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Stability and bifurcation analysis of periodic and quasi-periodic response

So, welcome to today class of Non-Linear Vibration. So, we are continuing module 7, where

we are discussing regarding this periodic, quasi-periodic and chaotic responses.

(Refer Slide Time: 00:43)

So, last class we have seen different type of response. For example; so, we have seen this

system with force excitation and parametrically excited system.



(Refer Slide Time: 00:59)

So, in both the cases so we have observed one can have this fixed point response, periodic

response, quasi-periodic response and chaotic response. In case of periodic response, the

response will reoccur or the response will repeat after a interval of time T.

So, it may be periodic, it may be two periodic or it may be multi-harmonic responses.

Similarly, in quasi-periodic response, which we are going to study today and chaotic response

we will see how the behaviour of the system is represented by this quasi-periodic and chaotic

responses today.

So, these three type of responses already we have seen this fixed point and periodic response.

And today class particularly we will be interested to study the stability and bifurcation of

periodic response. So, already we know how to study the stability of the fixed point response



by finding the Jacobian matrix. We can find the eigenvalue of the Jacobian matrix to study

the stability and bifurcation of the fixed point response.

Similarly, we have to study the eigenvalues of the monodromy matrix to study the stability of

the periodic response. So, this Jacobian matrix, so, for example, let us have a equation. So, in

this form that is x dot equal to f x comma semicolon M. 

So, M is the parameter, in this case we can find the Jacobian matrix by finding this first

derivative of this f. So, we can have the Jacobian matrix and after finding this eigenvalue of

the Jacobian matrix, then by checking whether it is in the left or right side of the s plane. So,

this is the real axis, this is the imaginary axis. 

So, by checking the eigen values we can tell whether the system is stable or unstable. So, for a

stable system the eigenvalue must lie in the left hand side of the s plane. And if some of the

eigenvalues are lying on the right hand side of the s plane then the system is unstable.

Similarly, we can find the monodromy matrix. 

So, to find the monodromy matrix so, starting from some initial point so, we have to find the

response after one cycle. So, after getting this response after one cycle, then we can construct

the monodromy matrix and by finding the eigenvalue of the monodromy matrix so, we can

find the stability of the system. 

So, there we are studying or we can find a unit circle if the eigenvalues or the Floquet

multiplier are lying within the eigen within this unit circle, then the system is stable otherwise

the system is unstable. So, this part we will see today again and from these things we will

study how to carry out the bifurcation analysis in case of these periodic response.
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So, already we know the bifurcation of the fixed point response. So, we have static

bifurcation and dynamic bifurcation. So, in case of static bifurcation, so, we know so, we

have this saddle node bifurcation, pitchfork bifurcation and transcritical bifurcation.
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And, in case of this dynamic bifurcation we have the Hopf bifurcation, so, where we may

have the supercritical Hopf bifurcation or the subcritical Hopf bifurcation.



(Refer Slide Time: 04:51)

So, in periodic response also we have understood regarding the self excitation, self excited

system like this Van der Pol equation so, where it leads to a limit cycle. So, either you start

from the outside or from the inside of the circle. So, always it will go to this limit cycle.



(Refer Slide Time: 05:09)

Also further we know, so, we can see what is the conditions for the existence of the closed

orbit. To rule out the existence of the closed orbit following rules or theorem may be used.

So, closed orbit are impossible in gradient systems. You should note that the closed orbits are

impossible in gradient system. A system which can be written in this form. 

So, in this form if you can write a system that is x dot equal to minus del V x for some

continuously differentiable single valued scalar function V x it is called a gradient function.

So, let x dot equal to f x, y and y dot equal to g x, y be a smooth vector field defined in the

phase plane.

So, for this system to be a gradient system then del f by del y. So, del f by del y equal to del g

by del x. So, in that case a system which can be written in the form of x dot equal to minus



delta V x for some continuously differentiable single valued scalar function. So, it is called a

gradient function and the closed orbit are impossible in case of the gradient function.

Similarly, another condition that is known as the Dulac’s criterion. So, here this if x dot equal

to F x be a continuously differentiable vector field defined on a simply connected subset R of

the plane. If there exist a continuously differentiable real valued function g x such that del dot

g x dot has one sign throughout r then there is no close orbit laying entirely in R.

A system for which a Liapunov function can be constructed will have no closed orbit. A

system for which a Liapunov function can be constructed will have no closed orbits. So, these

are the conditions you may have to check. So, where the closed form solution or close loop

cannot exist or you cannot find a closed orbit in all these cases .
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Again, we have studied regarding this relaxation oscillation. So, in case of the relaxation

oscillation we will have two different time period. So, in one time period it will slowly move

and in the second case it will move with very high speeds. So, it can be very very clear from

the velocity diagram.

