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Welcome to this session on Differential Evolution. In this particular session, we will cover 

the introduction about the differential evolution; in differential evolution rather than we 

say solutions or individual, we have vectors. So, we are going to use different kind of 

vectors for perturbing the solution in the feasible search space. 

So, as we can see that we will be having mutant vector, trial vector and when we are 

generating such vectors; we have a selection operator which is going to select the best 

solution from the population or while comparing one vector to the another vector. After 

going through the introduction of differential evolution, so we call it as DE. 

So, we are going to understand this particular algorithm through an example. So, all 

working principle of DE; we will understand through the starting with the initial 

population generation, followed by the followed by the evaluation of the population. Then 

we will create mutant vector followed by the trial vector and then we will be performing 

some selection on these two newly generated vectors. 



We will go through this hand calculation for one generation and the same set of solution 

we will be understanding through the graphical illustration and finally, we will conclude 

this session. 
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So, let us begin with the introduction now; in this introduction as we know, as we can see 

here the differential evolution is proposed by Storn and Price. In this particular; in this 

particular paper, they have mainly targeted developing differential evolution for 

continuous spaces. 

In differential evolution, this DE draws ideas from; first of all it is from the evolutionary 

computation technique, it is because it has a population of vectors. So, when we have 

multiple vectors or multiple solutions; these solutions they interact in some sort of 

operations and then they generate new solutions; we create while creating the new solution 

we compare them and we keep the best solutions. 

So, similar procedure is followed in differential evolution moreover; as we know that since 

population based EC computation techniques inherits parallel search space property. As 

you can see here, this particular property will help us escaping the local minima; it is 

because when we are performing some operations for creating new vectors, so that 

operation is performed on the set of solution. 



In case, if few solutions are trapped at the local minima the other solutions will help this 

solution to come out from the local minima and move towards the global optima. 

Moreover, as it is mentioned in the paper that differential evolution draws an idea from 

Nelder and Mead’s simplex search method. 

In this case, it is done by employing the information within the vector population to alter 

the subspace. So, as we know; in the simplex search method if we consider for example, 

two variable problem. In this case we consider N plus 1; so basically three solutions, in 

these three solutions we find what is the best solution based on the fitness value, what is 

the worst solution and what is the next to the worst solution. 

So, the idea of simplex search method is let us move away from the worst solution in such 

a way that we can improve the solution iteration by iteration. So, the same concept of using 

those vector operations is borrowed in differential evolution. So, as it can be seen that in 

differential evolution, each vector in the population is perturbed by adding the difference 

of two vectors randomly chosen vectors from the population. 

So, in the slides which we will be discussing later; you can see that we are going to pick 

random solutions, making a difference of them, then adding to the third vector. So, the 

whole idea is to mutate if the given vector in the population so that we can generate a new 

solution in the population. 

Now, yes it is given in the first paper that the DE was proposed by the author for the 

minimization of non-linear and non differentiable continuous space function. So, that was 

the main motive when DE was proposed; however, there are different variants of DE are 

available now that can not only solve such kind of a problem, but that can solve like mixed 

integer kind of a programming problem as well. 

As mentioned by the as mentioned by the authors; DE require few control parameters. So, 

as we have understood that EC computation techniques need certain inputs to be set before 

running the algorithm. So, for DE also we need certain input parameters, but that number 

is quite small.  

Second, it is robust; why because DE can be used for various kind of a problem to get an 

optimum solution. Similarly, it is easy to use because when we are randomly choosing 



vector and performing some kind of operation on it, you can see that those operations are 

simple say vector operations. 

So, that why; that is why it is easy to understand and we can implement as well, and last 

but not the least; the function evaluation can be done in parallel. So, that is the advantage 

as we have discussed with evolutionary computation technique. So, that advantage is also 

available with DE in which when we have multiple solutions or vectors; so when we are 

going to calculate the objective function or constrain and assigning a fitness; so these 

operations are independent.  

So, these set of operation on one solution and another solutions, they are independent to 

each other and therefore, we can perform this function evaluation for solution 1 and 

solution 2 in parallel. Now, let us understand how what are the features with the differential 

evolution. 
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Now, as we can see that DE starts with a population of a vectors and or we say solutions 

that is similar to GA and PSO and that is what we understand that evolutionary 

computation techniques are population based meta heuristic techniques. But unlike to GA 

and a PSO; each vector is perturbed by adding the difference of the two randomly chosen 

vector from the population.  



So, that is the new thing the way the new solution or a new vector is created in differential 

evolution. There are three kinds of vectors in DE; mainly we refer them as a target vector, 

mutant vector and the trial vector. So, what are those vectors? As we can see, the target 

vector is the one which is being perturbed.  

