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Analysis of periodic, quasi-periodic and chaotic systems

So, welcome to today class of Non-linear Vibration. So, we are going to start the module-7.

So, in this module, so we are going to study regarding the periodic, quasi-periodic and chaotic

responses. So, we will study the stability and bifurcation of the periodic response, different

type of periodic responses also we are going to study. Then regarding the quasi-periodic

response and chaotic response we will briefly study. 

So, we will characterize or we will see how we can distinguish between this periodic,

quasi-periodic, and chaotic responses also. And we will study the time response, phase

portrait, and also this Poincare section and the lyapunov exponent to characterize the chaotic

response. Today class we are going to study briefly the introduction to periodic,

quasi-periodic, and chaotic response. 

So, already we have seen so different type of systems, for example, we have seen the duffing

oscillator we have seen this Van der Pol oscillator also, and we have taken this Mathieu Hill

type of equations in the previous classes. 

Today class so we will see how we are generating these periodic response, quasi-periodic

response, and chaotic response in different type of systems. Particularly in the previous

classes, we have seen about the fixed point response. Now, our objective is to see this

periodic, quasi-periodic and chaotic response. 
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We have discussed regarding this forced excitation and also parametrically excited system.

For example, in case of the forced excitations, we have a spring mass system. So, in the

spring mass system, so if we have applied a force, so this is the longitudinal vibration of the

spring we have seen. 

Similarly, we have taken a pendulum. So, the motion of the pendulum itself is a forced

excited system. But if the platform of the pendulum is moving up and down, in that case we

will get a equation which is similar to that of Mathieu Hill type of equation. And those

equations are known as parametrically excited system. 

So, in case of forced excited system, the force and the displacements are taking place in the

same direction, but in case of what parametrically excited system the force application of

force and the direction of motion so are perpendicular to each other or are orthogonal to each



other. In these systems, in case of forced excitation, so we have seen particularly in non-linear

cases, so we have taken weak excitation and hard excitation. And also we have studied

different type of resonance conditions. 

For example, so we know regarding the simple resonance condition. So, in addition to that, so

we have these we have the sub harmonic and super harmonic resonance condition. For

parametrically excited system, so we have principal parametric resonance conditions,

combination parametric resonance condition.

So, in case of principal parametric resonance condition so the resonance occur when it is

when the excitation frequency is nearly twice the natural frequency particularly by taking a

continuous system so where we have infinite number of natural frequency. 

So, we can get a number of parametrically excitation or parametrically resonance conditions.

Also in case of parametrically excited system, so we have combination resonance. So, this

occur when the natural when the excitation frequency is the sum or difference of the other

model frequencies.

For example, so we may have these external frequency equal to omega 1 plus omega 2, so this

is the combination resonance of some type of first mode and second mode. Similarly, we may

have omega equal to omega 3 minus omega 1. So, in this case, it is combination parametric

resonance of different type. We have used different perturbation methods. Also last class we

have seen we can use these two method to find the parametric instability region.

And also by using different methods, so different numerical methods also we can find the

response of the systems we can plot the free vibration. In case of forced vibration, so we can

have these frequency response plot, and the forced response plots for different system

parameters. So, given a system, so we can taking the different system parameter, so we can

have different responses.
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So, out of this all these responses, we are more familiar with the fixed point response. Today

we are going to study regarding this periodic, quasi-periodic, and chaotic responses of the

system. 
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Let us start with the simple example of the spring mass damper system, spring mass system.

So, if we have a simple spring and mass system, so this is simple spring and mass system. We

know system will have a response so here omega n equal to root over K by m. 

So, depending on the initial condition we know so we can write the response x equal to

response x equal to A sin omega n t plus phi or you can write this thing equal to A sin omega

n t plus B cos omega n t. Here it will oscillate with a frequency of omega n that is the natural

frequency of the system. 

These type of vibration, so there is no damping. So, we are assuming there is no damping in

the system or damping is very very negligible. And there is no external force acting on the

system. And if we start oscillating the system or pull the system slightly downward and leave



it, so it will continue to move with a frequency that is equal to omega n. So, similarly for a

damped case, so we can derive this solution and we can find the response of the system.

Here you can note or you can see the response of the system is periodic. So, this is the time

response. So, the time response is written in terms of the sin only the sin or you can write in

terms of cos also. 

So, this is the periodic response because it repeats. So, the motion repeats with a time period t

equal to 2 pi by omega n. So, you can see the time period for example so you can start from

here. So, now, it has gone down, then come up and this, so this is one period. So, this to this

is one period.

Similarly, so you can find the period between two similar points on the time response plot.

So, you take two similar point having the same phase, so then you can find the time period.

So, after so this time period can also be written as t equal to 2 pi by omega n. So, here I have

shown the response for a free vibration response of the system, also you are familiar or you

know that if it is excited by a force for example, it is excited by a force f sin omega t and let

us have the damping also in this system. 

