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Welcome to this course of Nonlinear Vibration. So, last two classes we are studying regarding

this vibration absorber, today class also we will continue with the same vibration absorber, so

where I will tell you regarding different other different types of vibration absorber.

For example, so we have taken the vibration absorber to 2 degrees of freedom system. So

here, either one can use this passive vibration absorber or tuned vibration absorber, similar to

in case of a linear system, but when we are considering non-linear system, non-linear primary

system, non-linear secondary system and active vibration absorber so we can use some active

elements like the smart material. 

For example, this piezoelectric material or someone can use this shape memory alloy or other

different type of smart materials can be used to control the vibration of the system. So, today

class we will see two different types of vibration absorber, particularly we are going to see the

traditional and non traditional vibration absorber. So already, you are familiar with the

traditional vibration absorber and I will tell you something regarding this non traditional

vibration absorber.

So, one applications of the torsional vibration absorbers also I can show you which is used for

controlling the tremor of the hand, and also in case of continuous systems how we can reduce

or control the vibration so that thing also we will see in today class.
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So, this work is part of the PhD thesis of Mr. Sibananda Mohanty, who is working under my

guidance. Here, let us see this linear and non-linear analysis of traditional and non traditional

active non-linear vibration absorber with combination of time delay in displacement, velocity

and acceleration feedback to suppress the vibration of single degree of freedom spring, mass,

primary system under external harmonic and parametric excitation.

Here, we are considering all types of vibration absorber, here we are taking the time delay in

displacement, velocity and acceleration. Also, the system is subjected to external, harmonic

and parametric excitation. So, you can see the system, so this is the primary system. The

primary system, there is no damping is considered in the primary system, so for example, the

damping may be very less, so I can neglect the damping. Later one can study the use of

damping also in the system. 



Here, so we have put a simplified system where the piezoelectric stack actuator is connected

to a spring and also a damper is there and the system is subjected to both direct and

parametric excitation. 

So, in direct excitation the term F 1 cos omega 1 t is there and in case of parametric excitation

the term is x 1 F 2 cos omega 2 t. Here, one can take two different type of forcing amplitude

and frequency F 1 and F 2 are the forcing amplitude and omega 1 and omega 2 are the forcing

frequency. 

So, the stack actuator has a displacement of delta 0 so which is a function of the voltage

applied to the system, and here k 2 is the linear spring constant and k 23 is the non-linear

spring constant of the system. The mass m 2 has a displacement of x 2 and mass m 1 has a

displacement of x 1.

So, this is the traditional vibration absorber in the primary system, so this is the primary

system. So this part is the primary system to which a secondary system is added. Here, so the

secondary system is now directly connected to the ground, but the primary system is

connected to the peaks based or ground. But in case of non traditional vibration absorber the

secondary system itself is connected to the ground.

So here, the damper c 2 is connected to the ground, and the system m 1 that is the primary

system is connected to the ground through the non-linear spring, with a linear spring constant

k 1 and non-linear spring constant k 13. So, we have two different type of vibration absorber

considered in this case. You can easily write down this equation of motion of these two

system by either applying this Newton’s 2nd law or D Alembert principle or energy based

principle like Lagrange principle or Hamilton principle. 
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So after deriving this equation of motion, so you can see so how we can give the time delay to

the system. So here we are considering a time delays; that means, whenever we are applying

this force it will take some time to react, that is why there is a time delay in the response term.

So, the equation of motion of this case can be written as m 1 x 1 double dot, this is the inertia

force then plus k 1 x 1 plus k 13 x 1 cube plus k 3 k p E x 1 minus x 2 plus delta 0 divided by

k 3 plus k p E. So here we are taking this equivalent spring stiffness and then multiplied that

thing by the displacement. So the displacement of the stack actuator which is connected to the

mass m 1 can be written in that form. 