So, we are going to choose one particular vector of a solution and we have to change the 

solution using some operation; then comes the mutation mutant vector this vector is 

generated by adding weighted difference between the two randomly chosen vectors to a 

third vector from the population. 

So, as you can see; the multiple vectors are involved by using vector operations, we are 

going to generate the mutant vector. And the last is the trial vector, as we can see in the 

trial vector it is generated by mixing the variables of the target vector and the mutant 

vector.  

So, this vector is generated when we are comparing the fitness and we will be exchanging 

the variables between the target and a trial vector.So, in this case; the probability will come 

into the picture by which we will be exchanging these two; we will be exchanging the 

variable between these two vectors. 
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Now, let us come to the nomenclature; it is because in the original paper some different 

nomenclature is used. As of now we are using certain kind of a nomenclature and we will 



be understanding a differential evolution using our nomenclature. So, let us see what are 

the parameters that are being used with DE and those parameters are represented in our 

generalized representation.  

𝑥𝑖,𝐺 = (𝑥1𝑖,𝐺 , 𝑥2𝑖,𝐺 , … , 𝑥𝐷𝑖,𝐺)
𝑇

 

𝑥𝑖
(𝑡)

 =  (𝑥𝑖1

(𝑡)
, … , 𝑥𝑖𝑛

(𝑡)
)

𝑇

 

So, let us begin with the population member. So, as you can see that in both the cases; we 

are representing the members as i. The population size; the second one in canonical DE, it 

is represented as NP; however, in our representation; it is represented as N; so, N will be 

represented as a population size. 

Similarly, we have the counter; so this is called generation counter, it is represented as a 

G in DE, but we are representing as a small t. The maximum number of generation; this is 

represented by G max, in our representation it is represented by capital T. Similarly, a 

target vector; now, as you can see this target vector in the Gth iteration; the i and G are 

written in the subscript of x. 

However, in our representation we write i in the subscript and the generation number t in 

the superscript. If and the mutant vector; so the mutant vector for t plus 1 again, in the DE 

representation; in the subscript you can see i and G plus 1. 

However in our representation; in the subscript we are writing the solution and in the 

superscript, it is written as the t plus 1th generation. So, v i t plus 1 will become our mutant 

vector. Thereafter, we have a trial vector and again in DE; we they have used i and a G 

plus 1 in the subscript; in our representation we are using u, but in the subscript is i and in 

the superscript, it is t plus 1. 

The vector size in DE is represented as capital D, but as we know; we take this as a column 

vector and the size of the column vector is divided decided by this small n. There is a 

crossover probability rate. So, in DE; it is represented as a CR, we will be understanding 

this as a pc which is similar to the probability of crossover. 

So, this is; so what we are going to do here is the representation which we are following 

in our generalized format that we are going to follow to understand how differential 



evolution works. Now, at the bottom we can see the canonical DE uses; suppose this is the 

vector here, x i G; this is represented and the component of this vector. 

So, basically the values of the decision variables are given and again it is a column vector 

here. In our format, we are writing x i t and this is x i 1 to x i n; so we are writing these 1 

and n in the subscript of i; just to make sure telling that we are talking about the variable 

of ith vector in tth generation. 
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So, let us start with the mutant vector. So, the purpose of the mutant vector is to create a 

new solution that will be exploring the search space. So, as we can see; we are going to 

create new vector for the exploration. Now, for each target vector; so we are going to take 

vector one by one; so let us take ith vector. 

𝑣𝑖
(𝑡+1)

 =  𝑥𝑟1
(𝑡)

 +  𝐹 × (𝑥𝑟2
(𝑡)

 −  𝑥𝑟3
(𝑡)

) 

𝑟1 ≠  𝑟2  ≠  𝑟3 

𝑖 ∉ {𝑟1, 𝑟2, 𝑟3 } 

 

(𝑥𝑟2
(𝑡)

 −  𝑥𝑟3
(𝑡)

) 



 

So, the mutant vector v i t plus 1 is generated as; as you can see equation number 1; that it 

depends on choosing the vector 1, then r 2 vector, then r 3 vectors. What are these vectors? 

These are the randomly chosen vectors from the current population, we have to make sure 

when we are selecting three vectors randomly; they should be different from each other. 

Now, if we look at the equation number 1 here; the second part you can see, this second 

part represents the difference between the two vector that is multiplied by the scaling factor 

F. And finally, we are adding this component into the first vector; these are the simple 

vector operations which are performed to generate the mutant vector v i t plus 1. 

