Theory of Composite Shells
Dr. Poonam Kumari
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Week — 03
Lecture — 02

Shell governing equation

Dear learners welcome to week- 03, lecture- 02. In this lecture, | will cover the Shell
Governing Equations that we already have obtained in lecture-01 of week- 03. Now, we

will discuss those in more detail and the associated boundary conditions also.

(Refer Slide Time: 00:53)

S{QP; We shall derive te go\ferm'n oo
k o bantd M Samder's sholk W considering
P Von- Kauman erw\?

Hailton s Pindple
il

| (- Gy - §We)) 4 =

o ),

: of okenad

(SAn e

We shall derive the set of governing equations. In the last lecture, I have covered the
kinetic energy, internal work done, and derive the relations of external work done. |
clubbed all the terms together and equated it to 0.

As per the Hamilton principle:

O ey —

(0K —(eW, —oW, ))dt=0



Potential energy will contain two contributions, the first one is corresponding to the

internal work done 6W, and the second one is corresponding to the external work done

OW; . W, is the strain energy of an elastic body.
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Governing Equations
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If we club all these equations; contribution of kinetic energy oK , the contribution of

strain energy oW, , and contribution of external work done oW .
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Here in the first equation, (—1,u;, — 1,17, )a,a,0u,, is the contribution of kinetic energy

0,8,a,0u,, is the contribution of external work done

—(Nya,) , +Nypa,, —(Nyay)  —Npay , —Q, % is the contribution of internal work
1

8y

- o a . . oo
done having linear contribution, and Nu EZ(WO,& j is the non-linear contribution.

Here you see that all are having ou,, coefficient.

We have clubbed ou,, coefficient, kinetic energy, external work done, and internal work

done. 0 to t integration outside the whole expression and area integration is outside N

and that is going to be 0 plus the contribution the coefficient of cu,, .

ou,, coefficient will have:



a, |
Nya, , —(szai)‘ﬂ -N,a,, —(leaz)’a -Q, % linear terms

a,u a :

N2 i(wo,ﬂ —Mj — Nz —Z(Wo,a —ijauzo non-linear terms
RZ RZ RZ Ri

(1ol — 1,47, )a,8,0u,, Kinetic energy and

0,8,a,0u,, external work done.

In oy, coefficient, there is:

Mya,, —(Mya,) , —(Mya,) , —Mp,a, , +Qaa, the linear term for internal work done

and (—1,0,, — 1,1, ) O, Kinetic energy.
We do not have even the external work done in oy, .
The coefficient of oy, has:

My , —(Mzzai)’ﬁ ~-M,a,, —(My,3,) , +Q,aa, internal work done

(=10, — 1,17, )a,a,0y, kinetic energy contribution.

And in ow, coefficient we have:

{Nliiag + N22Ra1a2 _ _(Qla'Z )'a +(Q2a1)ﬁ :ﬂ ow, the linear term
, L

[Nni[wo,a—aium J +£szi(wo,ﬁ—a2u2°D
a, R ) | e R, ),

+(N12(W0’ﬂ—u20% J +(N12[W0’a—uw%]] ow, nonlinear term
2 a B

(—1,W, ) a,a,0w, Kinetic energy

- g,a,8,0w, external work done.

Now, we have clubbed all the equations at one place and integration from 0 to t, and



these ou,,, du,,, Oy, , Oy,, and ow, are the arbitrary variations. And, their coefficients

are integrable over the range ¢, 10 a,.

We can use the fundamental theorem of variational principle, which we call the

fundamental lemma of a variational principle. If we use that these ou,,, ou,,, oy,
Oy, , and ow, are arbitrary. So, these coefficients must vanish. This will help us to get

ordinary differential equations.
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Using the fundamental lemma of variational principle.
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We will get 5 ordinary differential equations:

a a u
(Nllaz ),a — Nz, , +(N21a1),ﬁ +Nppa, , +Q %_F(Nll é{wova B aiRllo B

equation 1

a .. ..
+Nz %(Wo’ﬁ —Uy Ezj"' Q.aa, = ( Iy + |1'//1)aia2

2

a a,u
N +(N22a1)ﬁ + Ny, +(Npa, ), +Q, e +(N22 i(wo’/f R D
R R, R,

equation 2

a a .. ..
+N1 R—Z(Wo,a U, Ezj"' 0,88, = ( Iy + |1‘//2)aia2

2 2

_M22a2,a +(Mnaz ),a +(M21a1)’ﬁ + M12a1,ﬂ -Qaa, = ( I,U, + Iz‘/71)a13-2 equation 3