(Refer Slide Time: 07:45)

So, for example, in this velocity diagram; so, you can find two parts. So, in one part it is

slowly moving and in another part it move with fast motion. So, two time scales are there,

with one with slow motion and one with the fast motion. These are known as relaxation

oscillation. So, in case of the Van der Pol oscillator by taking this lambda value very high

value so, we can get this relax relaxation oscillation.



(Refer Slide Time: 08:13)

Similarly, we have studied regarding the system with internal resonance. So, though we are

very much acquainted with external excitation leading to external resonance condition,

external excitation so, this leads to resonance condition.

So, in this case we have studied this internal resonance. So, in case of internal resonance the

second mode in this particular case we have studied to be so, the relation between the second

mode and first mode or the ratio between the second mode and first mode is 3 is to 1. So, that

is why it is known as 3 is to 1 internal resonance condition or 1 is to 3 internal resonance

condition.

So, if you write it in terms of 1 to 2, so, it will be 1 is to 3. So, generally it is possible in case

of system containing cubic non-linearity. The system containing cubic non-linearity also you



can have for example, if you take multimode for example, omega 3. So, let you take this three

mode, then you can have 1 is to 3 is to 5, 1 is to 3 is to 9.

So, these type of internal resonance conditions also you can have. So, these are known as

three mode interaction. So, this is two mode interaction, this is three mode interaction;

sometimes in many paper you can find this omega 2 is to omega 1 equal to 1 is to 1 also. So,

in that case it is 1 is to 1 internal resonance conditions particularly 1 and 1 is to 1 internal

resource conditions will occur. 

So, if you have a coupled beam or you can have a square beam. So, in case of the square

beam so, in both the direction so, it is natural frequency will be same. So, this omega 2 is to

omega 1 maybe can be written in terms of 1 is to 1 in that case. In this base excited system so,

last class we have studied we can observe many different type of bifurcations.

(Refer Slide Time: 10:43)



For example, so, we have seen in this principal parametric resonance conditions, we have

seen the parametric instability region, where this additional kings are observed due to the

presence of internal resonance otherwise you can have only one loop.

So, due to the presence of internal resonance condition so, this portion, so, in this portion, so,

you can have several wings and then it moves like this you have observed several or alternate

stable and unstable regions of instability in this case due to the presence of internal resonance

condition.

(Refer Slide Time: 11:19)

So, then you have seen different let us see different bifurcations, origin of different

bifurcations also you can note, we can have these supercritical pitchfork bifurcation. So, you



just see this is the pitchfork bifurcation. So, in the bifurcation point another branch generally

starts. So, this is the starting point or the root for the non-trivial; non trivial branches.

So, here in the super critical and sub critical pitchfork bifurcations you can get the non trivial

branches out of the trivial branch. So, in case of the saddle node bifurcation, so, you just see

so, we have two saddle node bifurcations here. So, this saddle node bifurcation, so, here you

can observe stable point or stable solution gives rise to unstable solution.

And, in case of the Hopf bifurcation you can get, so, from the stable periodic or stable fixed

point response you may get stable periodic response or unstable periodic response. So,

depending on that thing so, you can have the subcritical pitchfork bifurcation or supercritical

pitchfork bifurcation.
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You can plot the frequency response or you can plot the force response plots also.

(Refer Slide Time: 12:32)

So, this is a force response plot where you have plotted the response amplitude versus the

amplitude of the forcing. When you are plotting the amplitude of forcing so, you can have

different. So, here you can have different bifurcation points also, you clearly you can observe

different bifurcation points. This is saddle node, this point is saddle node and this is also a

saddle node bifurcation point.

So, you can distinguish from the shape itself or by doing this eigenvalue analysis also you can

distinguish the saddle node bifurcation point from other bifurcation point. At the bifurcation

point the eigenvalue must be 0 and after the bifurcation point. So, you can have either a the



real part may be negative or positive depending on the system whether it is going to be stable

or unstable.

So, here you can have Hopf bifurcation point. So, at the so, you can see this is the Hopf

bifurcation point. So, we we are having different bifurcation points and you have seen in the

presence of Hopf bifurcation point or due to the presence of Hopf bifurcation point. So, we

have the periodic response emanating from that position.

(Refer Slide Time: 13:54)

So, we may have a single period, two period or this period doubling route to chaos. So, today

class we will see how this period doubling route to chaos and what is the relation between

these two periods also.
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Today also, we will study how to plot this Poincare section. So, in this case this Poincare

section has been plotted for the periodic response and clearly you can see this is single period,

then we have two period, then four period and this is the period doubling route to chaos. So,

finally, a chaotic response has been observed in this type of system.