While using while selecting r 1, r 2 and r 3 basically three random vectors, we have to 

make sure that these three vectors should not; any of them should not be the same as our 

target vector. So, therefore if we want to start differential evolution we need at least four 

members to start with. 

So, as we can written; as we have written here, the population size of DE should be greater 

than or equals to 4 to start with this algorithm. Now, the scaling factor in the formula 

number 1; the factor F, generally we take it as a scalar factor and we take any value 

between 0 to 2. Now, what is the effect of this factor F? 

As we can see, in the equation number 1 here; when we are finding the difference between 

the two vectors and when multiplying the scaling factor F; this is controlling the 

amplification of the difference differential variation. Since, we are subtracting these two 

vectors; so how much effect we are going to use it. If the value of F is smaller than 1, this 

means that we are going to take less effect of these two vectors; the difference of these two 

vectors. 

However, when we take F greater than 1; then we are taking more component or the larger 

component of the difference of these two vectors. Other implementation imposes different 

limits on F; so this was the original implementation shown in the paper as we have seen in 

the initial slide.  



So, that says that if we are going to use a difference of the two vectors; we can use the 

value of F between 0 and a 2. Now, here there is an important note I have written at the 

bottom that in this mutation; it involves more than one vector. 

Now, let us remember that when we are working with say genetic algorithms; in that case, 

we understood crossover and mutation operator as; in crossover operator, we need more 

than one solutions. It is only because these solutions they exchange some information and 

create new solutions. 

So, as and when we need more than one solution that operator was referred to as a 

crossover operator. Similarly, when we are perturbing a solution; so only one solution is 

involved so that operator we considered as a mutation operator. However, in differential 

evolution; the mutation mutant vector which is generated using the mutation operator as 

referred in the paper that it involves more than one vector. 

Now, looking at the equation number 1; we can see that we need r 1, r 2 and r 3; meaning 

that we need more than one vectors to generate a mutant vector v i t plus 1, let us 

understand the mutant vector graphically. 

(Refer Slide Time: 19:08) 

 

As we can see here, we have the target vector which is represented in a blue color and 

randomly chosen three vector; say r 1 and r 2 and r 3. So, the green color and the red color 



and the cyan color we have used three different colors to use three kinds of randomly 

chosen vector for a target vector i. 

Now, as we know that we are going to use a difference; as you can see this particular 

difference in the vector, we are going to use it to create a mutant vector. Now, looking at 

the figure on the right hand side; we have now multiplied with the F and that F with the 

difference in the vector is creating the mutant vector v i t plus 1. So, this mutant vector and 

the target vector both of them will be used to create a trial vector.  
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Now, let us come to the trial vector; this trial vector is created using similar to the crossover 

concept. The purpose is; if we are using a trial vector that should help us in maintaining 

the diversity into the population. Therefore, as we can see the purpose is to create a new 

vector for diversity in the population.  

𝑢𝑖𝑗

(𝑡+1)
 = {

𝑣𝑖𝑗

(𝑡+1)
   𝑖𝑓 (𝑟𝑎𝑛𝑑 𝑛𝑜 ≤  𝑝𝑐  ) 𝑜𝑟  𝑗 = 𝑟𝑛𝑏𝑟(𝑖) 

𝑥𝑖𝑗

(𝑡)
    𝑖𝑓 (𝑟𝑎𝑛𝑑 𝑛𝑜 >  𝑝𝑐) 𝑎𝑛𝑑  𝑗 ≠  𝑟𝑛𝑏𝑟(𝑖)

 

𝑤ℎ𝑒𝑟𝑒  𝑗 ∈  1, 2, … , 𝑛 

Now, trial vector u i t plus 1 is generated as; now before we explain this particular equation 

number 2, you can see that we are writing j here. So, the purpose of a j is; this is going to 

be our jth decision variable. So, variable by variable we are going to take a component 



either from the mutant vector or from the target vector and in that case while going through 

one by one, we will be creating the trial vector.  

So, let us see the equation number 2 now. It says that say for the jth variable; if the random 

number is a smaller than pc or j is equals to rnbr i. So, we will see what is that; then we 

are going to take a jth component from the mutant vector. If the random number is greater 

than pc and j is not equals to rnbr i, we are going to take the jth variable component from 

the target vector.  

So, here the random number is generated between 0 to 1, p c is the crossover rate or we 

can say the probability of a crossover. Now, let us come to rnbr i; this is a randomly chosen 

index between 1 to n. Now, you can see these are the index we are used for the decision 

variable. 

It means that we are creating a random number and as and when this random number is 

same as the decision variable which we are taking; then we are copying that particular 

decision variable from the mutant vector to the trial vector.  

