be penalized. On the other hand if we are solving 

a maximization problem we will be subtracting this penalty into the objective function 



method. So, accordingly we will use those penalty function method for minimization and 

for maximization types of problem.  

Now, here when we will be using penalty function method all these methods what they do 

is- they convert, the constraint optimization problem into the unconstrained optimization 

problem by adding this penalty term of each constraint violation to the objective function, 

and that is the whole purpose.  

That instead of solving the method as a constrained optimization problem let us solve it as 

a unconstrained problem, because those unconstrained problem can be handled relatively 

easier when we are solving with the techniques which we have gone through now.  

So, in this case when we talk about the penalty function method, we have two types of 

penalty function methods here. First is called interior penalty methods, as we can see here 

these methods work for feasible points and penalize points that are close to the constraint 

boundary. 

What this suggest that if the solution is feasible then only we can use interior penalty 

method and when all solutions are feasible, then we will be penalizing the solutions which 

are close to the boundary. So, here the optimum solution will be somewhere inside the 

feasible search space and that accordingly these method work. 

The another type of penalty method is exterior penalty method here. These method 

penalize infeasible points, but not the feasible solution. And that is an important statement, 

why because the interior penalty method cannot handle any infeasible point. However, the 

exterior penalty methods can handle both feasible as well as infeasible.  

So, whenever there is a feasible point there will be no penalty at all, but when if the solution 

is infeasible then a penalty will be added to the objective function method and that is the 

whole objective. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥), 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑔𝑗(𝑥) ≥  0, 𝑗 =  1, 2, … , 𝐽, 

 ℎ𝑘(𝑥) =  0, 𝑘 =  1, 2, … , 𝐾,     

 𝑥𝑖
(𝐿)

≤  𝑥𝑖 ≤  𝑥𝑖
(𝑈)

, 𝑖 = 1, 2, … , 𝑁.   

𝑃(𝑥, 𝑅)  =  𝑓(𝑥)  + Ω (𝑅, 𝑔(𝑥), ℎ(𝑥)) 

Now, if we look at the constrained optimization problem. So, this is we are familiar with 

this representation where we want to minimize our objective function. We have inequality 

constraint, which is g j x we have equality constraints and we have variable bounds.  

Now, from the definition of interior penalty methods and exterior penalty methods. We 

can see that EC techniques generally employ the external penalty methods why because, 

as we refer to our first figure when we are using multiple solutions, some solutions can be 

feasible and some solution can be infeasible. 

So, in order to identify them give a fitness to them. So, we need a penalty we need a penalty 

function method. So, for EC computation techniques we need exterior penalty methods. 

So, as you can see in equation number 2: The penalty function method can be written as, 



this is a penalty function method based on the problem variable x and we have a set of 

parameters or penalty parameters R. 

On the right hand side, we have function value and as per the definition we are adding a 

penalty term. So, the omega is going to be the penalty term, which we are adding. Looking 

at this representation we can see this omega is a function of R is also a function of 

inequality constraint and equality constraint. 

So, all these constraints will be considered together. Now, as we know that there could be 

multiple inequality and equality constraint. So, R is representing a set of penalty 

parameters, as we know omega is the penalty term that is chosen to favor the selection of 

feasible points over infeasible point and that is the whole objective here. That we should 

penalize the infeasible solution more and we should not penalize the feasible solution. So, 

that we can differentiate. 
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Ω =  𝑅 {ℎ(𝑥)}2      (3) 

Ω =  𝑅  〈 𝑔(𝑥)〉2 (4) 

So, let us start with some of the exterior penalty methods here. So, the first method that 

comes that we use for equality constraint is called parabolic penalty. Looking at equation 

number 3: The omega can be written as in terms of R and inside the bracket we have the 

equality constraint and we are making a square. 



This square is important because when we have this equality constraint means the left hand 

side equals to the right hand side, then whenever a point is infeasible. So, the value of h x 

can be negative as well as positive. Here we are considering the minimization problem. 

So, whatever be the penalty or a constraint violation we get it we have to square them. So, 

we are always adding a positive value with the objective function for minimization 

problem. So, as we can see that this particular penalty method can handle only the equality 

constraint. Second thing is we can we it can be used for the infeasible point. So, we can 

say that it is an exterior penalty term and we can very well use with EC techniques.  

In this particular case generally we take a small value of R and we keep on increasing this 

value gradually. So, initially when we start with a small value of R. So, the solutions will 

be moving towards the close to the close to the optimum solution without these constraints 

and as and when we are increasing the value of this R. These solutions will be moving 

towards the optimum solution of constraint optimization problem this is for the equality 

constraint. 