(Refer Slide Time: 14:36)

We will see this attractor merging crisis and also these in this system. So, you just you have

noted that we have observed this quasi-periodic response also.
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And, in Duffing equation also, last class we have studied regarding the periodic and also

chaotic responses [noise].
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So, today class particularly we will be interested to study the stability and bifurcation analysis

of periodic response. Previous class, you have seen different type of fixed point, periodic,

quasi-periodic and chaotic responses also. So, let us study the stability and bifurcation

analysis.

So, already you know how you can tell whether a system is stable or not. So, if you slightly

perturb the system, if slightly perturb the response of the system it becomes unbounded the

response grows and it becomes unbounded. Then the response is unstable, but if it come

backs to the original position, then the system is stable. In case of the periodic response like

the fixed point response we can have the bifurcation also.

So, in case of bifurcation or we tell a bifurcation occur if there will be qualitative or

quantitative change either in the number of solutions or in the qualitative that is the stability



change. So, if there is change in number or change in the quality of the solution then we can

tell there is a bifurcation. 

So, number change means so, initially let it has a single solution and after the bifurcation

point it leads to two or three solutions. So, in that case we can tell the system has a

bifurcation point. Similarly, if there is a change in stability, so, initially it is stable now it

becomes unstable the branch becomes unstable that critical point also we can tell a

bifurcation point. 

So, similar things we have observed in case of the fixed point response and in periodic

response already we are familiar with the Floquet theory and by using the Floquet theory we

know that we can study the stability of the system. 

So, here by finding the eigenvalue of the monodromy matrix, so, we can draw the unit circle.

So, this is the unit circle drawn here with this real and imaginary parts of the Floquet

multiplier. So, that is lambda, we have three different conditions here or we will see what are

the difference conditions. So, if the root that is lambda eigenvalue lies inside this unit circle,

then the system is stable. 

So, if it is outside the unit circle the system is unstable; if it is on the circle then either it can

be plus 1 or minus 1. So, if it is plus 1, then we have period t and if it is minus 1, so, we have

a period 2t depending on the when it is on the circle we can tell that is on the transition curve.

Taking this transition curve we can plot the parametric instability region. 

So, already I have shown one such parametric instability region in case of a base excited

cantilever beam. When one of the Floquet multiplier is located on the unit circle in the

complex plane, the periodic solution is known to be hyperbolic periodic solution if only one. 

So, if only one of the Floquet multiplier so, out of depending on the degrees of freedom so,

we can have number of Floquet multiplier; if one of the multiplier is located on the unit circle

then it is called hyperbolic periodic solution. So, if two or more Floquet multipliers are



located on the unit circle in the complex plane then the periodic response is known as

non-hyperbolic. So, this is known as non-hyperbolic periodic response.

(Refer Slide Time: 18:51)

Before going further, we should know how to construct the Poincare section. So, what is the

Poincare section? How we can section and we can reduce the dimension of the system. So,

for example, we know let us have this x versus t curve that is response and we have a sin

curve. In this case let us start with this point. So, let we have started this at this point. So, we

know this to this is one period . 

So, this is a periodic system, sin if it is written sin or cosine. So, this is a periodic system. So,

for example, if I will write let x equal to 5 sin 5 sin 2t. So, in this case this omega equal to 2

implies this time period equal to 2 pi by omega. So, 2 pi by omega that is 2 pi by 2. So, this

becomes pi. So, this time period becomes pi second in this way you know the time period.



So, after you know the time period this curve you have plotted this x versus time response

plot you have plotted. So, how you have plotted? So, you have taken different value of time

and you have found the response x. So, you have found the response x and you have plotted

this response plot.

So, similarly if you want to plot this velocity response, so, you can plot this x versus t, x and

x dot. So, this t x by taking this t x you are plotting this diagram. So, now, you know. So, let

us start. So, t equal to for example, let us start t equal to 0. So, 0 second, 1 second, 2 second.

So, that way so, we can have different time we can write by finding the time response at

different points.

So, similarly is corresponding to x equal to if you have sine, so, this is 0. So, that way you can

have different or let me write this is. So, I can have different time and I can find for a given

value of omega. So, I can find these t x and x dot. Let me start for a t equal to 0 as the starting

point. So, this is the starting point. 

So, that means, this is the starting point and after one cycle, so, after one cycle the t I know

what is the cycle of this. So, after one cycle again I can find this point. So, corresponding to

this, so, I can find after one cycle let this is after one cycle. So, this is the response after one

cycle. Then I can find this x and x dot. So, if I will plot this x versus x dot taking all the

points after one cycle. 