The only purpose of this particular condition is that; it ensures that the trial vectors; so the 

jth component or trial vector get at least one parameter from the mutant vector. So, that is 

the whole purpose that we should get something from the mutant vector while creating a 

trial vector. So, let us see graphically how this trial vector is generated now. 
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So, in this particular example; you can see on the left hand side, we have the target vector, 

we have the mutant vector and this vector is made of 8 number of variables. Different color 

codings are used here to understand how this trial vector is generated; looking at the figure 

on the right hand side; so suppose for the first variable, so the random number is more than 

pc.  

So, this means that we are going to copy the variable; the first variable from the target 

variable. Suppose, for the second component, random number is smaller than pc. So, we 

are going to copy the second variable from the mutant vector. And similarly, if we are 

going to follow we are we will get a trial vector.  

Now, here you can see in the final component of the trial vector; it is made of blue color 

and the green color. So, the change in the blue and a green color means that this particular 

vector will be having different set of decision variable values. And when we are changing 

it; definitely it will be representing a new particular vector or a solution in the population. 

After understanding, the mutant vector and the trial vector; now we have to select which 

is better. 
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So, in this case; we have this selection. In this particular selection the purpose is we have 

to decide whether a trial vector can replace its target vector and enter in the population. 

So, since we have generated the trial vector; we are going to compare with its target vector. 



So, as we know when we are going to compare; we generally compare with the help of 

fitness value. So, the fitness value of both the vectors we have already calculated it. 

𝑥𝑖
(𝑡+1)

 = {
𝑢𝑖

(𝑡+1)
  

  
if 𝐹(𝑢𝑖

(𝑡+1)
)  <  𝐹(𝑥𝑖

(𝑡)
)

𝑥𝑖
(𝑡)

   Otherwise

 

Now, the canonical DE uses some greedy selection criteria for selection of one vector that 

to be included in the population. So, here we are assuming it is a minimization problem. 

So, let us look at the formula number 3 here; it says that the target vector for the next 

generation population which is t plus 1, it will come if the fitness of the trial vector is better 

than the target vector; so let us copy the trial vector. 

Otherwise, we will be copying the target vector as it is into the next generation. Now, what 

you can find here or we can understand from here? That we are taking the trial vector and 

the target vector and we are comparing these two solutions and choosing the best. 

However, if we want to make a small change into this algorithm; we can use some other 

selection criterion. Now, as we can see at the bottom as an example, I have written we can 

use (𝜇 + 𝜆) selection strategy meaning that we can generate we already have a target 

vector with us, we can generate all the trial vectors using mutant vectors. 

So, now we have target plus trial vectors; we can combine both of them and then we can 

choose the best n solution for the next population and that is what mu plus lambda strategy 

says that. So, this is the another way of selection we can incorporate with DE to see 

whether the performance of the DE is improved for certain class of a problem or not. 
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There are different variants of DE available in the literature. So, generally those variants 

are can be differentiated with respect to a form. As we can see in this here that the 

following notation is used which is represented as DE; x, y and z. So, here x will be 

representing a vector that to be mutated. 

𝑣𝑖
(𝑡+1)

 =  𝑥𝑏𝑒𝑠𝑡
(𝑡)

  +  𝐹 × (𝑥𝑟1
(𝑡)

 +  𝑥𝑟2
(𝑡)

 −  𝑥𝑟3
(𝑡)

 − 𝑥 𝑟4
(𝑡)

) 

So, for example, we can either use random or the best; why is the number of differences 

vector that can be used with DE and z will be representing the crossover scheme. So, the 

algorithm which we have gone through; it also has had some version. So, what is that? As 

we can see, the algorithm which we have just discussed; it has DE; rand random basically, 

this is 1 means one difference and bin means binomial; so let us see that. 

So, random means we are going to choose a vector for a mutation. So, we selected r 1; 1 

means a single difference vector is used. So, we have used a difference between r 2; r 2 

minus r 3. So, this is the one difference between these two vectors and bin; this is the 

crossover is according to the independent binomial experiment and that is why we took it 

as a pc here. 

So, what could be the other variant for a DE? In this case, suppose we take DE; best 2 bin. 

How we can understand what kind of DE it is? So, the first quantity says; so the first term 

here it is best. So, you can see in the formula here v i t plus 1 is equals to x best. So, 



meaning that in the given population; we will be finding which vector has the best fitness 

that vector will be chosen here. 

Then we have plus F and then now we are using four vectors in which there are two 

differences used. So, you can see that the two numbers; so DE best 2 is going to represent, 

there are two vector differences in the formula and bin is the same as what we have 

understood earlier. 