Now, we have another method for inequality constraint, here we can see we can have 

bracket operator here, this bracket operator in equation 4 can be seen as omega R times of. 

So, we are using these two brackets and inside it we have g x and we are making a square. 

So, I will show you the significance of a square. Afterwards let us see what we mean by 

this bracket operator. 

So, if we say this bracket of alpha this is going to be the exactly alpha, when alpha is 

negative meaning that if alpha is minus say 1.23 then bracket operator of alpha is also 

minus 1.23, otherwise it is zero meaning that whether if we are going to take say alpha is 

equals to 0.27 and if we find the bracket of alpha then it is going to be 0 because it is a 

positive value. 

So, here this particular bracket operator is complying with our representation. So, as we 

know these constraints in our formulation is written as g j of x equals to 0. So, as and when 

the value of a g is equals to 0 or greater than 0, the solution is feasible. And as and when 

it is feasible we do not have to apply any kind of a penalty and when the solution is 

infeasible this means that g j of x will take value smaller than 0. 



So, we can very well fit this representation of g j of x greater than equals to 0 into this 

bracket operator. Now, as you can see that in this equation number 4 the square is also 

multiplied. It is only because that since if the alpha is negative it will give me the same 

value and we are solving a minimization problem in which we want to add penalty into the 

objective function method.  

So, the square term will make this negative value positive and we will be adding this 

penalty into the objective function value. So, here as we know as we can understood from 

the discussion that we can handle the infeasible point with this penalty function method. 

So, it is an exterior penalty term. In this case also we start with the small value of R and 

which we keep on increasing gradually with the iterations.  

And the important point about this method is, it is one of the commonly used methods for 

handling inequality constraint. So, with the help of these two types of exterior penalty 

methods, we will see the different kind of penalty function methods that are being used 

with EC techniques. So, let us move forward with the representation of penalty function. 
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𝑃(𝑥, 𝑅) =  𝑓(𝑥) + ∑ 𝑅𝑘 (ℎ𝑘(𝑥))𝛾

𝐾

𝑘=1

  + ∑ 𝑅𝑗  <  𝑔𝑗(𝑥) >𝛽 ,

𝐽

𝑗=1

 

As we can see in equation number 5: The penalty function method can be written as P of 

x R the objective function. Now, we are adding all the penalties with respect to the 



constraint violation of equality constraints and then we are adding the penalty with respect 

to the constraint violation of inequality constraints. 

Now, here as we have mentioned R k and R j are the penalty parameters for every 

constraint in our problem. So, generally we keep beta is equals to 1 and gamma as 2. But 

from our previous discussion, we know that this gamma is going to be small. So, either we 

take 1. 

So, then in that case we have to take a mod or we have to or we have to square the term of 

bracket operator. Now, from the previous discussion we can very well use the parabolic 

penalty for the equality constraint, but still handling equality constraint is always difficult, 

why? Because it is it says that the left hand side should be equals to the right hand side. 

So, having such point or satisfying such kind of equality constraint it is always a 

challenging task for all optimization methods. So, one of the way to handle the equality 

constraint is that we can convert this inequality equality constraint into inequality 

constraint. 

So, the point is we can very well use the penalty function method for both equality and 

inequality. However, in order to suggest more efficiently the equality constraint, we can 

have a representation; such as mod of h x minus epsilon should be smaller than 0. Where, 

this epsilon is the tolerance allowed generally we keep a small value set n to the power 

minus 3 minus 5, etcetera, 

So, this particular new kind of a constraint for equality it will may it will make 1 equality 

constraint into 2 inequality constraints. And this inequality we can use it with our 

formulation and we can very well use the bracket operator with such kind of inequality 

constraint. 
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Now, let us move with the types of penalty function methods. So, there are various kinds 

such as we can have death penalty, we can have a static penalty, similarly the dynamic 

penalty functions. Adaptive penalty and there are some other approaches which are 

available in the literature; such as self-adaptive fitness formulation, stochastic ranking 

etcetera. So, the literature has so many penalty function based methods, here we will be 

focusing on few of them. 
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So, let us start with death penalty function. Now, the death penalty function as you can see 

here on the right hand side it says that infeasible solution is rejected and re-generated again. 

So, point is that this death penalty death penalty method does not require or does not want 

any infeasible solution. So, as and when an infeasible solution is generated it is re-

generated. So, that it will become feasible 

Now, let us look at the figure. So, we can see that with EC techniques we work on multiple 

solutions as you can see in the figure. Now, when E-C techniques is generating the green 

dots as you can see, these green dots are feasible and death penalty can take care of these 

solutions. 