So, if there is no damping, so when it is a excited with a force of x f sin omega t, the response

will contain two frequencies; one frequency is the external frequency of the system, and the

other frequency is the natural frequency of the system. So, it will contain two frequency. And

if the frequencies are very very close to each other, so already you are familiar with the

system that it will experience a beating phenomena where the beating frequency is the

difference in the frequency of these two that is omega and omega n. 

If there is damping, then the free oscillation part or the transient part of the oscillation will

died out. And in steady state, the system will oscillate with a frequency with that of the

excitation frequency of the system. These parts already we are familiar with in case of the

linear vibration. And also when we have added the non-linearity in the system, so we have

studied the duffing equation and we have seen the response of those system.



So, let us see now you know that we can have periodic response. So, in this periodic response,

so it repeats with time. And then also we know so it may be multi period also, so it can be 2

period, 3 period, 4 period. Depending on the number of frequencies, we can have different

periods. So, we can have different periods in this case.
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So, let us see. So, already we have discussed regarding the bifurcation of the fixed point. So,

in case of bifurcation of the fixed point and when we have discussed regarding this Hopf

bifurcation, and the generic form of Hopf bifurcation can be written in this way that is x dot

equal to mu x minus omega y plus alpha x minus beta y into x square plus y square y dot

equal to mu x minus omega y plus alpha x minus beta y into x square plus y square. 

So, by taking this r x equal to r cos theta and y equal to r sin theta, so these two equations can

be conveniently reduced to a very simpler form which is r dot equal to mu r plus alpha r cube,



and theta dot equal to omega plus beta r square. So, you just see if I will put these r dot and

theta dot equal to 0, we will have a solution where I can take common r here. So, it will be r

into mu plus alpha r square; r equal to 0 is a solution also. So, r equal to 0 is the trivial state. 

So, we can have the trivial state and non-trivial state here also. So, you can see due to this

Hopf bifurcation the trivial state in the first figure trivial state becomes unstable. So, the

trivial state become unstable at this point, and resulting in this supercritical Hopf bifurcation

so where a periodic response is generated. 

So, this periodic response is a stable periodic response we will see how we can determine. So,

whether the response periodic response is stable or not by using this procreate theory, and

which we will study in the next class.

Similarly, in case of the Hopf bifurcation, so this unstable fixed point response gives rise to a

stable fixed point response by decreasing. So, here we are decreasing the system parameter.

Otherwise, we can tell a stable periodic response initially we have a stable periodic response,

and a stable fixed point response, and after bifurcation it yields an unstable fixed point

response. In this case, the response is known to be sub critical Hopf bifurcation. 

So, we can have supercritical Hopf bifurcation or sub critical Hopf bifurcation depending on

the response what we are going to study. Here you can see the fixed point. So, here the fixed

point is going to become unstable here and the resulting so we are a resulting periodic

response. So, here we have a periodic response and a fixed point response. And the resulting

solution after the bifurcation it is a unstable one. So, as it is a unstable one, so we will see, so

this is known as sub critical pitchfork. 

So, in case of supercritical, it is a continuous bifurcation; but in case of sub critical

bifurcation, so it is a discontinuous bifurcation. Because after the bifurcation the as the

system is not stable, there is a chance that it may the response may jump up to infinite or it

may jump up to some other type of responses, for example, it may leads to a chaotic response

also.
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Let us see the other type of periodic response. Here we can see what we mean by this limit

cycle. A periodic solution is said to be a limit cycle if there is no other periodic solution

sufficiently close to it. A limit cycle is an isolated periodic solution and corresponds to an

isolated closed orbit in state space. So, every trajectory initial initiated near the limit cycle

approaches it either a t tends to infinite, or t tends to minus infinite.

That means, if this is a periodic this is a limit cycle, so if you start from, so for example, let us

start from this position. So, the response will grow and finally, it will come to this periodic

orbit at t tends to infinite. Similarly, if we are starting from a point outside this thing, outside

this trajectory, so it will come back, so it will come back to this periodic orbit. So, this will

come back to this periodic orbit at t tends to infinite. 



A limit cycle, so this is a periodic solution the response is a periodic response, or it is a

periodic solution. And there is no other periodic solution sufficiently close to it. So, you

cannot find another periodic solution close to it. 

So, with different initial condition, so always it come back to this periodic trajectory or this

periodic orbit. So, this type of solution we have seen in case of the Van der Pol oscillator. So,

this Van der Pol oscillator is a self-excited system. 

(Refer Slide Time: 14:55)

So, here you just see in case of the spring mass system. So, if we are giving some forcing

term, then only it will continue to have its motion with a frequency omega. But if there is

simple damping in the system, the response died out and it becomes 0. But in case of a Van

der Pol oscillator, so this is the Van der Pol oscillator. 



So, you just see x double dot plus x minus lambda into 1 minus x square x dot equal to 0. So,

let us examine these term. So, these term. So, we have a x dot term. So, this is a, so this x dot

term that is similar to a damping term. So, these damping here the coefficient of this damping

equal to lambda into 1 minus x square.