So, this is after one cycle, this is point after one cycle. Similarly, you take all these points

after one cycle what you can get? So, in this particular case, so, you just see. So, you will get

only this point 0, 0 point. x equal to for example, x equal to this. So, you can get this x dot

equation will be equal to 5 into 2 cos 2t. So, here this is equal to 10 cos 2t.
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So, that means, we are finding the point. So, we are finding the locus of all points which are

an interval of time t; so, that means, t we are replacing. So, replace this t by t plus T. So, again

another cycle, again another cycle. So, that way you can go on finding here what you have

you have seen. So, sin. So, this is equal to in this case sin 0 equal to 0. So, after one cycle also

it is 0; after one cycle again also it will be 0.

So, let us see the third. So, this is again 0, but what will happen to the x dot? Similarly, x dot

will be. So, at t equal to 0 x dot becomes. So, cos 2t this is 0, so, this becomes 10. Similarly,

after one cycle it will be 10. So, your x will be. So, if I am starting this is let this is the 0

point. So, then this is 0 and this is 10. 

So, this is the point you are getting. So, every time you are sampling it so, you will get the

single point 0 and so, you will get the single point 0 and 10. This is known as the Poincare



section. So, that means, you are sectioning this thing. So, you are sectioning or sampling this

response at a time period t. 

So, let us take another example. So, in which let our x can be written or x t equal to x t equal

to 5 sin t plus 5 sin t plus 10 sin 5t. So, in this case we have two time period. So, we have

omega 1 equal to so, we have two omega. So, we have omega 1 equal to omega 1. So, here

omega 1 equal to 1 and omega 2 equal to 5 omega 2 equal to 5.

So, in that case as omega 1 equal to 1 and omega 2 equal to 5. So, this gives rise to T that is

time period equal to 2 pi by omega that is 2 pi by 1. So, 2 pi by 1. So, in the first case it is 2 pi

by 1 2 pi by 1 equal to 2 pi; in the second case, this becomes 2 pi by 5. So, in the second case

this becomes 2 pi by 5. So, it is T equal to 2 pi by 5. So, you just see you have two time

periods. So, one is 2 pi and other one is 2 pi by 5. So, this is 360 degree. 

So, 2 pi is 360 degree by 5. So, one is 360 degree by 5 and other one is 360 degree. So, what

you can do? So, you can take the lowest time period that is T that is 2 pi by 5 and sample it.

When you sample it ah 2 pi by 5, so, what you can find? If you plot this x versus x dot x

versus x dot you will get two points on this thing. So, these two periodic, so, now, you just

see, so, you have a response with two periodic. 

So, these two periodic response if you plot by using this x versus x dot, so, you just see it is

reducing only to two points. So, instead of representing the whole time period whole time the

response with whole time we can represent the same value or same thing, same time response

by using this Poincare section with only just two points. So, this is the Poincare section. So,

here also we have plot the Poincare section if we have a single period; here we have plot the

Poincare section with two period. 

So, when we have two period, we have only two points on the Poincare section. Similarly, if

we have a response, so, let me add another number. So, let it is 20 sin 10T 20 sin 10T. So, in

that case another time period I have added and this T 3 or now the T will be. So, here the



omega equal to 10 as omega equal to 10 as omega 3 equal to 10. This is becomes 2 pi by

omega. So, that is 2 pi by 10 you can sample it. 

So, you can 2 pi by 10. So, you can sample it with 2 pi by 10. So, previously initially in the

first time you have sampled it with 2 pi. So, t equal to, so, in this first case if you have sin 2t,

so, here you have sample it with t pi if it is only t then you have sample it by . So, only t sin t

let you have only 5 sin t then in that case you have to sample it omega equal to 1. 

So, time period will be 2 pi by 1 that is 2 pi and now, when you have two then you have to

take the minimum time. So, out of these three, so, this is the minimum time you have taken.

So, 2 pi by 10. So, by taking this minimum time so, if you sample it, so you can see so you

have one additional. So, you have one additional point. So, here you got three points. So, this

is three periodic similarly you may have four periodic also. 

So, for four periodic four points you will get. So, later will see if the ratio instead of this

relation so, here what you have seen this omega 2 by omega 1 equal to 5. Similarly, omega 3

by omega 1 equal to 10; omega 3 by omega 2 equal to 2 here the ratio are integers. So, when

the ratio are integers so, you are getting periodic response. 

So, you can get periodic response, but when the ratio are irrational number, no longer it will

be periodic. So, in that case we will see the response will be quasi periodic. So, like the fixed

point response, so, in this case also so we have three different bifurcations if it is crossing the

limit cycle or crossing the unit circle through plus 1. So, if the roots are crossing these unit

circle through plus 1. 