However, as and when there is a infeasible solution, which is represented by the red color 

dots then this death penalty function will reject such kind of solution. So, since we are not 

performing any kind of violation here we can say that it is the easiest way to handle the 

constraint. 

Moreover we are not looking at the penalized function. So, we can say this is the 

computationally efficient, in a way to handle with the feasible solution only. Moreover it 

does not require to estimate the degree of violation for assigning the fitness to a solution. 

Now, it means that since the dynamic penalty method does not need any kind of infeasible 

solution or does not work on the infeasible solution.  

So, all solutions for us are feasible. So, in that case we do not need any constraint violation 

a particular method that will help us to differentiate the feasible and infeasible solution. 

And therefore, it will not calculate any kind of a constraint violation, it will accept if the 

point is feasible, it will reject the point if it is infeasible. Although this method looks 

simple, but there are certain limitations, so let us see that. 



(Refer Slide Time: 26:40) 

 

So, looking here that, if we look at this particular figure on the right hand side. Now, 

suppose we have a very small feasible region as it is shown in the shaded region. And 

again the green dots are the feasible points and the red dots are the infeasible point. So, 

when we want to use this death penalty? It is advisable for those problems in which the 

feasible space is limited. 

So, in that case if we are going to solve a problem where the overall feasible search space 

is small then it is not advisable to use such function looking at the figure on the right hand 

side. We can see that with the while using this death penalty many of the solutions are 

infeasible. This means this method is going to reject all these infeasible solution and will 

only take the feasible solution. 

So, as of now there are only three feasible solution and rest of them are infeasible solution. 

So, which means that it can stagnate search of EC techniques for small feasible spaced 

problem, why? Because, we have less number of feasible solution as compared to the 

infeasible solution. 
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There is another limitation as well here. Since, we are rejecting the infeasible solution 

straight forward here the point is there could be some scenarios where these infeasible 

solutions can be closer to the optimum as compared to the feasible solution. So, let us look 

a case on the right hand side. 

So, this for this particular problem so, it is a the contours are drawn for a Himmelblau 

function and we have just one constraint as you can see here. Now, since E C techniques 

generated the random points in the plane of X 1 and X 2. We have the green dots as a 

feasible points and the red dots as a infeasible point. See for the given problem the 

optimum solution is shown here, which is in the blue color. 

Now, as compared to this optimum solution we can see that the solution number 1, solution 

number 2 they are more closer to the optimum solution than this say solution number 3 

and that is the disadvantage, why? Because, we are not able to exploit the infeasibility of 

the solution. 

So, basically looking at their constraint violation, if the constraint violation is small our 

solution can be close to the optima or the boundary. Since we are rejecting those solutions 

and dealing with feasible solution only, then EC techniques may require more number of 

a generation or function evaluation to reach to an optimum. 



However, if we consider this infeasibility with the death penalty we can very well exploit 

the area or the space near the optimum solution using feasible and infeasible solution. And 

EC technique can find this solution quickly. So, therefore, the this is one of the limitation, 

that the infeasible solution can be closer to the optimum solution in the variable-space than 

a feasible solution. The method cannot take advantage of such information as we discussed 

earlier. 
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𝑃(𝑥, 𝑅) =  𝑓(𝑥) + ∑  𝑅𝑘 {ℎ𝑘(𝑥) }𝛾

𝐾

𝑘=1

 + ∑ 𝑅𝑗  <  𝑔𝑗(𝑥) >𝛽

𝐽

𝑗=1

  

Now, the death penalty was not using any kind of penalty term. Now, we are coming to 

the static penalty which will be using some penalty term to penalize the infeasible solution. 

So, if we look at the equation number 6: This is the same penalty function method we have 

written earlier, where we have the penalty function method written with the help of x and 

R.  

And on the right hand side we have objective function, then we have constrained violation 

with respect to equality constraint and then we have constrained violation with respect to 

inequality constraint. So, base using those constraint violations we are making a penalty 

term here. So, why we call this is static it is because the penalty parameters remain constant 



throughout the evolutionary process. So, if we discuss if we when we have gone through 

the two types of penalty methods that are parabolic as well as the bracket operator. 