So then we have this k 23 k 23 x 1 minus x 2 plus delta 0 x 3 plus c 1 x 1 dot plus c 2 x 1 dot

minus x 2 dot equal to F 1 cos omega 1 t plus x 1 F 2 cos omega 2 t. And for the secondary

system it can be m 2 x 2 double dot minus k 2 x 1 minus x 2 plus delta 0 minus k 23 into x 1



minus x 2 plus delta 0 cube minus c 2 into x 1 dot minus x 2 dot equal to 0, so here this delta

0 is written as nd 33 into voltage V. 

So this voltage can be written by using this PDE controller, so V can be written as k d into x 1

minus t minus tau d, so here you just see how the delay term is included in the system. So, V

equal to k d into x 1 minus t minus T d plus k v into x 1 dot into t minus T d and ka into x 1

double dot t minus T d. So here you can note that this T d is the time delay term associated

with the feedback system, that is the voltage. When we are applying this voltage we are

assuming so there is a delay in the system here. 

This is the displacement feedback so these are the displacement feedback so this part is the

velocity feedback and this part is the acceleration feedback. So you can take a combination of

all these three or one of them or two of them at a time and you can do this analysis for

completeness purpose.

So, all these three have been shown, but in practical case you may take one or two or any

combination of these two or these three so depending on the system or applications so you

can take these feedback.



(Refer Slide Time: 08:35)

Here, by using a small book keeping parameter and ordering this equation of different order

of scaling for example, the c 1, c 2, k 13 k, 23, F 1, F 2, f d, f b and f a are taken as order of

epsilon. 

The final equation of motion after ordering can be written in this form; this is a are 2 degrees

of freedom system form. We can write that is X 1 double dot X 2 double dot plus omega 1

square 0 0 omega 2 square into X 1 X 2 plus epsilon into z 1, z 11, z 12, z 21, z 22 into X 1

dot Z 2 dot plus epsilon P weighted modal matrix transpose into R equal to epsilon P

weighted modal matrix transpose into R f.

So, here you can note so originally you have a system so where mass matrix is coupled so you

have a coupled mass matrix so your equation previously becomes Mx double dot only the



linear part if I am writing then this is Kx plus the other terms will be there damping term and

other terms are there so here what you are doing.

So, initially you write A equal to M inverse K, M inverse K and find the eigenvalue of A to

get the P matrix. So P matrix that is modal matrix so you can find P matrix equal to

eigenvalue find the eigenvalue of eigenvalue and eigenvector so this eigenvalue of matrix A. 

So after getting this eigenvalue of matrix a so you can find the generalized mass. So

generalized mass can be obtained this way P transpose MP will give the generalized mass

matrix so you will get a mass matrix where you can have these M 11. Now, M 11 0 M 22.

So, in the modal matrix, so modal matrix you have in this modal matrix you have two

columns, so to get the weighted modal matrix what do you have to do so in the first column

so divide this first column by root over M 11 so divide the first column by root over M 11.

Similarly, divide the second column by root over M 22, so that will give you this weighted

modal matrix. 

In this weighted modal matrix the property of this weighted modal matrix if you know so you

can verify that P trans weighted modal matrix MP is P weighted modal matrix transpose MP

is nothing, but your identity matrix. So, this is 0 1 0 0 1. Similarly, so if you find this P

weighted modal matrix transpose KP so it is nothing, but the eigenvalue so that is why it is

written omega 1 square 0 and 0 omega 2 square so this will be lambda 1 0 0 lambda 2. So this

way by using this weighted modal matrix so you can derive this equation.

So, you just see now when you are multiplying all the terms so of the order of we have kept

only up to these first two terms are from the linear then you can use this damping so this

correspond to damping. Sometimes you may use this Rayleigh damping also. So in case of

Rayleigh damping. So, you can assume so this part damping equal to alpha m plus beta k and

taking that then you can multiply that thing by weighted modal matrix and you can find this

equation.



So here the basic assumption is that so you can take these X 1 X 2 equal to P weighted modal

matrix into X 1 capital X 1 X 2, that is why it will reduce to this form. So after getting these

equations so you know so these are the terms is retained so by taking all these terms you just

note that so here we have the time delay also considered in this case. Now, the equation is

reduced to this form and after getting this equation.
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So, you can see, so there are different resonance conditions will be there the resonance

conditions. For example, so you can had omega or you can have omega 1 equal to omega 1

that is external frequency capital omega 1; capital omega 1 is for the direct forcing. So,

omega 1 equal to nearly equal to omega 1 or omega 2. 