So, this way so, if it is crossing through plus 1, so, this is plus 1. So, we will have three

different type of bifurcation – one is cyclic fold bifurcation, symmetry breaking bifurcation,

then the transcritical bifurcation. So, we have cyclic fold, symmetry breaking and transcritical

bifurcation. Cyclic fold bifurcation is similar to the SN that is saddle node bifurcation. So, we

will see that thing if the Floquet multipliers leaves the unit circle through minus 1. 



So, this is lambda equal to minus 1. So, lambda equal to minus 1. So, if it crosses this unit

circle through minus 1, then you can have in this case you can have this period doubling

bifurcation. So, period doubling bifurcation. So, if it is moving through plus 1, so, either we

can have this cyclic fold cyclic fold or symmetry breaking or transcritical bifurcation. 

Also it may leaves the unit circle through this as complex conjugate, it may leave the unit

circle through complex conjugate. So, in that case we can have the secondary Hopf or

Neimark bifurcation. So, if two complex conjugate Floquet multiplier leave the unit circle

away from real axis, the resulting bifurcation is called secondary Hopf or Neimark

bifurcations. 

In case of periodic response similar to the fixed point response we have different type of

bifurcation. So, you have seen so, when it is leaving through this plus 1 so, then it is known

as cyclic fold, symmetry breaking or transcritical bifurcation. So, when you see the shapes so,

clearly you can understand these different type of bifurcations.
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So, let us see the cyclic fold bifurcation. Here you are just plotting the amplitude either you

plot the amplitude of the response or you just plot take the Poincare section and plot it. Before

the bifurcation point let A is the bifurcation point. So, before the bifurcation point A, one

observe a stable periodic and unstable periodic response of the system. 

So, you just see you just take any point here so, this is before A. So, this is before A point. So,

before A point so, you have two periodic response. So, one is the stable periodic and one is

the unstable periodic. So, you have plotted only the amplitude part of this thing.

So, amplitude part so, you just see here you have this is the amplitude; that means, so, you

have a periodic response if you plot the phase portrait corresponding to different different

points you can see what is the response or how the periodic responses are there. The size of



the periodic so, this shows the amplitude of the periodic response every point on this thing

shows the amplitude of the periodic response.

So, before this bifurcation point you have both stable and unstable periodic response and after

this bifurcation point A, you just see so, there is no neither stable or unstable periodic

response exist after a in this type of solution or in this type of cyclic fold. So, this is cyclic

fold or turning point bifurcation cyclic fold or turning point bifurcation, after the bifurcation.

So, the solution disappears. So, there is no solution.

If there is no solution after this bifurcation so, the response so, if you increase this parameter

that is the system parameter further, then it will jump to an infinite attractor at infinite.

Sometimes it may leads to chaotic response also. In some cases a chaotic response may be

observed after the cyclic fold bifurcation and this behaviour of transition from periodic to

chaotic response is termed as intermittent transition of type 1 to chaos.

So, this is intermittent transition from periodic to chaotic or from so, if you reduce the value

of mu then from chaotic to periodic you can get. So, this type of transition is known as

intermittent transition of type 1 to chaos. Hence this type of bifurcation are dangerous

discontinuous and catastrophic type and the system should be operated below this critical

point. So, it should not be operated after A, which will leads to chaotic response.
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Similarly, we can have symmetry breaking. In symmetry breaking bifurcation, so, we can

have two different type of bifurcation – one is super critical and super critical symmetry

breaking and second one is the sub critical symmetry breaking. So, in case of super critical

symmetry breaking so, before the bifurcation point, so, you just see A is the bifurcation point.

Here we are plotting the amplitude versus the system parameter mu; mu is the system

parameter.

So, before bifurcation point A, there exist only single stable periodic response. So, this is

single stable periodic response and after bifurcation so, we have three responses are there. So,

three periodic solutions will be there. So, out of which two are stable and one is unstable.

This stable periodic solution will continue as an unstable periodic solution and at a point two

more stable periodic solution will be emanating from point A or starting at this point. The



resulting so, you can see. So, before bifurcation so, you have a periodic response and after

bifurcation so, this is the phase portrait we have plotted. So, after this bifurcation, so, if you

see so, we have three different periodic responses.

So, for periodic responses it is a closed loop. So, if you plot this x versus x dot it is a closed

loop. After the bifurcation so, we have two stable. So, this is stable. So, this is stable periodic

solution and we have one unstable periodic solution. So, as from a stable branch we are going

to another stable two stable branches this is known as supercritical symmetry breaking

bifurcation.

So, this is a continuous bifurcation, but we may have the other type also. So, initially we will

have three type of solution three – one is stable and other two are unstable periodic solution

and after the bifurcation point we have only a single unstable periodic response.

Initially, we have a stable periodic and two unstable periodic response and finally, after

bifurcation point B we have only unstable periodic response. So, in that case we called it as

subcritical symmetry breaking bifurcation and the subcritical bifurcations are always

dangerous bifurcation because this unstable state cannot be achieved.