In both the in both the penalty function methods we discussed that we start with the small 

value of R and then we keep on increasing this particular value in with the number of 

generation or iteration. But with the static penalty, we will always keep the value of R 

same. So, for example, R k value for kth constraint will remain the same throughout the 

generation. So, what could be the possible limitations of static penalty? 
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Now, let us see that penalty function method that is an important point that the penalty 

function methods are problem dependent. Meaning that the depending on the problem the 

penalty value the value of R, may be sufficient for a one particular problem, but may not 

be sufficient for other kind of a problem. 

So, as it is stated that if we take a small value of a penalty factors then it may not be able 

to differentiate feasible and infeasible solution in the population. So, as we know that with 

the objective function we are adding the penalty. Now, the value of R is itself small then 

the this penalty function method we cannot differentiate, which is feasible and infeasible 

and accordingly the there will be not difference in the fitness assignment. 

However, if we take a large value. So, the if large value of a penalty factor can distort the 

penalty function that can result in an artificial local optimum solution. So, that is another 



disadvantage, that if we keep the value of R say large then in that case the contours of the 

penalty function method will distort. And because of that there could be some local or 

artificial optima’s.  

So, let us look this particular case with an example given here. So, the figure on the left 

hand side. So, again it is a Himmelblau function with just one constraint and we have taken 

the value of R say 1. So, we are considering R 1 is a small value. So, you can see that when 

the value of R equals to 1, we have such kind of a contours.  

Now, looking at the R value 10, the same penalty function method with the R equals to 10, 

you can see there is a change in the contours. And this change is with respect to just one 

constraint. Now, we can imagine a situation when we have many number of objective 

functions. We can imagine a situation, when we have many number of constraints and 

those constraints are added with the penalty parameters and when we take a large value, 

the penalty function method will distort. 

So, the contours represents the distortion in the penalty function method and therefore, if 

we take a small value we cannot differentiate the feasible and infeasible. If we take a large 

value then that will generate artificial optima’s, then in that case our algorithm should be 

efficient enough to move towards the global optima rather than stuck in the local optima. 
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𝑃(𝑥, 𝑅) =  𝑓(𝑥) +  (𝐶 ×  𝑡)𝛼  [∑{ℎ(𝑥) }𝛾

𝐾

𝑘=1

   + ∑ <  𝑔𝑗(𝑥) >𝛽

𝐽

𝑗=1

] 

Let us move to the another kind of penalty method, which is dynamic penalty, this dynamic 

penalty as you can see here that includes the current generation counter t. So, equation 7: 

We can see we have a penalty function method equals to the objective function and we 

have included a term called C multiplied by t and that everything power alpha. 

Now, here t will be representing the generation counter and then rest of the term as we 

have we are writing for the equality and the inequality constraint. So, in this formulation 

C, alpha, beta and gamma all are the user defined constraints. Now, this particular equation 

7 that suggest that if suppose the value of a t is 1. 

So, basically the generation number 1 then this particular factor will be small, but as and 

when we will be moving towards the say generation number 10, 20, 30 this particular 

factor will increase. So, meaning that at the end of the iteration if the solution is infeasible, 

we will be giving more penalty to the solution as compared to the solution at the beginning 

of the generation. 

Here, these two author they suggested to use a value of a C as 0.5, and as per our previous 

discussion we can keep the value of a beta and a gamma, here the value suggested for 

alpha is 1. Now, in this particular discussion we already did it that the bracket operator is 

the g j g j of x value remains the same, when it is smaller than 0, otherwise it is zero and 

equality constraint can be converted into an inequality constraint with this representation. 

What is the limitation of death penalty here, that although it is considered good for many 

EC techniques. It is difficult to produce good dynamic penalty factors for static functions, 

why? Because the functions which we are using especially the objective functions, 

objective function and constraints we are considering them static. So, in that case although 

it is performing good, but it is difficult to produce good dynamic penalty factors for those 

kind of functions. 
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𝑃(𝑥, 𝑅)  =  𝑓(𝑥)  + 𝜆(𝑡) [∑|ℎ(𝑥)|

𝐾

𝑘=1

  + ∑ < 𝑔𝑗(𝑥) >2

𝐽

𝑗=1

 ] 

With this explanation let us move to the adaptive penalty. Now, this adaptive penalty also 

takes also uses the generation counter. So, as we can see similar to the dynamic penalty, 

adaptive penalty also changes with the generation counter t. By the authors by these 

authors, they come up with the representation of adaptive penalty. 

Now, here we have the objective function plus lambda. So, this is the new term which they 

have added and then we have the constraint violations that is coming from the equality and 

inequality constraint. Now, here lambda is getting updated in every generation. So, this is 

the, this is how the lambda is taking care of the t, which is the number of or the counter on 

the generation. So, that adaptively it will either increase or reduce the value. 