Similarly, omega 2 as it is principal parametric if you want to take so it may be nearly equal 2

omega 1 or nearly equal to 2 omega 2 similarly, so if you want to use the detuning parameter



to represent that one. So, you can write this omega 1 equal to small omega 1 plus epsilon

sigma 1 equal to omega 2 plus epsilon sigma 2, similarly this capital omega 2 equal to 2

omega 1 plus epsilon sigma 3 and it can be written also equal to 2 omega 2 plus epsilon

sigma 4. 

So here you just see as we are taking 2 frequency that is omega 1 and omega 2. And also we

are considering this natural frequency or this modal frequency as omega 1 and omega 2. Here,

we are using 4 detuning parameter that is sigma 1, sigma 2, sigma 3, sigma 4 to source the

nearness of those terms to that the external excitation. 

This way by writing or by taking all these frequency combination, so we can apply this

method of multiple scales and study that resonance condition. Here, you can get the secular

terms also one can take this 1 is to 1 internal resonance condition.
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So 1 is to 1 internal resonance condition is nothing but, so here we are considering the second

mode is nearly equal to the first mode and by taking that thing so one can find this equation

reduced equation in terms of a 1 and gamma 1 so for finding the stability of the trivial state.

So, you can convert that thing into the normalized form that is this p 1 equal to a 1 cos

gamma 1, q 1 equal to a 1 sin gamma 1 and p 2 equal to a 2 cos gamma 2 and q 2 equal to a 2

sin gamma 2. Then it will reduce to this form that is p 1 dash p q 1 dash p 2 dash and q 2

dash. Now, by perturbing these p 1 dash p 2 dash and p 1 dash p 2 dash q 1 dash and q 2 dash,

so we can obtain this equation that is delta p 1 dash delta q 1 dash delta p 2 dash and delta q 2

dash.

So, this will be equal to the Jacobian matrix J into it will be equal to delta p 1 delta p 2 delta p

delta so it will be delta q 1 delta q 1 p 1 q 1, this is p 2 and q 2. So this form you can reduce it

to in this form. So then finding the eigenvalue of the Jacobian matrix, so we can find stability

of the system.

So, if the eigenvalues are on the left hand side of this plane so this is the real part this is the

imaginary part. So, if they are in the left hand side of the S plane so then the system is stable.

So, if they are on the right hand side of the S plane then the system is unstable so this way we

can study the stability of the system.
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And, so we can study the stability of the system for different system parameters. You can use

the Simulink to perform the same analysis also so here, as we have already seen so it can give

rise to parametric excitation principal parametric excitation. So principal parametric

excitation will occur near the non dimensional frequency. So here it is taken omega 2 nearly

equal to 2 in the simulation it may be noted that the mass is taken to be 1 kg and the spring

constant k also equal to taken 1 Newton per meter.

So, this omega equal to 1 is we got omega equal to 1 here omega 11 equal to 1, that is why

this whether it is in whether this is written in dimensional or non dimensional form it is

immaterial because this is taken to be 1 radian per second. Either one can plot this versus

omega 2 or omega 2 by omega so that will give rise to non dimensional frequency.



So here one can observe so unlike in case of Mathieu Hill equation, so where one can get only

1 lobe, so here multiple lobes for example, in Mathieu Hill equation pressure this force versus

omega by omega N if 1 plot then this is the stability region. So, here in addition to the single

lobe so here multiple lobes are there. So these multiple lobes occurred so due to the presence

of multiple frequency and also due to the presence of internal resonance condition.

So here we are considering the internal resonance condition that is omega 2, nearly equal to

omega 1, so that is why we have several (Refer Time: 18:46) are available in this instability

region. Already, we are familiar that outside this instability region the system is stable and so

this is that is why this is S a1 and S p2, so they are stable condition and this U that is inside

this thing is unstable condition. 
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So at a different position, so you can plot the response plot also. So by plotting this response

you can see the system to be the you can study the stability of the system. So for example,

here it is written so here we have found the response at the stable point so you can see in

phase portrait and in so this is the phase portrait plotted and this is the time response X 1

versus T is plotted.