As we are not able to achieve this unstable state it will jump to an attractor at infinite or it

may leads to some chaotic response. This way the symmetry breaking bifurcation. So, you can

observe this symmetry breaking bifurcation in this particularly in this multi degrees of

freedom system.
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So, in case of multi degrees of freedom systems, for example, in the case of cantilever base

excited cantilever beam subjected to base excited cantilever beam with an arbitrary mass

attached mass. If we consider the combination parametric resonance condition, that is, by

taking this omega equal to omega 1 plus omega 2 so, you can observe this periodic and this

type of bifurcations, this type of symmetry breaking bifurcation or and the turning. 

So, this turning point bifurcation cyclic fold or turning point bifurcation. So, you can refer the

paper refer our paper in Journal of Sound and Vibration on periodic and quasi-periodic

response. So, you can find that thing similarly we have a transcritical bifurcation similar to

that in case of a fixed point response. 

So, in case of the transcritical bifurcation, here if you plot this r versus mu mu versus r so,

initially we have this periodic response and stable periodic and this is stable periodic and



unstable periodic response. We are plotting only the amplitude; do not get confused between

this r. So, r represent the amplitude of the response.

What is amplitude of the response? So, if you have a periodic response so, this is the

amplitude of the response. So, the amplitude of the response so, this is amplitude of what the

response versus mu; mu is the system parameter critical parameter based on which you are

changing the system parameter.

Before the critical point A, so, the system has both stable and unstable periodic response and

after the bifurcation point. So, we can note that the stable branch change to unstable branch

and the unstable branch change to stable branch. So, we have both unstable and stable after

the bifurcation. What they interchange? There the branches interchanging their stability

conditions qualitatively.

So, you just see the number remain same number before the bifurcation we have two solution

and after the bifurcation also we have two solution here. The number remaining same, but the

quality of the solution that is the stability of the solution changes after point A. A stable

branch becomes unstable and one unstable branch becomes stable branch after bifurcation.

So, this bifurcation is known as transcritical bifurcation.
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Similarly, you can study the period doubling or flip bifurcation. If it is passing through the

lambda equal to minus 1, so, if the roots are passing through the unit circle through minus 1,

so in that case we can have the period doubling or flip bifurcation. A stable periodic solution

branch that exists before the bifurcation point continues as an unstable branch and a new

branch of solution having period doubled that of the original solution originates.

If a stable branch originates, then the bifurcation is supercritical and if a branch of unstable

period doubled solution is destroyed, it is called subcritical bifurcation. In case of the

subcritical so, unstable double period solution will be destroyed and in case of supercriticals a

stable periodic solution will originate. So, in that way so, you can study the period doubling

or flip bifurcation.



Similarly, this period doubling so, with further change in the system parameter generally

undergoes another period doubling. So, one can get four period. Similarly, one can increase

the 4 period to 8 period and 8 period to 16 period and that leads to period doubling route to

chaos.

So, we can have the secondary Hopf or Neimark bifurcation. So, in this type, after the

bifurcation, the bifurcating solution may be periodic or two periodic quasi-periodic depending

on the relation between the newly introduced frequency and the frequency of the original

periodic solution that existed before the bifurcation. Here also one may have sub critical or

super critical bifurcation.

In this way you can have different bifurcations in case of the periodic solutions also. So, in

given a periodic solution, so, you have to find the Floquet multiplier by finding the

eigenvalue of the monodromy matrix and then you can study by changing the system

parameter what type of bifurcations will occur.
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So, let us see what we mean by quasi-periodic response. So, let us take this example for x t

equal to x 1 sin omega 1 t plus x 2 sin omega 2 t. So, if we are taking for example, omega 1

equal to 2 and omega 2 equal to 2 root 2, here the ratio between omega 2 and omega 1 is root

2, omega 2 by omega 1 equal to root 2. So, this root 2 is an irrational number.

So, if you plot this x versus t, so, you can clearly observe that the response are not periodic.

So, they are a periodic. So, they are known as a periodic response or quasi-periodic response.

In this case if you plot the phase portrait, so, you can x versus x dot so, you can get a curve

similar to this.

Sometimes you may get a curve similar to this which is known as torus. So, you will have two

circle and these two circles are connected by so these two circles are connected by this, this



way. These are known as torus. So, if you plot this x versus x dot so, you can get the torus

also .

If you draw the Poincare section so, in this case how to draw the Poincare section? So, here

you just see. So, you have two frequency. So, time period so, T 1 will be equal to 2 pi by 2

and this is T 2 will be equal to 2 pi by 2 root 2 and taking this lower time period so, we can

sample the response. Taking the lower time period we can sample this response and that

sample things if we plot then so, you can get this plot.