𝜆(𝑡 + 1) =

 (
1

𝛽1
) ⋅ 𝜆(𝑡),  if case  # 1

𝛽2 ⋅ 𝜆(𝑡), if case  # 2
𝜆(𝑡), otherwise.

 

Let us look the alpha this lambda value as we can see here the lambda can be calculated 

as. So, there is a case 1 for a case 1 we will be using 1 divided by beta and multiplied by 

lambda t. In case 2- we have beta 2 multiplied by lambda and if there is no case from 1 

and a 2, we will be keeping the same value of lambda. 



So, let us understand what is case 1? Now, case 1 suggests that it denotes a situation where 

the best solution in the last k generation was always feasible. So, in this case suppose we 

are running an EC technique and we have taken say k equals to 6. So, from the last six 

generation, if we have the best solution always the feasible solution, then in that case we 

will be using the case 1. 

Case 2 here, denotes the situation where the best individual or a solution in the last k 

generation was never feasible, meaning that the for some kind of a problem when we are 

using EC techniques the problems are so difficult that we may not get the feasible solution 

at all. 

So, if we consider say k equals to six generation. So, from last six generation if we find 

that the best solution was always infeasible, it was never be a feasible solution in that case 

we use case number 2. Here beta 1 and a beta 2 both of them should be greater than 1 and 

beta 1 should be greater than beta 2. So, let us understand more about this lambda term 

here. 
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𝜆(𝑡 + 1) =

 (
1

𝛽1
) ⋅ 𝜆(𝑡),  if case  # 1

𝛽2 ⋅ 𝜆(𝑡), if case  # 2
𝜆(𝑡), otherwise.

 



Now, here what we can see in case 1, which says that our best solution was a feasible for 

k number of a generation, meaning that we should reduce as you can see 1 by beta since 

beta was greater than 1. So, we are actually reducing the value of lambda t plus 1. In the 

other case, when the best solution is infeasible from the last k generation. 

So, we have to increase this penalty and therefore, as per the case 2, we are multiplying 

beta 2 with lambda 2 lambda t for the next iteration. Otherwise if there is a mix of 

population, meaning having feasible and infeasible then we do not have to change the 

value of lambda. 

So, as per our discussion we can see here the term lambda plus 1 decreases if all the best 

solution in the last k generation are feasible. So, this means we should reduce it. We have 

to increase the lambda t plus 1 if all solutions are infeasible, if there is a mix of feasible 

and infeasible solution then we should not change this particular penalty.  

So, what could be the limitation here the major issue with this penalty is the setting of the 

parameters that can be difficult sometime. So, the point is, so the point is we have to take 

beta 1 and a beta 2. Now, since beta 1 and a beta 2 should be greater than 1 the question is 

how much? Can we take 2, 2.5, 10. So, setting those values for the problem is an is a 

difficult task and that is why this is the limitation. 
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So, what are the major issues? If we look all these penalty function methods which we 

have gone through, what are the major issues? First major issue is choosing the best penalty 

term is not known a priori for any arbitrary problem and that is difficult. Since, in any 

every penalty function method, we have to choose those parameters. 

So, in that case a parameter which may be sufficient for a problem 1 may be very large for 

very large for problem 2 or very small for problem 3. So, we have if we are working on an 

arbitrary problem, in that case setting such kind of a value sometimes may not help to find 

an optimum solution for the constraint optimization. 

Second issue is the value if we take a large value of the penalty term that can distort the 

function with artificial optimum solution. So, this case we discussed earlier when we are 

taking a large value of a R, it distorts the contour of the penalty function method 

So, those functions will be distorted and if we have more number of constraint, the 

distortion will be up to the level that it can generate some artificial optimum solution. So, 

if, so in this case if optimum solution is on the constraint boundary then EC technique will 

push all the solution inside the feasible search space and may find difficult to move towards 

the boundary. 

So, this is the case suppose we are starting with a very large value. So, as compared to the 

feasible, infeasible solution will be penalized heavily. So, since we are penalizing those 

solutions heavily what will happen that, this EC techniques will move or will take the 

solution in the feasible region. 

And suppose the optimum solution is on the boundary which we have shown in one of the 

cases, then in that case the EC techniques has to further work. So, that these feasible 

solution will move towards the optimum solution. In case, we take a small penalty term 

then as we know that we will not be penalizing sufficiently the infeasible solution as 

compared to the feasible solution. 