-M,a, +(Mzzai),ﬁ +M,a,, +(M12a2 ),0, -Qaa, = ( |Gy + Iz'ﬁz)aiaz equation 4

N,,aa, N,aa a u
_ 1?11 2 _ 22R"’2‘1 2 +(Q1a2)va+(Q2a1)vﬁ—q3a1a2+£Nné£wo,a_aile Da

+[szﬁ(wo,ﬂ—MD +[N12(Wo,ﬁ—uzoﬁn +£le(woya—umin equation 5
a2 I:22 i I:22 a R1 Ny
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In some of the shell theories book the equations (3) and (4) are kept at the bottom and in

some of the theories it is kept in between.

Here, we can see that all the equations are coupled, you see that these terms Q,and Q,
are in equation (5), Q, is in equations (1) and (3), Q, is in equations (2) and (4). They
are coupled through this shear and the non-linear term also equations are coupled

together.

If you talk about a plate equation, for a rectangular plate:

N, + N, =0equation (1)

XX, X
For a static case:

N,.+N, ,=0.equation (2)

Xy, X
If you talk about a classical plate:

M o +M,, +2M, . +d,=0.equation (3)

Here these in-plane equations are not coupled through equation (3), the moment

equations are not here, or if you write in terms of FSDT here Q, & Q, do not come.

We can solve these two equations equation (1) and equation (2) independently and
equation (3) independently, but for the case of the shell it is not true they are coupled

through Q, & Q,. So, we cannot solve those equations independently. Each equation

affects the other, they are related to each other.

If a shell is thin, the bending effect or a bending force may cause extension in stretching,

large stretching, significant stretching but, in the plate, it will not. This is the first



observation and the second observation is that we can take consideration of non-linear
terms means, without non-linear terms we can consider. Generally, for thin shell

theories, non-linear terms are not considered but linear terms are considered.

These are the standard general equations. If a shell is symmetric, then 1, the mass

moment of inertia will be:

e

If we talk about a thin shell, these terms are neglected. Whether if you talk about

Il

N“j‘—.l\)\:

Sander’s theory or love Kirchhoff of shells. Generally, they don’t consider this effect,
because the thickness is small and radius is very large as compared to one these are

negligible.

This 1, can be 0, but if you talk about a thick shell, then definitely it will have some

contribution. In the other way, if you talk about a plate. For the case of a symmetrical

plate, 1,= 0 but for the case of a shell, I, #0. That is why we have kept 1, in the
equations. Here, in the equation you see a, & a,, in most of the books this a, & a,, is

taken common.
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If we take a, & a, common, then this governing equation will look like this

1
8,8,

1 u
[( NllaZ),a ~ N, +(N21a1),ﬁ + lealﬁ}Jr%J{Nll aR [Wo’a B aino n

2

1 a .. ..
+N12 ﬁ(wo’ﬂ —U,, R—sz‘*‘ql :(IOUIO + |1W1)

The loading term and the dynamic term will not contain a, & a,.

In the book of the theory of shells, you will find the final form of governing equations.

The previous set of equations was the intermediate part just after the integration. This is

. If we want to work

the exact form that is represented in various textbook taking
a,a,

with this, we can work on it. We have 5 governing equations.

1
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2
1r . .. :
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Now, we move to the boundary conditions. In lecture-01 of week-03:

B=p,
da
A=A

a,u
I( 22818U20+M22a18(//2)+N222( 0 T?ZOJ(?WO
2

(24

It is the contribution due to 1,

[ [(Ny;2,0u, + M,3,0; ) + Nu—( - —%)aw0 dg
s a, R,

a=ay

It is the contribution due to 1,

B
_I[Nzlaiaulo +Myady; + Ne (Wo,a —Up ﬁ]awo do
a R )™),
_ I( N,,a,0U,, + M 2,09, + N1 (WO’ 5~y %}awo dg
B 2 o

These are the contribution due to 1,



__[ (Qz a18W0 )

B

" dp+[(Qadw ) da

This is the contribution due to 1, and 1.

Here o, to «, and g, to g, is more consistent compared to writingOto o or0to .

The reason behind that is @ can take any value, it is not necessary to start from 0, it can

be anything.