So, you just see the Poincare section is a closed curve. So, in case of the quasi-periodic

response the Poincare section is a closed curve. Previously we have seen the Poincare section

for a periodic response contain few numbers. So, if it is single periodic only single point will

be there, if it is two periodic two points will be there and if it is multi periodic multiple

number of points will be there, but it will not be these points will not be placed in a closed

curve.

But, in case of a quasi-periodic response the points will be placed in a closed curve and easily

you can distinguish between this periodic quasi-periodic and later we will see in case of the

chaotic response so, it will fill up this space. If I have a chaotic response, the Poincare section

will fill up the whole space. In that way you can distinguish between periodic quasi-periodic

and chaotic response. Let us take another example. So, here we have taken 2 and root 2 x 1 x

2 we have taken equal to 10.
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Similarly, if we can take this for example, x t equal to 5 sin 2t plus sin 2 root 2t. So, similar

curve we can get and you can see this Poincare section.
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So, the Poincare section between x and x dot so, you can find this. Similarly, you just take.

So, here you have taken the ratio equal to root 2 also in this curve you just see you have taken

the ratio equal to 2 root 5 by 2; so, that is equal to root 5. So, here the ratio is taken to be root

5. So, that itself is an irrational number also. Similarly, here it is plotted 2 root 11 by 2. So,

this is root 11. So, that is also an irrational number.

So, you just see you are getting different type of curves, different type of phase portrait. So,

this middle line is x versus x dot. So, x versus x dot is the phase portrait. So, if you plot this

phase portrait, so, you just see you are not getting a curve similar to what you get in case of

this periodic response. So, this is x versus x dot. Similarly here so, you have x versus x dot.

So, how to generate this type of system in vibrating system particularly? So, if you are

interested in a vibrating system for example, let us take the spring mass damper system or the



simple spring mass system spring mass damper system subjected to multi harmonic

excitation.

So, this is m; let it is subjected to F equal to F equal to 5 sin 2t plus 5 sin 2 root 11 t. So, you

know by applying the superposition rule. So, we can find the response. So, this is K, this is C

as this is a linear system. So, for first we can find for 5 sin 2t what is the response and then

we can find for 5 sin 2 root 11 t. So, in case of 5 sin 2t, so, you know the solution will be F by

K.

So, that is solution is equal to F by K divided by root over 1 minus r square 1 minus r is

omega by omega n 1 by omega by omega n square whole square plus 2 zeta omega by omega

n whole square. So, this is the formulas we already you know, first we can find for 5 sin 2t

and then we can find the response for 5 sin 2 root 11 t.

So, finding both the relays both the response so, the solution will be. So, this is the; this is the

x. So, x equal to this; so, we can have x 1. So, for the first one, we have x 1. So, we have x 1

sin 2t plus 5, 5 1 then for the second part this part. So, this will be x 2 sin 2 into root 11 plus 5

2. So, that way we can find the solution. So, where 5 1 and 5 2 are also can be obtained from

this response. This way physically you can realize the response.

So, though I have given you the example of a linear spring and damper system, so, already we

have studied regarding this Duffing equation. So, in case of the non-linear systems also you

can study similar thing. So, in that case so, instead of you just note that in case of the

non-linear system, so, as you have different resonance conditions so, by just changing the

simple this response forcing amplitude or other system parameter so, you can see your

resonance conditions will be different.

As resonance conditions are different, so you can have different solutions. So, the solution

will not be unique like in case of the linear system. So, you cannot apply the superposition

rule so, in case of a non-linear system. So, when it is a linear system so, you can apply the

superposition rule, but when it becomes non-linear so, you have to particularly check what



type of resonance will be there and based on the resonance condition so, you have to find the

solution or the response.

So, let us see another curve also. So, the same thing what I told you just now; so, this is a

system with cubic non-linearity x double dot plus x plus 2x dot plus x cube equal to cos 2t

plus cos 2 root 2t. So, you can divide into two first order equation. So, for the first order

equation x 1 dot let us take equal to x 2 and second equation x 2 dot equal to minus x plus 2x

dot plus x cube plus 2 cos 2t plus cos 2 root 2t.

And, taking that thing so, we can plot this x versus t and x dot versus t. So, that is x dot

versus so, x dot versus t. So, this is the displacement versus time, this is the velocity versus

time. So, from that thing, so, we can plot we can plot the phase portrait and the time response

phase portrait and the Poincare section.

This is given as an assignment to you to plot the phase portrait and these Poincare section of

this system. So, Poincare section so, you can see how to draw this Poincare section? So, for

drawing the Poincare section you can start for example, start at some position you can start at

here.