So, clearly you can see so in steady state the response is trivially stable so; that means, so it is

not vibrating. And here also, so this is outside region it has been plotted so if you plot it

inside region so the response is not shown here, but you can see this is given as assignment so

that is why it is not plotted here so you can verify that the response will grow with time so

this is time and this is X 1.

So, in this unstable region you can find the response will grow with time. To observe the

vibration of the system, so one must have to operate the system at a frequency where it is

marked S that is it is in stable region. So here you can note so if you see this point

particularly, if you see this point this critical point so in this critical point so you can observe

that below this value of this F 12, whatever may be the frequency of the system the system

remain stable. 

This is the critical value below which the system remain always stable for vibration

observation purpose. So, you can operate the system at a frequency or at a forcing F 12 below

these critical value. Similarly, so you can see so here, three cases have been shown, one is the

passive, second one is active. So two different type of active cases have been considered, by

taking two different type of active conditions so you can see the active 1 case has very high F

12 than active 2 and passive case has the least value of F 12.

If you are using this active vibration control, so you can see so in that case very high value of

F 12 is required to vibrate the system. It may also be noted that this vibration absorber can

also be used for energy harvesting when it is operated in this unstable range. The same system

can be used as a vibration absorber or energy harvesting depending on the application of the

system and application or the range of frequency in which it is operated.



(Refer Slide Time: 22:06)

So, here also some comparison have been given these MMS 1st order MMS, 2nd order MMS

and also with the one reference value. So you can see as we are using or we have a 2 degrees

of freedom system, so here so one can observe 2 peaks so this is one peak and this is the other

peak so these correspond to the shifting of the natural frequency or modal frequencies from

the omega by omega 1 equal to 1.

It can be observed that it has a lower value, this value is previously in case of the single or

primary system so one can observe the highest value or the resonance condition at nearly

omega equal to omega 1. 

But, when we are adding the secondary system the frequency is shifted to 2 value so that is

why we are having 2 peaks, but at omega equal to omega n the response amplitude is

minimum different conditions can be taken so for example, f d can be taken so for 3 different



value of f d so passive cases have been taken so for different conditions it has been

considered. 

All those cases you have to verify as part of your assignment in this course. So effect of active

force by various feedback and then passive case also you can see.
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So, you can plot the force response plot also so for example, so you can take this F 11 2, you

can vary this forcing F 11, F 12, simultaneously and see what will happen to this response

amplitude in a 3D plot you can plot these thing and you can verify the response. So this way

you can verify the system.
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So we have now we have seen what we mean by this traditional and non traditional. So just I

have shown you one case, but you can take this as an assignment and solve the problems for

both traditional and non traditional active vibration absorber case. 

So, let us now use this non-linear, active non-linear vibration absorber to suppress tremor in

the forearm primary system for Parkinson’s disease patient and also one can consider another

system where we can take this as a continuous system that is a beam model with various

boundary condition.

So, it can be considered as a 3 degrees of freedom system. So, let us take two cases and

consider these two cases.



(Refer Slide Time: 24:54)

So, here also we can take the velocity, displacement and acceleration feedback. So you can

see sometimes, one can absorb the tremor in the hand so now to control the tremor in the

hand one can put a band here. As we know, by adding a mass to a vibrating system so we can

suppress the vibration by shifting the natural frequency, actually resonance will occur when it

is near the natural frequency.

So, when you are adding additional mass and spring to the system so we are shifting the

natural frequency thereby we are reducing the vibration of the system.
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So, to control the vibration of the system one can use a bracelet so in the forearm one can use

a bracelet having these effective mass and spring conditions and then it can be studied. So,

you just see while designing such a system analysis of piezoelectric based active non-linear

vibration absorber can be used for the suppression of the tremor in the hand using the

following features.