So, this in this way we are not able to differentiate, which one is feasible, which one is 

infeasible and if and our EC technique will be just wasting its effort towards searching in 

the infeasible space. So, therefore, whether we have to set a small value or a large value 

and setting any value can be a large for a one problem, can be small for the another 

problem. So, these are always the issues with the penalty function methods. Now, with this 



introduction and understanding on the different types of penalty function method let us 

perform some hand calculation. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓(𝑥1, 𝑥2)  =  (𝑥1
2  +  𝑥2  − 11)2  +  (𝑥1  +  𝑥2

2   −  7)2, 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  (𝑥1  −  5)2  + 𝑥2
2 ≤  26, 

   4𝑥1  +  𝑥2 ≤  20, 

 𝑥1, 𝑥2 ≥  0 

𝑔1(𝑥) =   26 −  (𝑥1  −  5)2  −  𝑥2
2  ≥   0, 

𝑔2(𝑥)  =   20 −  4𝑥1 −  𝑥2 ≥  0. 

Here, for performing the hand calculations we are using Himmelblau function. So, this 

Himmelblau function is a two variable function and this is subjected to one constraint and 

constraint number 2, here we are assuming that x 1 and x 2 both are greater than 0. Since, 

the constraints are given as smaller than type. Let us convert them in a greater than type 

why because, it will fit into our generalized format of constraint optimization.  

So, what we can do here is, we can multiply the constraint minus 1 or we can take the left 

hand term on the right hand side and then every constraint will be of greater than type. So, 



by converting them we have g 1 and a g 2 and you can see that both the constraints are 

converted into the greater than an equality type. 
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Let us generate the solution in the range of 0 to 6 for both variable x 1 and x 2. So, let us 

take this table here. So, we have index means we are considering 8 solutions and their x 1, 

x 2 values are given in the column number 2 consider a solution number 1. Now, this 

solution 1 x 1 and x 2 are given to us, as we know if we fit this particular x 1 and x 2 value 

in our objective function we get a value say 364.823. Now, let us calculate the constraints, 

why? Because we want to know which one feasible or infeasible. So, in g 1 we are again 

putting the value we get plus 3.089. 

Similarly, if we put the value of x 1 and x 2 of solution 1, we get a value as 0.765. Now, 

as we can see both are greater than 0. So, we can say that a solution 1 is a feasible solution 

because both the constraints are satisfied. If we take death penalty right now. So, we will 

keep this solution because it is infeasible. 
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𝑓(𝑥1)  =  364.823, 𝑔1(𝑥1)   =  3.089 𝑎𝑛𝑑 𝑔2 (𝑥1)   =  0.765  

Coming to the another kind of penalty functions method. So, let us see well let us take the 

same solution here. So, the function value which we have found in the previous slide. So, 

we are writing similarly the g 1 value and g 2 value at x 1. Now, let us consider the static 

penalty. Now, since we know the formula here we can directly fit the f x and we have two 

constraints. So, we are writing this formula.  

So, here j is equals to 1 to 2 R j and we have a bracket operator and a square here. Now, 

let us take R 1 is 1 and R 2 is 5. So, as you can see that R 1 and R 2 are user defined 

parameters. So, we have to start or we have to choose those two parameters. Now, here the 

penalty function for x 1 solution you can find that it is given as the f x and then R 1 inside 

the bracket the g 1 value and then R 2 inside the bracket we have g 2 value. 

Now, since we know that if alpha is greater than or equals to 0 then alpha is going to be 0, 

when we use the bracket operator here, right. So, in that case we can see that both the 

constraints the values since both of them are feasible. So, their values 0s we are having 

here. So, in this case the penalty function value is 364.823, which is the same as the 

objective function value. 
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𝑓(𝑥1)  =  364.823, 𝑔1(𝑥1)    =  3.089 𝑎𝑛𝑑 𝑔2(𝑥1)  =  0.765 

𝑃(𝑥, 𝑅) =  𝑓(𝑥) + ∑ 𝑅𝑗 <  𝑔𝑗(𝑥) >2

2

𝑗=1

    

𝑃(𝑥1, 𝑅) =  364.823 +  𝑅1 <  3.089  >2+  𝑅2 <  0.765  >2=  364.823 +  0 + 0 

=  364.823  

𝑃(𝑥)  =  𝑓(𝑥)  + (𝐶 ×  𝑡){𝛼} [∑ <  𝑔𝑗(𝑥) >2

𝐽

𝑗=1

]  

Let us take dynamic penalty now, in the dynamic penalty we have objective function plus 

we have the factor, which is changing with respect to the number of generation and then 

we have a summation of a inequality constraints since we have 2 so, this should run for 2 

only. Now, considering C equals to 0.5 as we have found in the previous slide alpha equals 

to 1 and let us assume that it is the generation number 1. 
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Now in this case, if we fit these value here. So, the penalty function now there is no R here 

as you can see and when we are putting the value here. So, you can see that since g 1 and 

a g 2 values are greater than 0. So, we have taken 0, here. So, the overall penalty term is 0 

and we get the penalty function value same as the objective function value. 