So, the mutate the best individual in the population and uses of two difference vector that 

represents DE; best 2 bin. And similarly in the literature, if we change this particular 

notation; accordingly we are going to get another kind of a DE that is the variant of the 

original DE which we have understood it. Now, we have come to this stage when we can 

see how this DE algorithm will work on an example. So, we are going to start this DE 

algorithm with the help of a Rosenbrock example now.  
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Before going that, let us see the flowchart of differential evolution; in this particular 

flowchart, we can see that we start with the random initial population; so, the vectors that 

will be generated randomly as we have done it earlier. Thereafter, we are going to evaluate 

the population and assigning the fitness.  

So, here since the problem which we will be solving; we will see that what fitness we are 

going to assign. Now, come to the first decision box here. So, this decision box says that t 



is smaller than N equals to capital T meaning that the number of generation, if it is smaller 

than and equals to capital T; go ahead. 

So, yes; so suppose we are at the first iteration here; now we are going into the second 

decision box. As you can see, this decision box will be running for every vector in the 

population. So, let us choose; we have the ith decision vector, so for that particular target 

vector; so the vector i will be referred as a target vector. So, first we will be finding the 

mutant vector here. 

So, the mutant vector formula is known to us; thereafter we are going to find a target trial 

vector u i t plus 1 using target, as well as mutant vector. Since, this trial vector can be a 

new one; so we have to evaluate it and assign a fitness to our trial vector. Thereafter, we 

will be performing a selection between the target vector x i t and the trial vector u i; t plus 

1. 

Then finally, we are going to increase the counter by 1 and this loop will be working till 

all the vectors in the populations are undergone through the operations, as creating mutant 

vector, trial vector and then selection. Thereafter, once the population is done then we will 

be moving in the upper loop on number of a regeneration; so, we increase the counter by 

1. 

So, this process will be followed till all the number of generation is more than the 

maximum number of generation. Once it is done, we terminate the algorithm and report 

the optimum solution. After understanding the flowchart of differential evolution; now, let 

us fit DE with our generalized framework of EC computing technique. 
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Now, in this case we can see that we have this step 1 which is the solution representation. 

So, as of now we are assuming that we are using DE for continuous function; for real value 

and for the real values of x 1, x 2, x 3 and x 4; thereafter we have to give certain input to 

the DE. 

So, as we know that for evolutionary computation techniques; we have to set certain input 

that will be given to the differential evolution. Thereafter, in a step number 3; we initialize 

the random population and in step number 4, we evaluate the population. As can be seen; 

evaluation of the population means we will be evaluating the objective function, we will 

be evaluating the constraint and finally, we will be assigning the fitness to each vector. 

So, as we remember; in DE the solution is referred to as a vector; as a vector. Now, in a 

step number 5; we are in the standard loop of generation, inside this particular loop; we 

have one for loop, this for loop works for the number of vectors that is represented by 

capital N. So, we are going to take vector one by one; so those vectors will be considered 

as a target vector and once. 

So, for that one first we will be creating a mutant vector; for the target vector i, the 

operation is referred as a mutation; then in step number 8, we will be finding a trial vector; 

u i t plus 1 for target vector i, this operation is referred as crossover operator. Since, new 

vector is generated; so in step number 9, we will evaluate this new vector and in step 

number 10, we have the survival stage. 



This survival stage will be working on two solutions only that is the target vector and the 

trial vector u i t plus 1; whosoever is having a better fitness is selected for the next 

generation and in the step number 12, we increase the counter by 1 and the loop over the 

number of generation from 5 to 13 will terminate, once the small t is greater than the capital 

T. 
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Now, let us understand the working principle of differential evolution. So, we have taken 

an example of Rosenbrock function. We can see on the top that we want to minimize the 

function and the two variable Rosenbrock function is given here and the variable bound 

for the Rosenbrock function is considered as between minus 5 to plus 5 for both the 

variables. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥1, 𝑥2)  =  100(𝑥2 − 𝑥1
2)2  +  (1 − 𝑥1)2 

bounds  − 5 ≤  𝑥1 ≤  5   𝑎𝑛𝑑  − 5 ≤  𝑥2 ≤  5 

Now, the figure on the left hand side; we have drawn the third axis as a logarithmic of the 

function, you can see x 1 and x 2 plane at the bottom. Now, the surface you can see that 

this particular surface has generate the contours which shows that we have many local 

optimum solution for the given problem; However, the global optimum solution is at 1 and 

a 1 and the function value at this global optimum solution is 0. 
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So, let us solve this problem using differential evolution; so we have to generate the initial 

population first. So, let us assume that we have a population size of 8. So, as you 

remember; DE need at least four number to start with. So, we are taking 8 as a number and 

the generation counter is considered as first. So, what we did is; we created our random 

population as you can see in the table that x 1 and x 2 values for each index i is generated 

between minus 5 to plus 5.  
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Once this initial random population is generated; now we have to evaluate the population; 

for evaluating the population the objective function is given to us. Now, let us take a 

solution number 1; for this particular solution, the column vector or the variable values are 

given here. By including these values we will get the function value is 357.154. If we 

continue to fitting the values of the variable for vector 1, vector 2, vector 3 till vector 8, 

we are going to get the fitness of all the vectors. 