So, one is minimizing the vibration of forearm for broad range of operating frequency with

minimum bracelet mass of 80 gram. So in this case we have taken a minimum bracelet mass

of 80 gram. It can be seen what is the different percentage of body mass where it is

concentrated.

For examples, we have the head, then whole trunk. Whole trunk is more than 50 percent head

is less than 8 percent then this thorax region so we have less than 20 percent, so for the



forearm particularly if you see this is 2.7 percent of the body weight. So different part of the

body so it is taken from this work of Antioch Coll Yellow Springs oh this is in 1969 work.

So, it is weight, volume, and center of mass of the segment of a body human body soul so one

is for the male and other one is for the female body, so here the forearm is shown to be 2.7

percent of the whole body weight. One can consider the non-linear stiffness in the forearm

which may be more practical in nature. So different forcing conditions of the forearm primary

system so single frequency one can consider single frequency or one can consider multi

frequency excitation to study the system.

So, controlling force is by acceleration feedback which is easier to implement because we can

have the accelerometer mounted on the system.
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Using the acceleration feedback only acceleration feedback, so now, you can model the

system, one can consider this as a linear system or non-linear system. So the equation of

motion this is a torsional system.

Here the equation of motion can be written as M 2 capital M that is the primary mass so that

is the hand or forearm so here equation can be written M x 2 double dot equal to K x 1 minus

x 2 plus K 3 x 1 minus x 2 whole cube plus C into x 1 dot minus x 2 dot plus small k into x 3

minus x 2 plus k 3 into x 3 minus x 2 whole cube plus c into x 3 dot minus x 2 dot minus F c.

So, this F c is due to the piezoelectric stack actuator similarly m x 3 double dot can be written

as c 2 into x 2 dot minus x 3 dot plus k into x 2 minus x 3 plus k 3 into x 2 minus x 3 cube

plus F c. Considering the linear part so one can write the transfer function. So after writing

the transfer function so then from the characteristic equation that is from the bottom

denominator part either one can apply this Rutherford’s criteria or some other criteria to study

the stability of the system.

So, here we have a primary mass, so from the primary mass we are getting the acceleration

with sensor. Then, we have a controller so k c x 1 double dot so that is the control force we

are giving so we have the actuator and this is given the force to the system.
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Similarly, here we can by using this transfer function. So we can write down these equations

of the transfer from the transfer function we can find this thing G omega so that is the

response amplitude so versus this response amplitude versus the frequency ratio. One can plot

and find the value of these omega a omega b at which irrespective of damping so it is having

the same value of response amplitude. 

So, this value one can find this value and one can find the minimum or optimum parameter

and using that optimum parameter.
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So, one can study the system there are many methods one can use; one can use the genetic

algorithm also so minimizing peak value of a curve so one can use this fitness function F s

peak value of the curve. So, variable damping ratio also can be taken so less than zeta a less

than 1 so 0 less than zeta a less than 1. In case of genetic algorithm so some study has been

carried out. 

So passive vibration absorber so damping ratio was found to be 0.129, so this hybrid

vibration absorber with displacement feedback this damping ratio is obtained to be 1.033 and

in this hybrid vibration absorber with acceleration feedback it can be seen that the damping

ratio is 0.48.

So, peak value is 6.0 in case of vibration absorber, the peak value is 6.4083 and HVA with

the displacement feedback d is 1.26, HVA is hybrid vibration absorber 1.265 and in case of



acceleration feedback you can see the active value has reduced to 1.5. So using this fixed

point theory so this damping ratio is found in case of passive to be 0.1272 and the peak value

is 6.0483, it is matching with the previous one. 

Then with HVA, so taking that same value 1.0667, so the peak value equal to 1.27 in case of

displacement feedback. And in case of acceleration feedback the peak value is observed to be

1. 5835.
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Now, by considering these non-linear systems so one can take use this method on multiple

scales and also one can take the delay also in the system tau minus tau d and then by solving

these equations one can obtain this reduced equation.
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So, by using these reduced equation 4 reduced equation will be obtained and by using these

reduced equation.
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And, plotting the time response phase portrait Poincare section and using these fourth order

Runge-Kutta method or by solving this set of equations by using Newton’s method, one can

study the system. So here, the study in the study mass is taken to be 1.4 kg, so natural

frequency of forearm absorber considered to be 4.5 Hertz and 5.95 Hertz.