𝑃(𝑥1) =  𝑓(𝑥) +  (0.5 ×  1)[ <  3.089  >2 +<  0.765  >2] =  364.823 +  0 +  0 

=  364.823  

So, our observation here is since the solution 1 is a feasible solution the penalty function 

value remains the same for static and for dynamic penalty function method. So, you can 

see here this is these are the penalty function values, which we get it from static and 

dynamic and on the top we can see we have the function value. So, that is good point that 

if the solution is feasible then we are not going to add any kind of penalty with the solution. 
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Let us take a solution 2: So, I will be discussing different kinds of situations or scenarios. 

So, the scenario one was that the solution 1 was feasible 1. Now, let us take a solution 2 in 

the solution 2 the objective function we calculate it is coming out to be 692.216. We get a 

value of a g 1. Now, you can see that g 1 value is minus 11.791 meaning the constraint is 

not satisfied, g 2 is a plus value means it is satisfied. 

Since, g 1 is not satisfied we have to say the solution is infeasible. Since solution is 

infeasible let us see, how this penalty methods will change. Now, let us consider the static 

penalty right now, we have penalty function given here and we have the same formula as 

we have used earlier taking R 1 equals to 1 R 2 is equals to 5, let us put the value. Here for 

the penalty function for a 0.2 we can see the objective function and inside the bracket 

operators since R 1 is 1. So, we are writing directly this square then we have 5 and then g 

2 value of a square. 

Now, we know that this is feasible. So, we this is going to be 0 by the bracket operator and 

since it is infeasible. So, we are taking a square term and we are adding into the penalty 

into the objective function. So, overall we can see that the penalty function value is more 

than the objective function value, which is given on the top for an infeasible solution. 

Similar thing let us see with the dynamic penalty now. 

So, the given the formula here considering C 0.5 alpha 1 and let us assume we have first 

generation right now. So, the penalty function value for a solution 2 we have function 



value now 0.5 into 1 and then we have a bracket operator for both the constraint, since this 

is satisfied it is going to be 0 and it is not satisfied so, we are taking a square term here.  

And finally, we get a value as 761.726. Now, here since we consider the iteration or the 

generation number 1, suppose if we get the same situation in the 10th generation. Then 

this, the same penalty dynamic penalty function value will become the objective function. 

Now, you can see the change here that 0.5 into 10.  

So, this means that 5 and then we have the same values of the bracket operator square for 

g 1 and a g 2 and we get a penalty function value. Now, if I compare this penalty function 

value with the penalty function value with t equals to 1. Now, what we can see here is that 

in the 10 th generation the penalty function value will be large, also if we compare with 

the static penalty the term is quite large. 

So, this means that with this static penalty whether it is generation 1 or a 10 the penalty 

function value will remain the same. However, with the dynamic penalty as we have seen 

here if it is generation number 1 then the penalty term will be less. However, when you 

consider penalty say 10th generation the penalty term will be large and accordingly, the 

penalty function value will be so large. Let us take a third situation we by considering the 

solution number 3, here. 
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𝑃(𝑥, 𝑅) =  𝑓(𝑥) +  ∑ 𝑅𝑗 <  𝑔𝑗(𝑥) >2

2

 𝑗=1

  

So, we are going to have solution 3, we calculate the objective function as given here the 

g 1 value is positive, but the g 2 value is negative since g 2 is not satisfied. So, the solution 

is infeasible as per our definition, let us find out the static penalty now. Now, the 

formulation is the same as we know we are considering R 1 is equals to 1 and R 2 is equals 

to 5 by putting the value of x 3 here.  

We have objective function value and then we have bracket operators. Now, we know that 

since it is satisfied it is going to be 0 and here this constraint violation will be square and 

multiplied by 5, we can we are adding a penalty here. So, the overall penalty function value 

we can see it is 289.320, which is larger as compared to the function value 269. 
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For the given problem let us have this dynamic penalty, in this case using the formula 

given here, a C 0.5 alpha 1 and for first generation. If we put all the values here we can 

see that we have the objective function we have the; we have this C into t and then the 

bracket operator we know this is going to be 0. So, the overall penalty function value is 

271.133. 