So, for example, let us take mod x less than 1. So, if it is less than one. So, in that case, so

what will happen? So, in that case, this 1 minus x square is also less than 1 lambda into 1

minus x square into x dot, this is the damping term 1 minus x square into x dot. If we are

starting a point inside this one, so if we are starting a point inside this orbit, then so this is a

negative damping. 

So, the damping become negative say 1 minus x square is less than 1. So, as 1 minus x square

is less than 1, so we have a negative damping here. As the damping is negative, then the

solution will grow. So, already we know this thing if the damping is negative, for example, so

we will have the auxiliary equation D square plus, so let me write a term which is negative D

square minus let me write, so as it is negative let me write this is C D plus, so this is x, so this

is 1, equal to 0.

So, we can have a root. So, the root will be D equal to minus B that is plus C minus. So,

minus B will give rise to plus C plus minus root over B square minus 4 AC, B square

becomes C square minus 4 by 2. So, you just see. So, here the if for example, let this C square

greater than 4. So, if C square greater than 4, then we have a real root here. Real roots will

have two roots also here; one will be C plus root over C square minus 4, another one will be

C minus root over C square minus 4.

So, due to the presence of this plus C term, so as this plus C part, so this is a the real part of

the solution is positive. The response will grow. As you know the response can be written x

equal to A e to the power, so we can write this is D 1 t plus A e to the power minus D 2 t. 



So, one of the root that is either D 1 and D 2 the real part of that thing will be positive or the

real part is positive, then the response will grow. So, the response will exponentially grow,

the response will exponentially grow, and the system will be unstable. 

Now, by starting at this point within the circle, the response will grow and it will move to this

limit cycle. Similarly, if we are taking a term outside this thing that is x square is greater than

1 or x is greater mod x is greater than 1, so then these terms becomes negative. So, as these

terms becomes negative, then this whole term becomes positive that is we have a positive

damping here. So, the equation will be similar to x double dot plus x plus 2 epsilon zeta

omega epsilon zeta omega n x dot equal to 0. So, here the response will die down and it will

come to so finally, it will come to this trajectory.

So, this is similar to that of a damped oscillator, so under damped oscillator. So, in that case,

it will come down. In one case, it is growing. So, if you have started this motion from the

inside this circle, then it will grows and reach the circle. And if we are starting outside the

circle, it will come back to the circle. So, that is why this is self-excited oscillation.

So, you can see this thing in this case. So, we have started with initial point 0.001 and 0.001.

So, you have started with a very initial point inside this thing. So, as we have started initial

point inside this thing, so you can see after sometimes the response grows and it reaches a

steady state response. So, this part you can see up to this part the response is changing, so that

is the transient part. So, this is the transient solution. So, this is the transient part, and this is

the steady state part.

So, we can see. So, we have the transient part and the steady state part of the oscillation. To

only plot the steady state part, so here only the steady state part is one. So, you can plot, for

example, you just see. 

So, we have taken the time for 430 to 500. So, here time is taken from 0 to 500, but here the

time is taken only the last several cycles have been taken. So, you can see in the last several



cycles if you plot, then clearly you can see the response to be periodic or it is either in the

form of a sine or cosine curve.

So, if you plot this x versus x dot or this u x versus the velocity, so this is displacement versus

velocity plot, so that is known as phase portrait. When you are plotting this displacement

versus time, this is your displacement, variation of time or time response plot. 

So, variation of displacement or velocity with time will give you the time response plot. And

this variation of this displacement with this velocity will give the phase portrait. So, now you

know how to plot the time response, and phase portrait in case of the Van der Pol type of

equation.

So, you just see in the second case. So, here the initial condition is taken inside the circle. But

if we are taking this initial point outside the circle that is 2.5 and 3.0 it is taken, so then you

can see, so it goes back to the original. So, it goes back. So, it reduces the orbit reduces. And

finally, so it from the time response, it will be clear. So, it reduces and finally, it reaches the

steady state solution. 

If you plot only the last part of this thing, so you are getting the same phase portrait or the

same periodic response. So, these are different way you are generating. So, these periodic

response. So, here you have seen for the self-excited system that is the Van der Pol oscillator

so where you are generating the periodic response. 
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So, we will see another type of response that is known as this relaxation oscillation. So, let us

take the same equation same equation of this Van der Pol, but here let us take this lambda

greater than 1. So, previous case we have taken lambda equal to 1. Now, let us take lambda

greater than 1. Let us take lambda equal to 10. So, if you take lambda equal to 10, we have

plotted it with different two different initial conditions.

So, in one initial condition, so it is started with this point; in this case, it is starting with 0.2

and 0. So, you will just see it is started with 0.2, and displacement is 0.2, and velocity is 0.