So, then after t equal to 2 pi by 2 pi by 2 root 2. So, you can take the time 2 pi by 2 root 2 so,

one time period equal to 2 pi by 2 another is 2 pi by 2 root 2. So, the lowest one is 2 pi by 2

root 2. So, by taking this lowest time period so, we can sample it. So, you can note that by

sampling this thing you may not find the same point after this time period 2 pi by 2 root 2.

How many points you are getting after this thing? So, you have to plot it. So, you can sample

that thing. So, by sampling this thing so, you can plot this x versus x dot which will give the

Poincare section in this case. So, you can see in this case, you will get you are going to get a

closed curve ok.
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So, this way you can study the quasi-periodic response also. So, particularly you may be

interested to know the rotational number. For example, just now we have seen. So, we can

take a starting point for example, this is the starting point we have taken. So, let us go round.

So, this is the Poincare section. So, we have plotted the Poincare section. We have taken the

Poincare section of Poincare section in x and x dot plane. So, let i k minus 1th and i k kth

iterates bracket this x after we go k times the close loop. So, you go after going for example,

after going first time we may not get this point again. So, second time we may not get this

point again. So, late after 9th iteration, we are getting the same point.



So, then we can tell that so, then in that way so, we can find the winding time. So, this

winding time will be equal to limit k tends to infinite i k by k. So, limit k tends to infinite i k

by k. So, let us find all the times all the iteration for which we are bracketing this point.

So, after finding for example, as k tends to infinite, so, this i k by k then we can find the

winding time. So, after getting this winding time actually this rotational number rho equal to

1 by T omega rotational number equal to 1 by T omega. So, this is this can be given by 1 by 2

pi limit k tends to infinite, i equal to 1 to k alpha i by k. So, this way you can find or simply

you can find this 1 by T omega.

So, from the angle also you can find so, i k. So, you can take this point and this point find this

angle which is bracketing this. So, from that thing this alpha angle can be obtained and from

that you can study this rotational number. In a simpler way, so, rho equal to 1 by t omega you

can find, which will give you the rotational number.
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So, let us see what we mean by this chaotic response. So, briefly we will study this chaotic

response and next class we will fully devote for the chaotic response. A chaotic solution is a

bounded steady-state behaviour that is not an equilibrium solution or periodic or

quasi-periodic solution. So, it cannot be a fixed point response, periodic response or a

quasi-periodic response. 

So, chaotic attractors are complicated geometrical objects that possesses fractal dimensions.

So, we can see the shapes of chaotic attractor so, it can be loops like fractal self similar

objects. So, unlike spectra of periodic and quasi-periodic attractor which consists of a number

of sharp spikes, the spectrum of chaotic signals have a continuous broadband character. 

So, in case of periodic response we will get single periodic will get one spike, for two

periodic we will get two spikes. So, that way we can have the sharp spikes in case of the



periodic and quasi-periodic spectrum. But, in case of chaotic signal a continuous broadband

character will be available.

So, in addition to the broadband components the spectrum of a chaotic signal often contains

spikes that indicate the predominant frequencies of the signal. So, it is very sensitive to the

initial condition. So, that is known as the butterfly effect. So, if you change this initial

condition so, you can have it will go to a different chaotic character.

A chaotic motion is the superposition of a very large number of unstable periodic motion. So,

thus a chaotic system may dwell for a brief time on a motion, that is, very nearly periodic and

then may change to another periodic motion with period that is k times the preceding motion. 

So, by changing this initial condition this k also can be changed, so, you can reach to another

chaotic attractor. This constant evolution from one periodic motion to another produces a

long time impression of randomness while showing a short term glimpse of order.
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So, we can see for example, let us take this period doubling route to chaos. So, we have seen

in case of for example, you just take the Duffing equation or the case what I have shown in

case of a parametrically excited system. So, initially we have single period, then it is two

period, then this is four period and then eight and sixteen and then it will do two chaos.

So, we have different route to chaos. So, one such route just now I have shown you. So, that

is known as period doubling route to chaos, then quasi-periodic route to chaos and

intermittency and crises route to chaos. So, all these things we will study in the next class.
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So, in the meantime, so, you can plot these Rossler equation. So, it is plotted here. So, here

also you can see for different system parameter. So, it is periodic, then two periodic, then the

period goes on increasing and finally, for this value of c for this value of c so, you can see the

response is chaotic. So, next class we will see how what is the relation between so, when this

bifurcation occur in case of the period doubling bifurcation.



(Refer Slide Time: 57:34)

So, particularly I will tell you about this Feigenbaum number. So, this is a constant number

universal number that is that value is 4.66292016. We will study regarding this Feigenbaum

number and also we will study other different routes to chaos. So, next class will study more

on these chaotic responses.

Thank you.