𝑥(1) = (2.212, &3.009)𝑇  𝑎𝑛𝑑  𝑓(𝑥(1))  =  357.154 

So, as can be seen in this particular table here; the third column represents the fitness or 

the function value of all the vectors. So, here we are assuming that the fitness function is 

the same as the objective function value. So, we are considering the function value as our 

fitness in this particular example.  
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Now, let now we are in the standard loop of the number of a generation; since this is the 

first generation. So, we continue and we move inside the loop of generation. 
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So, we are going to do the operations now; vector y vector. So, let us take; so first operation 

is the mutant vector. So, the formula is given to us which is represented as the vector 

operation; so, the difference between the vector and adding to the third vector. Now by for 

performing the mutant vector we are assuming that F is 0.5.  

𝑟1 =  7, 𝑟2 =  3 𝑎𝑛𝑑 𝑟3 =  2. 

 

𝑣1
(2)

 =  𝑥7
(1)

 +  0.5 × (𝑥3
(1)

 −  𝑥2
(1)

) 

Now, let us see the table now; for the target vector 1, we have chosen three vector 

randomly; so these are 7, 3, 2. So, what we did? Inside the population, we chose three 

vectors randomly those are 7, 3 and a 2. Similarly, as you can see in the table for target 

vector 2, the other three vectors are chosen. So, we are following the route that i should 

not be equals to r 1, r 2 and r 3; as well as r 1, r 2 and r 3 should be different from each 

other. 

So, if we follow the same thing; then we are going to get a table of random numbers for 

each target vector. So, let us go one by one; let us choose the target vector 1, for the target 

vector one r 1 is 7, r 2 is 3 and r 3 is 2; so that you can make it out from this particular 

table. 



Now, we are going to calculate the mutant vector for this target vector 1; so, it is simply 

the vector operations as you can see. So, we are including the value here in the column 

vector form and then finally, we will get the value or the mutant vector 1, for the target 

vector 1. Just to explain one more time, let us do the same calculation on target vector 2. 

So, for this target vector 2; we have r 1, r 2 and r 3; that is we have selected from this 

particular table as 3, 4 and 6. By including their vector values or the column decision 

variable values here, in the column vector form; I can find, what is the value of the mutant 

vector for target vector 2 and finally, we will get the value here. So, in this particular 

process we are going to take one vector; one target vector at a time and then creating the 

mutant vector for the same target vector. 
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Now, here when we will be performing it; we are going to get a table as mutant vector. So, 

there are two observation here; so let us see the column number 2 here. Now, the column 

number 2 is represented in a red color is shown in the red color, it is because look at the x 

2 value. This x 2 value is actually greater than 5 and in our problem; we consider x 1 and 

x 2 should lie between minus 5 to plus 5. So, in this case when the variable is going out of 

the bounds; we will keep this particular variable on the bound. 

So, that is the first observation that the operations which we did earlier that can make our 

vector out of the bounds of the variable. Second observation is shown in the third column 



that is represented in the green color. Now, in this green color what you can see that we 

started with a fitness with initial population which have certain fitness. 

After performing the mutant; after calculating the mutant vector, you can see the fitness 

has already improved for vector 1. And that is what we expect is that when we are 

performing the operation, our solution should improve and should move to the optimum 

solution. So, the mutant vector can create a better solution for us and it can create bad 

solution as well. 

So, as a modified table; as we can see on the right hand side, the values corresponding to 

the vector 3; you can see that the x 2 component is kept on 5 and accordingly, the fitness 

value is also changed. With this modified mutant vectors, now let us create the trial vectors. 
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Now, as you can see here; the target trial vectors will be made with the help of every 

variable called j. So, using this particular formula as given in the top; we will be generating 

the trial vectors. For creating the trial vectors, we are assuming the probability of crossover 

or a crossover rate is 0.5. 