You can see the time response plot. So, it is different. So, this plot you can see physically it is

different from the plot what you have seen in the previous case. The time response here it is

in the form of sine and cosine, sine and cosine you have seen.
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But in this case you can see the response is slightly different. So, let us take another initial

condition, for example, it is 2 and 0.
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So, if you take another condition that is 2 and 0, the this is the time response plot and this is

the velocity time versus velocity x dot. So, this is time versus velocity. And this part is the x

versus velocity that is displacement versus velocity. So, from the velocity curve you can see,

so it has two timescale. So, two widely separated timescales you have. So, one for the slow

motion and one for the fast motion.

From this thing you can see one for the slow motion. Here it is slowly varying. So, this

portion is slowly varying with time, and then with speed. So, this to this, you just see quickly

it is moving. We have two response, two time responses are there. So, one part we have a

slowly varying time. And from the velocity, you can see it is quickly moving. 

One portion is slowly varying, and the other portion is quickly varying with time. That means

so the system has two widely separated timescales one for slow motion and one for fast



motion as evident from the velocity response. So, these type of oscillation is known as

relaxation oscillation as the system relaxes or moves with very slow speed followed by a

jump in the speed in particular cycle. So, this is a cycle. 

So, in this cycle some part of this curve it is moving very slowly, and then suddenly it jumps

and moves with very high speed that is why it is known as relaxation oscillations. In this Van

der Pol oscillation, so by taking this parameter lambda away from or greater than 1, so you

can see this relaxation type of oscillation. 

And by taking it is equal to 1, so you have seen this limit cycle where the limit cycle has a

form or it has a time response similar to that of a sine or cosine term. So, here you have seen

periodic responses of the systems. So, already we have discussed regarding this base excited

cantilever beam attached with a mass at arbitrary position.

So, again we will see this one. And here we will observe that the system the simple system

has many different type of response, particularly all the four different type of responses you

can find. So, here you can find the fixed point response, periodic response, this quasi-periodic

response, and chaotic response for different system parameters. 

So, let us examine this system again. So, here we have a base excited cantilever beam. So,

this cantilever beam is moving up and down with a periodic motion that is z equal to z 0 cos

omega t. At any time t, so you can take this beam is moving or it is taking a shape either to

the left or to the right of the initial position that is the trivial state. 

Let us now take this x. So, it is moving x in this direction. This is the x-direction along the

length of the beam, and this is the y-direction that is transverse to the beam. And at a

particular time t, so let the beam is making an angle phi with the x-axis. So, we have taken a

small element here. In the small element, if you draw a tangent at the small element, so it is

making an angle phi with this x-axis.

So, if we write what are the inertia force, what are the forces acting on that element, so you

can note that forces acting are rho u double dot, then rho g, then this is rho v double dot and c



v dot. So, v is the displacement in transverse direction. So, v dot is the velocity multiplying

with c that is the term due to this damping. Similarly, rho v double dot is the inertia force in

transverse direction, and inertia force in the longitudinal direction equal to rho u double dot.

Rho is the mass per unit length is taken in this case.

Similarly, so in this beam, so there is an attached mass. So, this is the attached mass here.

This attached mass has a mass of m. So, it will also be subjected to similar type of forcing.

For example, m g is the weight of that mass. Then m v double dot, then m u double dot. So,

these are the inertia force. 

So, you just see body is moving towards left. As the body is moving towards left, the inertia

force is acting towards right. The body is moving towards left and also downward, as the

body is moving downward in longitudinal direction, so the inertia force is in upward direction

m u double dot is in upward direction, and m v double dot towards the right.

Similarly, here, so we have applied this rotary inertia as j phi double dot can be written. We

have taken the small element at a distance zeta, and this arbitrary mass is put at a distance d

from the fixed end. If we want to write the equation of motion at a distance s from the base,

we can write that equation of motion. Now, we can take the movement of all these forces. So,

about this point s and we can write down this equation of motion.

So, here one point you can note, so if along this x-direction that is dx and transverse direction

this is dv if we are taking a small element ds. So, we can write this or you can use this triangle

and we can write the sine phi equal to dv by ds. And from that thing, we can see that if this

phi is not small, then we can expand this thing and we can have a non-linear equation of

motion.
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According to Euler Bernoulli theory, the bending moment at any cross section s can be

written as m s equal to EI by R. So, this 1 by R can be written as del phi by del s. Here we are

using this partial derivative because this phi is a function of both space and time. 

So, that is why you are using this partial derivative. This 1 by R equal to del phi by del s. So,

your M s equal to EI by R equal to EI del phi by del s or E phi dash we can write. R is the

radius of curvature. So, slope we can find that is tan phi. So, tan phi will be equal to del phi

by del s.

So, from this figure already I have shown you that sin phi equal to del v by del s or v dash.

So, we can differentiate this equation, and you can write cos phi will be equal to, so

differentiating sin phi it is cos phi into del phi by del s equal to v double dash. v double dash



is nothing but so this is del square v by del s square del square v by del s square equal to cos

phi into del phi by del s. 