You may say that 0 to 30° or 30° to 60° between that some component is there of volume

element. And, these are the contribution of the edge work:

+ I (NL,a,0U;, + N;,a,0U,, + Qa,0W, + My, +M,,a,0v, )LZ dpB dueto oW,
ﬂ 1

_ _ _ _ _ 5,
+_[( N,,a,0u,, + N,,8,0U,, +Q,a,0W, + M,,a,0y, + M ,,adw, )‘ﬁl da dueto AW,
B

We have put it together and equate it to 0. Ultimately, the area integral and the boundary

integral are going to be 0:

[[A+[[B=0

definitely the time will be there. Taking integration from O to t or t, to t,. And at the end

add dt. The whole equation will be equal to 0. Before proceeding further, let us say we

have a term:

(IA+IB+IC+ID) dt=0

O t—

We will say that all individual integration to satisfy this, IA, IB need to be 0, that is

the first thing, this integration de is going to be 0, this integration d £ is going to be O,

and so on.

Inside this “A”, we have a term:

[(ab,+ab, +ap,)dt=0



To satisfy this equation individually each term needs to be 0.

We will club together all the integration which are under de and under d g line. These
terms will go to d g and these terms will go to dea . We will club all the terms under one

head along f edge and « edge.
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If we do so and collect all the terms under « and under . In the first one,

_ _ _ — B=p,
(N22a1 - N22a1)6u20 +(Mzza1 -M 2231)6‘//2 + ( N, - N22a1)8u10 +(M 28 —M 2131)8'//1
_ da
! +(Qa-Q,a )ow, + N2 ﬁ(wo,ﬂ —Mjawo +Ni [Wo,a Uy ﬁ]awo
a, Rz I:31 B=5,
the boundaries are associated where £ is constant. And, in second integral
(Nuaz - Nnaz )aulo + ( M,a, - Mnaz )a‘//l + ( N,,a, - leaz )8U20 + (M12a2 - MlZaZ )aWZ -
_ dg
‘!: +(Qla2 —Q1a2)8W0 + Nll %[WOUZ — a1|:110 javvo + le (Wo,ﬂ _ U20 %j a\NO
2 a=ay

a is constant. This means if we have a patch like this and we are always saying this is

a and thisis g. Here, o isequal to , and a, .

This is the edge where « is constant. Over these edges these conditions will be satisfied
and, on this edge, g isequalto g, and g, . It may be O because you have taken the

coordinate system here itself so, it will be 0. These variables need to be satisfied.



| have already told you that we are going to put this term (sza1 - szai) =0, this term

(M,,a,—M,,a,) =0, this term (N,,a —N,,a,) =0, and so on and ow, coefficients.
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If we do so, we will get an edge where $ is constant, either and or conditions are there,
either N,,a, or u,,, sometimes we can say prescribed. The very reason to write like this
we are not saying that N,, =0, but we are saying a, will get canceled from both sides.

You can cancel it, or take it same, there will be no problem. N,, = N, .

On the edge, N,, the external in-plane resultant then at the boundary the internal stress
resultant and N,,= N,,. Same way at the boundary the displacement u,, = T, , this may

be 0, may not be 0.

We should write in a more general form. And, the second reason to put this &, is there

are some cases where the boundary is free, if we talk about a circular plate, then it will

be (N,, r) =0, notjust N,, .

Then, you may ask from where this ‘r’ is coming. So, this is a,. That is why | have kept
a, .

In the first case:



N22a1 = sza1 Or Uy, =Uy,
N..a =N or u, =0
2% _22a1 10 _10 or u,,
Mya =M,a or v, =y,
Mya =Mya or v, =y,

a,u a _
Q,a,+ Nz %(wo,ﬂ —%J (owy)  + N1 (Woﬁ — Uy, R—Z] (ow,) = Q,a,0rw,
2

2 2 need tobe modified need tobe modified

as per CST as per CST

These are the 5 variables at an edge where g is constant. Only out of these variables we

have to choose the edge where £ is constant.

And the other edge where « is constant we have another 5 variables. They are:

a u a —
Qa, + Nné[wo,a—alRfO} le[woﬁ—uzoR—zJawo = Q,a, or w,.

2

These are the cases applicable when the geometry and coordinate axis are matching.

For example, you have taken boundaries like this and your variables are also like this
aand A . The normal and tangents are along the same coordinate axis. But there may be
a case where you have chosen a coordinate system some like that, but we are getting a
boundary like this, a corner like this, instead of this we are getting a curved shape. Then,
over this boundary what are the variables to be specified? So, at the boundaries, we have

to say in terms of tangent and normal.
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| am going to write these variables in terms of f and .