The forearm natural frequency 4.5 Hertz and the absorber frequency equal to 5.95 Hertz, then

the forearm mass the absorber mass forearm mass we have taken 1.4 kg and absorber mass.

We have taken only 0.26 kg 0.26 kg that is 20.26 kg is taken. The cubic nonlinearity stiffness

K 3 equal to 0.1 Newton per meter cube K 3 equal to K 3 equal to very very small is taken

that is non-linear spring constant. 



And this mass ratio between the primary system and the absorber is considered to be 20, so

that is why this is taken to be 0.26 the controlling force F c 1 is valid from 0 to 0.05.
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So, in case of passive it is 0 and in other case it is more. So here you just see at omega equal

to omega n the response amplitude is very high, that is 25 degrees or tremor of 25 degree up

to 25 degree forearm and tremor can be observed this way the forearm will 25 up to 25 degree

it can move, but here you can see the response amplitude so by if it is shifted to this region so

by putting these absorber so the response amplitude can be now be in this region so which is

having this minimum amplitude.

So, the arm now you can observe that arm vibration is reduced in this region, so we have to

put the system in such a way that so it will vibrate in this frequency range. But, the absorber

amplitude you can see so the absorber amplitude so at these 2 peak region it is around 30, but



at this natural frequency near the natural frequency so it is around 10 degree. So the cubic

non-linear stiffness of the forearm and the bracelet are considered to be 5 percent and 4

percent of the linear stiffness.

So, the response amplitude of the forearm you can absorb decreases by 10 percent at the peak

or the peak the so you just see this Buki et al, so this comparison has been made with Buki et

al and the present case and it can be seen that the response amplitude of the forearm

decreased by 10 percent; however, with higher non-linear stiffness coefficient, the response

becomes unstable the response becomes unstable near the first peak.
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So, here the response become unstable. If we are using this effect of active force and optimal

design parameter in the frequency response, so you can observe that for a wide range so it can

be observed for that for a wide range we can control the maximum or peak amplitude.



Without absorber this red colour curve shows without absorber, so without absorber the

amplitude is around 60 degree.

So now, by putting with active so without absorber so with present case it is so this is present

absorber this one, so you can observe that for a wide range the response amplitude has been

reduced. So, it is reduced below 10 degree also the vibration, and if you are operating at a

frequency very higher value of that one, so it will further decrease to near to the 0 value.

It has been this work has been compared with that of the Buki et al. So in Buki et al, the

maximum response amplitude of the forearm reduces to 85 percent of the frequency range of

4 to 6 hours compared to without absorber the active vibration force shifts the peaks and

reduce the response amplitude of the forearm and for a wider band of operating frequency that

is 3.5 to 8 hours, with 18 percent and 62 percent reduction at the peak.

So, you just see so it has been reduced further from those obtained in the literature. So here,

you can see the peak value has been reduced here, so it is significantly reduced in this case.

With the optimal damping linear and non-linear stiffness of the bracelet and with the active

control force the response amplitude of the forearm reduces to 90 percent than the work of

Buki et al. So in this way, you can have a study of the non-linear vibration absorber for a

different purpose so you can see the response amplitude also.
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So, response amplitude clearly you can see so it is reducing significantly. So the active force

produces 64 percent of the vibration of the forearm, but induces many harmonics as shown in

this figure so it reduces many harmonics. 

And however, the response amplitude of the bracelet increases by 44 percent than without

active force, so the system in both active and passive cases so quasi periodic response as

observed in this figure so you can obtain this quasi periodic response so this is the Poincare

section zone so on.

So, in case of the quasi periodic response so if you plot the Poincare section so we can clearly

observe a closed loop so here so without so one is with the active force and without active

force so both the things you have can observe here.
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So this way you can reduce, so in this case we have seen why we can use this as a torsional

vibration absorber.
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And, we can effectively control the vibration of the forearm significantly by using a vibration

absorber. So we have used the system as a 2 degrees of system. So, also we have used a

torsional system also. Previously, longitudinally vibrating system, now we have studied a

torsional vibration absorber. Similarly, you can study the system with many different kinds of

application. 