So, already we know the sin phi equal to v dash. So, cos phi will be equal to root over 1

minus sin square phi, so it will be equal to root over 1 minus v dash square.
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So, that way we can write this del phi by del s equal to v double dash divided by 1 minus sin

square phi that is equal to v double dash divided by root over 1 minus v dash square. 

Now, it can be further written as v double dash into 1 minus v square to the power minus half.

And by expanding it binomially, so we can write this is nearly equal to v double dash into this

to the power minus half will go inside this thing. So, this becomes minus minus, plus. So, this

becomes v double dash into 1 plus half v dash square. 



We can write this M s equal to EI del phi by del s equal to EIv double dash into 1 plus half v

dash square. So, you just see. So, this non-linear term we have introduced this non-linear term

as it is a product of this v dash square into v double dash. The second term is the non-linear

term. 

So, in simple Euler Bernoulli beam equation, so we used to write M s equal to EI del square v

by del s square or EIv double dash. But here we are using this additional term that is v double

dash into v dash square divided by 2. So, in case of non-linear system, so already you know.

So, we are writing it EIv double dash.
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So, from this equation, so you can see the moment of the beam can be expressed as the sum

of three moments these equal to M 1 plus M 2 plus M 3, where M 1 is the external moment at



s due to longitudinal inertia of the beam element d zeta and mass M. Second will be M 2 that

is external moment at s due to laterial inertia of the beam element d zeta and mass M. 

And third one M 3 that is external moment at s caused by the angular acceleration of mass M

due to its mass moment of inertia J. So, that additional mass what we have put at the arbitrary

position; so here we are putting it at some arbitrary position. In many literature, you can find,

so it is put at the tip of the beam.
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So, that way, so now let us see this M 1, so we will take the moment about c about that point

s, here it will be so M 1 will be when you are taking this moment of the small element, then

we will integrate it over the length that is from s to L. So, this M 1 equal to minus integration

s to L rho plus M delta zeta minus d. So, these thing you just note this is delta is the direct



delta function, we are writing this direct delta function to show the arbitrary position of the

attached mass.

So, we can put it at any location and this is point mass. So, we are considering this as a point

mass that is why this direct delta function is used. Then this M 1 equal to minus integration s

to L rho plus m delta zeta minus d into v double dot plus c v dot into this force into you have

to find the distance force into distance will give the moment. So, for the small element d zeta,

that the distance will be d zeta into integration s to zeta cos phi d eta, so here eta is the

dummy variable we are using. 

Similarly, M 2 equal to minus s to L integration minus s to L rho u double dot, so rho u

double dot the in the longitudinal direction the inertia force. So, the weight also we are

considering that is why this is minus g plus m delta zeta minus d u double dot minus g into

also the distance part can be written. 

So, this is the distance part. So, the first part is the force acting on that small element and

integration will give us length of the portion from s to L for which we are finding the

moment. So, this distance equal to d zeta into integration s to zeta sin phi d eta.

So, M 3, so that is due to the inertia part rotary inertia. So, M 3 equal to s to L J delta zeta

minus d phi double dot d eta for an extensional. So, considering in extension condition, that

means, there is no laterial extension of the beam in extensional condition so if you are

considering, then the total axial displacement can be written equal to u zeta t equal to zeta

minus 0 to zeta cos phi eta t d eta plus z t; z t is the base motion. So, u t will contain this z t

plus this part.

So, since sin phi equal to v dash we have taken before. So, this u double dot differentiating it

twice. So, you can write this u double dot equal to half integration 0 to zeta v eta square t t; t t

means so it is double differentiation with respect to time into d eta plus z double dot t. So,

now, you just see so we have eliminated. 



So, by writing this u double dot term, so we have eliminated or we have reduced or we have

written this u term this axial displacement in terms of the transverse displacement. So, this is

due to this in extensional property of the beam. So, we are assuming the beam does not

extend in the direction. 
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So, now by substituting this equation in this original equation, the governing equation of

motion can be written in this form that is EI v 4 s, 4 s means this is del 4th v by del s 4th plus

half del v by del s whole square into del 4th v by del s 4th plus 3 del v by del s into del square

v by del s square into del q v by del s q plus del square v by del s del square v by del s square

to the power 3 plus 1 minus half v s square into rho. So, actually you will get this equation by

twice differentiating the equation, this equation.



So, by twice differentiating after substituting this M 1, M 2, M 3, so by twice differentiating

this equation. So, you know moment, so if you differentiate once moment, you will get this

shear force; and further differentiation, we will give the loading condition load. So, that is

why you have to differentiate it twice. So, by differentiating twice, you can get this equation.

And with boundary condition, so these are the boundary condition v 0 t equal to 0 that is at

the base there is no displacement.

Similarly, there is no slope at the base. As it is fixed at the base, then v s s L, t equal to 0 at as

we have a free end, mass is not attached at the end rather mass is attached at any arbitrary

position. So, if we are putting this mass at the end, then the boundary condition should have

been this equal to the bending moment there. 