𝑢𝑖𝑗

(𝑡+1)
 = {

𝑣𝑖𝑗

(𝑡+1)
𝑖𝑓    (𝑟𝑎𝑛𝑑 𝑛𝑜} ≤  𝑝𝑐)  𝑜𝑟  𝑗 = 𝑟𝑛𝑏𝑟(𝑖) 

𝑥𝑖𝑗

(𝑡)
  𝑖𝑓    (𝑟𝑎𝑛𝑑 𝑛𝑜 >  𝑝𝑐  ) 𝑎𝑛𝑑  𝑗 ≠  𝑟𝑛𝑏𝑟(𝑖)

 

 



𝑣1
(2)

 =  (& − 0.793&, &0.737&)𝑇  and 𝑥1
(1)

 =  (2.212, 3.009)𝑇 

 

So, that says that 50 percent should come from the mutant vector and 50 percent should 

come from the target vector. So, let us see how; now in this case, as we know we are 

solving two variable problem that is x 1 and x 2. So, for both the variables; we are creating 

random numbers as you can see in the table. 

So, for every vector 1 to 8, we are creating random numbers to find out which particular 

component of the decision variable will be copied into the trial vector. So, let us take the 

trial vector 1, in this trial vector; we have already computed the mutant vector and we had 

the target vector. Now, let us look at the random numbers. 

So, random number 1 is 0.459; as you can see from the table as well. So, the first random 

number is 0.459. Now, since this random number is smaller than pc which is 0.5 and 

looking at the formula on the top; we are going to get a component. So, the first variable 

value, we are copying from the mutant vector to the our trial vector. 

So, the first variable will be minus 0.793. Now, let us do the same calculation for the 

variable number 2. So, the random number is now 0. 12; 0.122 and from the table also, 

you can see the same random number is taken here.  

Now, since this random number is smaller than probability of a crossover or pc; we can 

take the second component of the mutant vector to the second component of the trial 

vector; so, this is 0.737. This is we did it for the; for creating a trial vector 1. Let us perform 

the same calculation for the trial vector 2.  
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As you can see in the table, the random numbers are given here; so, these random numbers 

we are going to use them. For trial vector 2; we have the mutant vector v 2 and we have a 

target vector x 2. In this case, as we have seen the first random number for the first variable 

is 0.268 which is less than the pc meaning that; the first variable from the mutant vector 

will be copied to the trial vector. 

Similarly, if we are going to do the same thing for the second variable; so here random 

number is 0.684. Now, this random number is more than pc; it suggests that we have to 

take the second component from the target vector into the trial vector; so, the component 

as you can see here.  

So, what we can see? That this target trial vector can take a component either from the 

mutant vector or from the target vector; by following those set of random numbers we can 

thus generate the trial vector. Now, looking at the table here; this particular table says that 

based on the random number, these trial vectors for every solution we have created. 

So, the fitness value is shown for our reference and we can see that the best solution was 

preserved, but it is random. In this case, we have preserved it, but it can be distorted or it 

can be changed to some other value.  
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Now, we have created a trial vector; so in the at this particular stage; we have the target 

vector, as well as the trial vector. Now, we have to choose the best and therefore, we need 

a selection. So, in this selection operator; we are using the greedy selection of a DE, as we 

have understood from the earlier slide which says that the target vector for the t plus 1 

generation that is the next generation is equals to the trial vector F, the fitness of the trial 

vector is better than the fitness of target vector. 

𝑥𝑖
(𝑡+1)

 = {
𝑢𝑖

(𝑡+1)
  

  
if 𝐹(𝑢𝑖

(𝑡+1)
)  <  𝐹(𝑥𝑖

(𝑡)
)

𝑥𝑖
(𝑡)

   Otherwise

 

 

Otherwise, we are going to copy the same target vector. Here, we are assuming that the 

fitness value is the same as the function value. So, this assumption we are using it and we 

will be choosing the solution one by one; let us see how. So, for the first solution; we will 

be comparing the target and the trial vector; looking at the fitness, we can see that we have 

to select the; we have to select the trial vector for solution number 1.  

Now, look at the solution number 2 here; in this case the fitness value of the target vector 

is better than the trial vector; so this is going to be selected. This process we will continue 

and we will get this kind of a table here. Here, you can see all the green particular cells 

says that which particular vector we are going to select.  



Here, some different color such as in 6 and 8 are shown; it is because our target vector as 

well as our trial vector both of them are same; since both of them are same, we can select 

any one. So, that is why I am just showing as a representation purpose that anyone can be 

selected because it is not going to change our member.  

So, the new target vector for the next generation you can see on the right hand side and the 

vector components are shown in the column number 2 and their fitness values are shown 

in the third column of the table. 
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Just at the end let us compare the initial population versus the new target vectors after one 

generation. Now, as you can see the left hand table represents the initial population and 

the new target vector after one generation is shown on the right hand side. The observation 

is that we are we have now two solutions which is better than the best solution in the initial 

population. 