𝑃(𝑥)  =  𝑓(𝑥)  + (𝐶 ×  𝑡)^𝛼 [∑ <  𝑔𝑗(𝑥) >2

𝐽

𝑗=1

] 

(Refer Slide Time: 57:55) 

 

 

 

𝑃(𝑥, 𝑅) =  𝑓(𝑥) + ∑ 𝑅𝑗 <  𝑔𝑗(𝑥) >2

2

𝑗=1

 

Now, let us take the 4th case, now in this particular case what you will see that the solution 

number 4, it has the objective function value and look at the value of a g 1 it is infeasible. 

Look at the value of a g 2 this is also negative. Since, both the constraints are negative, we 

will say that this particular solution is also infeasible. 

𝑃(𝑥)  =  𝑓(𝑥)  +  (𝐶 × 𝑡)𝛼 [∑ <  𝑔𝑗(𝑥) >2

𝐽

𝑗=1

]   

So, as of now we have discussed 4 cases, first case is solution was feasible. Second case g 

1 was not satisfied so, it is infeasible. Third case g 2 was not satisfied that is why it was 

infeasible. And in the last case both g 1 and g 2 are not satisfied. So, that is why it is also 

an infeasible solution. So, let us find the penalty function value for solution number 4. 



Here, the static penalty using the same formula taking the value of R 1 equal to 1 and R 2 

equals to 0.5, by putting the value for a solution 4 we will get 614.671 why because you 

can see that this particular terms though constraint violation will be added this is also 

added. So, the both the constraint violation coming from g 1 and a g 2 are added and make 

a penalty for the given for the given point.  

Looking at the dynamic penalty using the formula given here, taking C 0.5 alpha 0.1 and 

t equals to 1. If we put these values together we will get as you can see here we have 

objective function 0.5 into 1, we have first constraint, we have second constraint, since 

both of them are not satisfied. So, their contribution will be added as a penalty and we get 

the penalized function as 612.376. 

So, from these scenarios you can see that we are adding only those we are adding the 

penalty corresponding to the constraint violation. So, whether it is first constraint or second 

constraint or both of the constraint, when they are not satisfied their constraint violation is 

added into the objective function and we find the penalty function value for the given 

solution. So, let us look at the table now. 
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So, here in this particular table. So, the solution 1 was feasible. So, that is why the objective 

function value, static penalty function value and dynamic penalty function value are the 

same. In solution 2: g 1 was infeasible. So, accordingly the penalty was added into the 



objective function and we got the two values different values for static penalty and 

dynamic penalty.  

In the 3rd case: g 2 was infeasible so, that constraint violation was added and we get a 

static penalty function and in the dynamic penalty function values. In the case 4: both g 1 

and g 2 were infeasible and accordingly we get our solution here. So, basically the fitness 

to a solution using static penalty and dynamic penalty function method.  

Similarly, if we follow the same procedure for solution 5 to 8, what you can see? The 

solution 5 since it is feasible. So, the function value is the same as the static penalty 

function and dynamic. Similarly for solution number 8, but solution number 6 and 7, the 

solution is infeasible. Therefore, the penalty term corresponding to their constraint 

violation are added into their objective function value. 

So, with this hand calculation we can see that as and when the infeasible solution is there, 

we are penalizing that solution adding the penalty corresponding to the constraint violation 

and the value of R 1 and R 2 accordingly. So, with this we have come to the closure of this 

particular session. So, what we have gone through in this that what we found that these 

penalty function methods. 
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They are commonly used for handling the constraint with EC techniques. In this way when 

we are using this penalty function method we can assign a fitness to a solution. So, 



generally the penalty term is added, so that we will get smaller fitness for the feasible 

solution as compared to the infeasible solution. 

So, in that case we can differentiate and you remember that this fitness can be used when 

we want to select any solution. And with, in this particular method we assign penalty to 

the objective function when any constraint is not satisfied. In this particular class of penalty 

function method, we have gone through various different kinds of penalty function 

method, starting with the dynamic penalty and then we have adaptive penalty function 

methods. 

So, as you can see that all these penalty function methods they work differently and 

therefore, the fitness value which we will get specially for the infeasible solution is 

different with different from each other. And all these understanding the analysis of the 

penalty function method mainly the static and the adaptive penalty we consider dynamic 

penalty. 

So, we have taken the static and dynamic penalty function methods. And we have taken a 

set of a solution we perform the hand calculation. So, that we can understand how the 

solution is getting the fitness with the explanation of these penalty function methods I 

conclude this session. 

Thank you. 