And this shear force would have been equal to this shear force this v s s L, t should have been

proportionate to this shear force. But as it is a free end, so that is why the bending moment

and shear force are equal to 0. So, that is why v s s L, t equal to 0, and del q v by del s q L, t

equal to 0. So, this end in the fixed end that is in the fixed end. So, this is the cantilever. 

So, at the fixed end so this is the fixed end displacement and slope are 0. And at the free end,

bending moment and shear force are 0. So, bending moment and shear force are 0 here; and

here displacement and slope are 0. 
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In this way, we got the equation of motion. So, here that N term is also this non-linear term is

here. 



(Refer Slide Time: 39:37)

So, now, we can assume a solution v s, t equal to. So, multimode we can take r psi n s and u n

t. So, where r is the scaling factor, psi n is the mode shapes, and u n is the time modulation.

So, mode shape function psi n and u n is the time modulation. So, by taking this Euler

Bernoulli beam equation, so we can find the mode shape.

So, here while finding the mode shape, so we may take one can take the simple Euler

Bernoulli beam Euler Bernoulli equation for a cantilever beam and write down the psi, or you

can use so one can divide this beam into two parts; so one of two where the mass is attached,

and another one after the mass is attached. And taking this continuity conditions at this

position, so one can find the psi n. So, that derivations can be found in the paper by (Refer

Time: 40:37).



And now assuming this solution, this is assumed mode solution and applying this Galerkin’s

method, so we are taking a weight function R so this residue. So, we can take the by

substituting this v s, t in this original equation. So, as these the assumed mode shapes we are

taking which is not satisfying this governing equation. 

So, we will have some residue. So, this residue is written in terms of R because equation will

not be equal to 0. So, we will have this residue. So, in this residue, we can multiply this

weight function. So, here psi n is taken as the weight function also, and integrate it over the

length of the beam, so and equate to it to 0. So, we want to minimize this residue. 

So, from that thing, so we know so this R psi n d x equal to 0. And using these parameter, so

for example, where we can use this non-dimensional parameter x equal to s by L, beta equal

to d by L, tau equal to theta 1 by t, omega n equal to theta n by theta 1, lambda equal to r by

L, and this mu equal to m by L, mu is the mass ratio you have taken here, and gamma that is

the z 0 by z. 

So, we have taken this amplitude non-dimensional amplitude of base motion, and J equal to j

0 by j 0 by L r square. So, phi equal to omega by omega by theta 1, so external frequency by

this theta 1.
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So, this way we can find this using generalized Galerkin procedure, the governing temporal

equation of motions we can find. So, this is the governing temporal equation of motion. So,

here you just see the equation is written in this form that is u n double dot plus 2 epsilon zeta

n u n dot plus omega n square u n minus epsilon m equal to 1 to infinite f n m u m cos phi

tau. 

So, here you just see these coefficient of u m that is the displacement is a time varying term

that is why you have a parametric forcing term, and here we have cubic geometric

nonlinearity. And this and this, these two are cubic; inertia non-linear terms are also present

in the system. 
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As the time varying, as the time varying forcing term is the coefficient of the response, the

system is known as parametrically excited system. So, depending on the position of the

attached mass the modal frequencies of the systems are either distinct or bear integer

relationship among themselves. When the modal frequencies have nearly integer relationship,

the system is said to have internal resonance condition.
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So, here if the external frequency omega is taken to be omega plus minus omega n where,

omega n equal to nth model frequency. If m equal to n, so we call it as principal parametric

resonance conditions, so that is equal to omega equal to 2 omega m. And if m not equal to n,

so we have this combination parametric resonance of sum type if you are taking omega equal

to omega plus omega n, and it will be of difference type if you are taking omega equal to

omega m minus omega n.
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Considering, so in this case, I will show you different type of response by considering only

principal parametric resonance of first mode that is omega equal to 2 omega 1. So, if you take

omega equal to 2 omega 1, then we can use this detuning parameter phi equal to 2 omega 1

plus epsilon sigma 1, and omega 2 equal to 3 omega 1 plus epsilon sigma 2. 

So, here we are assuming the second model frequency is 3 times the first mode natural

frequency, and the sigma one sigma 2 are the detuning parameter. Epsilon is the bookkeeping

parameter which is very very less than 1.
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Using method of multiple scales standard procedure or method of multiple scale, we can

solve this problems.
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And we can get these reduced equation.
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So, details are given here. And we can get the reduced equation. So, these are the set of

reduced equations where we got. So, this is 1, 2, 3 and 4 as we have taken 2 modes see that is

why we have 4 equations. So, a 1 and a 2 are the response amplitude of the first and second

mode, gamma 1 and gamma 2 are the phase of the first and second mode. This way we can

find the reduced equation.
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So, after getting the reduced equation for steady state response, this a dash, a 1 dash equal to a

2 dash gamma 1 dash equal to gamma 2 dash equal to 0. So, hence one obtain a set of

non-linear algebraic or transcendental equation which would be solved to obtain the steady

state solution that is a 1, a 2 gamma 1 gamma 2. a 1 is the first mode amplitude, a 2 is the

second mode amplitude, gamma 1 – first mode phase angle, and gamma 2 – second mode

phase angle.
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So, to study the stability of the steady state solution, one can perturb the reduced equation to

obtain the Jacobian matrix whose eigen values can be used to study the stability of the

equilibrium solution. So, that thing we have studied extensively last class or last few classes.