And that is what we expect from differential evolution that the way we perform the 

mutation in the form of mutant vector, as well as crossover in the form of trial vector; these 

operation should support DE to improve the solution generation by generation.  

And after few generation, we should expect that these target vector will be close to the 

optimum solution. Now, the process which we have gone through using our hand 

calculation; now let us see how the solution graphically are moving in a one generation.  
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So, we are we are starting with the graphical example; now let us look at this figure, this 

is the initial population and this initial population all these vectors are generated randomly 

in the plane of X 1 and X 2. 
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Once we evaluated that and then we are under the; we are inside the generation loop, the 

first operation which we do is the mutation in the form of mutant vector. So, let us take an 

example of first target vector 1. Now, look at the figure here; the target vector 1 is here; 

for this particular vector we selected r 1 as 7, r 2 as 3 and r 3 as 2. 



So, what we are going to do is; we are first finding the difference between the two vector 

which is X 3 minus X 2 and then and then multiplying with the F, we are adding this vector 

to the vector 7; that is going to give me my first mutant vector v 1 and that is that process 

will be happening for all the target vector in the population. 
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Now, in the figure; you can see that all the mutant vectors are shown in these green colors. 

So, that are generated using the formula that we know for mutant, for mutation.  
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After performing this mutation and creating the mutant vectors, now let us create the trial 

vectors. So, following the hand calculations; we use the formula and the tables which is 

shown in the trial vector, the solutions are shown in the pink color; as you can see here. 

So, these are the solutions that are created after trial vectors. Now, the process which is 

left is the selection; so we have to either select our target vector or a mutant vector, just 

for our reference I am showing you both the solutions now. 
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So, the target and trial vectors are shown. So, the blue color solutions are the target vectors 

and the pink color solutions our trial vectors. So, here the solutions will be compared and 

we have to select the best solution.  
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Now, after selecting using greedy selection method; as you can see these brown points 

these points are the new target vectors. So, what we can see? That we started randomly in 

the X 1 and X 2 plane and after one generation, the solutions are start moving towards the 

optimum solution; let us look at this particular solution. So, you remember that one 

solution was having a fitness close to 4, it is because this particular solution as you can see 

in the figure; it is close to one of the local minima in this problem. 

So, this solution will be trying to converge to this local minima, but using the parallel 

search space property of evolutionary computation; the other solution will help this 

solution to come out and then move towards the optimum solution, as it is shown in the 

red color. So, this way generation by generations these vectors will move towards the 

optimum solution for the problem.  
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So, here we have come to the conclusion of this particular session. So, what we have 

learned in this session about differential evolution is first we introduce the differential 

evolution. So, what we understood that DE is borrowed the idea from evolutionary 

computation. Why? Because it uses multiple solutions or vectors and then the operations 

were performed to create new solutions, those new solutions were compared and the best 

one was kept. 

Second idea was borrowed which is similar to the vector operations in the simplex search 

method. So, borrowing these two idea differential evolution came with the concept of 

mutant vector. So, as we understand that this particular mutant vector was generated by 

taking a difference of randomly chosen two vectors, multiplied by the scaling factor F and 

this particular component is now multiplied with the third component for mutating target 

vector. 

Once the mutant vector was generated, then we had a formula for a trial vector where with 

the help of probabilities or the random numbers; we are taking the variable either from the 

mutant vector or from the target vector, to create a trial vector. And we also showed the 

greedy selection of the canonical DE and the; this says that the best of target or trial vector 

should be chosen based on the fitness value. 

Thereafter, we understood the flowchart of a DE; in this case we had two loops, one is the 

decision space decision box with respect to the number of regeneration, another decision 



box with respect to the number of solutions in the population. So, after following that; we 

have fit the flowchart of a DE or we have explained the flowchart of a DE. 

Thereafter, we fit DE on the generalized framework; so in that generalized framework we 

understood the operators and the processes what we have changed and then accordingly 

we created the mutant vector, the trial vector for each target vector i. 

Then, we understood differential evolution using a working example; so we took the 

Rosenbrock function which has local; many local minimum and it has one global minimum 

solution. And we have showed the hand calculation for one generation and the same set of 

calculations which we did it; so, the same calculations we have showed in terms of 

graphical example. 

So, from starting from the initial population, to the mutant vector to the trial vector and 

finally, the new target vector for the next generation; we understood how these vectors are 

improving using mutant and the trial vector operations. And finally, we can expect that 

after few generation, DE will converge to the optimum solution. So, with this, these 

understanding and the concepts of differential evolution, I conclude this session. 

Thank you. 