So the system can also be modelled or the system can be modelled in this way also so where

you can use this non traditional active vibration absorber using, so previous case we have not

taken a damper so one can take a damper here. So in case of the non traditional you just see.



So, previously we have connected only one spring. So now, a non-linear spring is also added,

so this is previously we have used a damper here, between the secondary mass and the base

what one can use in addition to these damping, so one can use a non-linear spring also.

So the primary system previously we have considered only with this non-linear spring, so one

can add this damper also to the primary system. So one can do or one can study several

combinations of all these systems and depending on the application so all those things can be

effectively checked.

So, here a forcing of F 11 cos omega t is added. So here only harmonic excitation is

considered so previous case so we have taken both direct and parametric excitation. So in this

case we have not considering the parametric excitation we can perform the stability analysis

from closed loop solution.
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So, primary resonance condition can be considered. Already you know how to write down

this equation of motion. So write down this equation of motion and then dividing these mass

m 1 and m 2. 

So, I am taking these non dimensional time one can take, or taking only this way these

parameters, you can reduce this governing equation to this form where this they are

coefficient of these acceleration term that is x 1 double dot x 2 double dot r equal to 1 so here

omega 1 is considered to be k 1 by m 1 and omega 2 is taken as k r by m 2 and mu is this

mass ratio m 2 by m 1 zeta 1 is c 1 by 2 omega 2 m 1 omega 1 zeta 2 equal to c 2 by 2 m 2

omega 2.



So, you can take this parameter for example, alpha equal to k 2 y k r alpha 13 equal to k 13 by

m 1 alpha 2 3 equal to k 23 by m 1 F 1 equal to F 11 by m 1 and F c 1 equal to k r k c n nd 33

by m 1.
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So, taking different system parameter. Previously, we have used this method of multiple

scales. So here, I am showing you how you can use this harmonic balance method to solve

similar system. So when you are applying this harmonic balance method, so you can take

many terms or you can consider this way also.

So, when you are taking a number of terms actually the mathematical complexity will

increase, but in that case you must use the symbolic software package to derive this equation

motion rather than deriving it manually. So, you can take this x 1 tau equal to A tau cos

omega tau plus pi 1 tau. Similarly, x 1 tau minus tau d so you are if you are considering the



delay system so then x 1 tau minus tau d equal to A tau d cos omega tau minus tau d plus psi

1 tau minus tau d.

So, similarly x 2 can be considered as B tau cos omega tau plus psi 2 tau. So here you just

note unlike in these previous harmonic balance or previous cases where we use to consider

these A and B are constant, but here in this case we are considering A and B to be the time

varying term. So by considering these A and B to be time varying term. So, in this case you

can have a set of equations where you can perform the stability analysis simultaneously.

So, otherwise you have to again for after getting the response, again you have to perturb these

equations to find the stability of the system. So here, A tau B tau psi 1 tau and psi 2 tau are

considered to be slowly varying function of time tau. So as it is observed to be slowly varying

function of tau so then you can neglect this term.

For example, A double dot that is d square A by d tau square. Similarly, B double dot that is d

square B by d double d t d tau square all these terms. So, here you have a higher order so you

can neglect these term, because you are considering only slowly varying function of time so

now, by equating the coefficient of sin omega t and cos omega t separately.
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So, you can get these equations so you just see you can get a set of 4 equations so which

contain these terms so where these d 1, d 2, d 3 and d 4, d 5 so are these function of the

system parameter. So, you can reduce all the equation to this form now you can write this

thing in a matrix form where you have this d 1, d 2, d 5 so will be equal to you just see d 1, d

2 ok. So here what are the terms are used you just see.

So, this is constant d 1 is d 1 contains A into the c A A square all these terms are there d 1, d

2, d 3 and it is written d 5, d 1, d 2, d 3, d 5.