But in this present case, you can see that this we have these terms that is a 2 gamma 2 dash

and a 1 gamma 1 dash. 

So, if you perturb these thing for trivial state, so this gamma delta gamma 1 dash and delta

gamma 2 dash terms will not be available. So, that is why by just by perturbing these

equation, so we cannot study the stability of the trivial state, but we can study easily the

stability of the non trivial state. 
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That is why one can do this transformation. So, for example, one can use this transformation

that is p i equal to a i cos gamma i, and q i equal to a i sin gamma i. And one can get the

normalized reduced equation in terms of p 1 dash, q 1 dash, p 2 dash, q 2 dash. So, you just

see that amplitude term is not multiplied with this q dash term here, or p dash term here. So,

that is why independently these equations can be perturbed around this p 1, q 1, and p 2, q 2.
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And one can get the Jacobin matrix J c. And by finding this eigenvalue of this Jacobin matrix,

so one can find the stability and bifurcation of the fixed point response, already we have

studied different type of bifurcations in case of the fixed point response. So, we have the

static bifurcation and dynamic bifurcation. 

So, in case of static bifurcations, we know the pitchfork bifurcation, saddle node bifurcation,

and the transcritical bifurcation. Similarly, in case of dynamic bifurcation, so we study about

the Hopf bifurcation. So, these are for the fixed point response. So, these are for the fixed

point response.
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So, here you can see. So, you have plotted the parametric instability region particular a

sample case has been shown here. So, for example, so in this case, so by varying these

frequency and amplitude of the non-dimensional frequency and amplitude of the base

excitation, so one can plot this instability region. In the previous class, we know we have used

this procreate theory to plot this transition curve, also we have seen we have use this method

of multiple scales also to find this thing.

So, here to plot this thing we can take these Jacobian matrix put these p, q, and p 1 q 1, and p

2 q 2 equal to 0 for the trivial state and then find the eigenvalue. So, we can find the value of

phi and gamma for which so there is a change of stability, that means, the system change from

stable to unstable region or from unstable to stable region. That means, so it crosses this the

Jacobian. 



So, the eigenvalue the real part of the eigenvalue crosses the imaginary axis. By changing the

system parameter, we can see the real part of the eigenvalue crosses the imaginary axis. So,

we can plot the real and imaginary part of the eigenvalue and we can see. So, it crosses the

imaginary axis with 0 value. In that case, so we will have the static bifurcation. So, in this

case, you can see as we are studying this fixed point response mostly you can find these

things. 

That means, so if it is going from the left side of the x plane. So, this is known as the x plane.

So, if it is going from the left side of the x plane to the right hand side of the x plan, the

system changes its stability from stable to unstable. Taking that point at which it is changing

from stable to unstable, so one can plot this instability region. Unlike in case of this Mathieu

Hill equation, so where we use to get a curve like this we got a curve like this thing, but in

this case you can observe.

So, there are multiple, so if you take a line here. So, you can see there is a multiple stable and

unstable region. So, up to this it is stable, then this becomes unstable, and then outside it has

come outside of this curve so then this become stable, and then unstable, then stable. So, this

is stable; this is stable. And in between it is unstable, and then finally, it becomes stable.

So, you can get. So, due to the presence of this internal resonance, you can observe multiple

stable and unstable region. So that means, in the trivial state so you can find so multiple

bifurcation points which will be the root of the non-trivial state. So, you can find, so there are

multiple points which will give rise to nontrivial state.

After knowing this instability region, one can plot the so you just see. So, this part is due to

this internal resonance condition. So, now, one can plots plot the frequency response.
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So, this is a typical frequency response plot. Here you can observed that there are several type

of bifurcation points. So, clearly the bifurcation point. So, here is the saddle node bifurcation

point, then we have a Hopf bifurcation point here. 

So, this point is a Hopf bifurcation point. And here you can note that if you decrease this or if

you increase this phi value, so here it will give rise to periodic response. There are another

Hopf bifurcation points also you have seen. 

So, here you have multiple Hopf bifurcation points in this case. And we have different saddle

node bifurcation point, Hopf bifurcation point, then we have supercritical pitchfork

bifurcation point,and subcritical pitchfork bifurcation point. 
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Similarly, here we can plot the force response plot. After plotting this frequency response

plot, we can plot the force response plot also. So, here you just see in case of the force

response, this gamma is the amplitude of the forcing. So, here you just see several type of

bifurcation points. 



(Refer Slide Time: 52:52)

So, several bifurcation point. So, you have the saddle node bifurcation point, then this Hopf

bifurcation point. Already we studied or we know so during this Hopf bifurcation point, so we

will have the periodic response. So, you just see periodic response. So, this is a period

doubling route to chaos. So, initially, we have a periodic response. 

So, this period now it becomes two period by changing the system parameter, and finally, it

goes to a chaotic response. So, we will define a chaotic response later. So, but you note that

this chaotic response has a, so this is a deterministic response. So, it is not like this random

response.
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So, this is a deterministic response. So, here one can draw the Poincare section. So, later I

will tell how you want to you can you can find the Poincare section. So, if you draw the

Poincare section, so you can see, so initially you have one point. So, this gives rise to 2, then

this gives rise to 4, and then 8, then 16, so that way it will go on increasing, and finally, the

response will be chaotic. 

But in between you can have some window so where the response is periodical. So, in

between the chaotic response, so you have some windows where the response is periodic. 
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Several other chaotic responses are there also, and this is a quasi-periodic response this phase

portrait of a quasi-periodic response. So, next class, we are going to study regarding this more

regarding this quasi-periodic and periodic chaotic response also. 

You have seen in case of the parametrically excited or base excited system, so you have

several different type of responses that is fixed point response periodic response,

quasi-periodic response and chaotic response.
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So, if we will take the duffing oscillator also, so you can observe the similar thing. So, we

have written a simple code to see how the duffing equation will behave with different

coefficient. So, the duffing equation can be written already you know by x double dot plus

delta x dot plus alpha x plus beta x cube equal to R cos omega t.

So, here this delta is nothing but omega square generally we take, and then this know this we

take this alpha equal to coefficient of x equal to omega n square. So, delta equal to, so this is

the coefficient of damping 2 zeta omega n. 

So, if you are writing using epsilon also you can write that way; otherwise you can write it

equal to 2 zeta omega n where zeta is the damping ratio and omega n is the natural frequency



of the system. Then beta x cube that is coefficient of the cubic non-linear term; and r cos

omega t r is the this amplitude of the forcing and omega is the frequency of the forcing.

So, by taking different system parameter, one can plot these response for this displacement

that is x versus t 1 can plot. So, you just see for alpha equal to 1 that is coefficient of x equal

to 1, beta equal to 5, delta equal to 0.02. So, damping very small it is taken. And this r equal

to 8, omega equal to 0.5. So, one can easily see the response to be chaotic. 

One can observe a chaotic response here. So, this chaotic response is nothing but it contains a

number of harmonics greater than 16 you can tell. So, it contains a number of harmonics. And

it wonders between so to attractor. So, here it is wondering between this point and this point. 
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So, you can write a simple code to find these responses for different cases. For example, here,

so we have taken 7 case. The first case what just now I have shown. So, here alpha is taken to

be 1, beta 5, delta 0.02, r equal to 8, and omega equal to 0.5. Similarly, different cases, 7

different cases have been taken.
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And this is the simple ode45 code you can write. So, you can write this taking initial

condition. For example, let us take initial condition x 0 equal to 1 0. So, t, x equal to ode45.

So, you can write this equation first order differential equation. So, that is saved in a file sol.

So, then this tspan. So, 0 to 100, you have taken. So, and this is x 0 is initial condition.

So, then you can get t and x, then you can plot this displacement versus velocity. So, this x

will contain two component that is x 1 and x 2. The first component is this displacement and

second component is the velocity. So, you can plot the displacement versus time response that



is time versus displacement. You can plot these phase portrait by plotting this velocity and

displacement.
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Displacement and velocity, or velocity and displacement it is up to you. So, you can plot you

just see by taking this alpha equal to minus 1 that is we have taken what is alpha you just note

it again. So, here in this equation, so we have taken alpha is negative, that means, the stiffness

term we have taken negative. 

If we are not taking this non-linear term, so generally it tends to infinite. So, this will be as

the stiffness term is negative, generally the response should have been unstable, but due to the

presence of this due to the presence of this cubic non-linear term, so you can see one can get a

periodic response. 



So, already I told you so this contain both transient and steady state that is why you are

getting all these thing. But if you plot only the a study state part, you can have a only a closed

curve and clearly you can visualize the response. So, by changing you just see here the

parameter r is 0.2, now it is changed to 0.28. 

By increasing into 0.28, so you can see so it will have a 2 periodic. So, this is one and this is

the other one it is not clearly shown, but you can plot yourself and check verify the steady

state part it is two periodic.
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Similarly, by increasing this r equal to 0.29, so this becomes 4 periodic. And then finally, by

changing for example, by taking it equal to 0.37, so you can see this is wondering between

two attractor here. So, this becomes 8 periodic.
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And then you can see finally it becomes chaotic by further changing r equal to 0.5, and r equal

to 0.65, so the response becomes chaotic in this way. So, today class you have seen different

type of response, so fixed point response, periodic response, quasi-periodic response, and

chaotic response. And in the next class, we are going to study the stability of the periodic

response, and also we will discuss something related to quasi-periodic and chaotic response.

Thank you. 