(Refer Slide Time: 45:43)

So, you can find this thing d 4, d 5, so these are the expression the first derivative of the

slowly varying amplitude and phases equal to A dot B dot, so your system you can write in

terms of so these into. So, it will be A dot B dot then psi dot and psi 1 dot psi 2 dot, so this

way you can write this equation. Or it will be a function of some parameters also maybe there

in the right hand side.
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You just see solving this equation so you can get this, so this is the expression for A.
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Similarly, the expression so response amplitude expression you got.
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So, now by you can see the response so without absorber so it is comparison is given here. So

you just see this curve is without absorber so if damping is considered. So you have two equal

peaks here. So, now these two are by other two different researcher and in the present case by

considering properly the system parameter, so you can observe that it is reduced significantly.

The response amplitude is reduced significantly. You can observe the time response also,

present case and Shen refer so you have a less settling time also. So quickly it settles to its

steady state that is the 0 oscillation.
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So, properly by using the system parameters so in this way so you can reduce the response

amplitude of any system.
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So, if you want to take so another system, I am it can show you so you can take this as a

continuous system so you can in this continuous system so you can apply force F cos omega t

and here this is the absorber part. So this system you can take as an assignment and you can

solve the system and you can find so. In case of the beam so you can take as a different

boundary conditions also. So this is a fixed beam is taken.

So, we can take this as a simply supported beam or cantilever beam also. So the first part is

nothing but the Euler Bernoulli beam equation. So rho A del square W by del tau square plus

E I del 4th by del x 4th, then other terms are there. So here are the forcing F cos omega t is

acting this weight of the system W is there then in addition to that so you have a secondary

system. So this is the equation of the secondary system and this is the equation of the primary

system.



So, the primary part you can see this is W, so where W is a function of both x and time. So

you have to reduce this system that is x W x and time to its temporal form first by applying

this Galerkin method and then you can solve the system.
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When you are applying this Galerkin method, so for example, W x t is considered to be pi x

into q it so depending on the number of modes you are considering your equation of motion

will be the coefficient of the equation of motion will be different.
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So, you can use this orthogonality principle by using these eigenvectors and then it can be

reduced to a simpler form.
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Then you can either use this method of multiple scale or use these harmonic balance method

so here harmonic balance method is used.
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So, you can find the reduced or you can find a set of equations so you just see. So now, we

have considered three modes, so by considering three modes we have A 1 dot, A 2 dot, A 3

dot and for the absorber we have this B. So, now you see this as reduced to a 4 degrees of

freedom system by taking three mode into account. So, depending on the number of modes

you can you are considering so the size of the matrix will be different. Now, you can solve

this equation to find the response of the system.

So you can solve this is a first order set of 1st order equation either you can use this

Runge-Kutta method to solve these equations to find the response or you can use some other

numerical techniques also to find the response so you can see these are function of the system

parameters.
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So, this way you can study this paper or this work by taking the primary system, the first 3

modes has been taken. So here the omega 1 is considered to be or taken to be 1 omega 2 is

taken to be 4 and omega 3 is considered to be 9 so you just see that is integer relationship

between these first 2 second and third modes. The absorber frequency is taken to be omega a

equal to 2, the mass ratio between the absorber mass and the primary system is taken to be

0.2, the external amplitude of excitation f is considered to be 1.

Parametric study undertaken by varying different cubic non-linear stiffness coefficient control

gain k P k V and k I for different feedback and boundary conditions of the system.
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So, that way you can study and I am not going to show you all the results.
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So, you can easily observe that you can by using different controlling parameter.
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So, you can easily control the response of the system so you can easily find the difference

between the linear and non-linear systems.
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And also, how you can control the response of the system. So, with this so we can conclude

this vibration absorber here and we will see some other applications of the non-linear

vibration. Particularly, the last three classes we are going to study, how we can control chaos

in the system. So we will take some chaotic system and study how to characterize the chaos in

the non-linear system.

And, then we will study how we can have different crisis and how we are going to control the

chaotic response, and of the system. So whether the chaotic response are helpful or useful or

for what applications they are useful and where they are not useful so all those things also we

are going to study. 

Thank you very much.