Nnn = Nnn = 0 Or uno = lTI']O
an = an = O Or uSO = lTSO
Q,=Q,=0 or w,=w,

Now, we say that if A is o then £ will be g, then you can directly map these things. If

A is aisequal to 1, then it will be:

N11_N11:O or Uy, =0y,
N12_N11:0 OF Uy, = Uy
Q-Q=0 or w,=w,

My, —M;, =0 or y, =y,

M, -My,=00r v, =y,

If, A normal is £ then you can find the rest of the variable. It is better to write in a more

general sense. Depending upon the requirement you can convert it into the explicit form.
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Now, I am coming to the very first shell theory, the Love Kirchhoff shell theory, in that
theory y,, and y,, are neglected and &,, is also neglected. Based on the assumptions that

the transverse axis remains perpendicular to the reference surface, before and after the

deformation, there is no change the angle remains 90°.

If we pose those constraints, then the rotations will be known in terms of in-plane
deformation and transverse displacement.

u, 1 u 1
pr=-_——W, and y,=-"-—w,

R a R, a 7

If you know all these things, you will get 5 differential equations that can be converted
into 3 equations using this concept.



The same way you see here that at an edge we need 4 boundary conditions, that we will

have 4 variables u,,, u,,, and one will be a slope w, and w,. First of all, we need to

modify the boundary conditions, so, that we will get these 4 variables.
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Already, | have said that if you apply Love Kirchhoff's assumptions, it will be 8 order
PDE partial differential equation. We can satisfy the maximum or we can solve 8
variables. So, we need 8 boundary conditions. For the case of FSDT, we have 10
boundary conditions, but in the classical shell theory, sometimes we called it CST

(classical shell theory), it will have 8 boundary conditions.
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For that purpose, we have to modify the boundary conditions. What are the variables we
are going to modify? Right now, | am doing without non-linear terms. So that it will be

easy to explain, but if you include the non-linear term one can proceed with that also.

From explanation point of view, in this case, | have deleted the non-linear terms and | am

proceeding further.

B=P,

J- (N22a1 - szai)auzo +(M22a1 - Mzzai)al//z +(N21a1 - NZZal)aulo da =0

a +(|\/|21a1—M2131)5W1+(Q231—6231)8W0 B=p

This is the edge, where g is constant

— a=a,

(Nnaz - Nllaz )aulo +(M11a2 - Mnaz )al//l + ( leaz o leaz )5U20

_ _ dg
+(M12a2 - Mlzaz)al//z +(Q1a2 _Qlaz)awo

!

a=o

This is the edge, where « is constant



B=P,

J. (N22a1 - szai)auzo +(M22a1 - M22a1)8w2 +(N21a1 - NZZal)au da =0

+(M21a1_M21a1)8l//1+(Q231_6231)aW A=A

This is integration along the «

This term (M8, —M,,a, ) 0w, needs to be modified
These terms (N,,a, —N,,a,)du,y; (M8 —M,,a )dy,; and (N,a — N, a )éu,, don’t
need any modification.

Oy, is the rotation. When we are talking about the second direction the rotation will be

in that axis. We don’t need to modify this term (Mzza1 - I\ﬁzzai)ét//2 :
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If we substitute the value of dy, in this (M,a —M,a, ) oy, term.

ouy,

1
oy, = R, ; (P

If we put, oy, = 8;10 —iawoya

1




M M
The term aRlo will give a contribution to this (Lai—iaijaum term.

1
iaw(,a will give a contribution to this (M I\ﬁﬂ)aww.
a, °

It is a derivative with respect to o . We will further reduce it to ow, .
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If we proceed further, it will give you two terms:
I:(le o le)awola and (le - MZl),a 6Wo :
If you integrate this term [(M21 - I\ﬁﬂ)aw()] it will go to the corner

ap

And will look like this +‘(|v|21— M,,) ow,

)

Generally, we do this derivation before adding the external work done, then

(M, —M,,) ow, will go to the contribution of ow.

ow, has this(8,Q, +M,,,, —a,Q, + M, , )ow, contribution



“ this contribution known as Kirchhoff shear,

a

ow, contribution has +‘(M21—|\ﬁ21) ow,

a

corner terms.
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Now, the boundary condition will be either N,,a, = N,,a, or U, =0,

The next combination will be:

M _ M _
(N21+ 21)=(N21+ 21) or u, =0,

R, R,

M,, = Mzz or vy, =y,
a1Q1+M21,a :a1Q1+M21,a or w, =W,

MZl,a :Ql+ M21
3 3

N

or w, =W,

Q+

M
And, this term Q, +—2% is known as Kirchhoff shear V_ or V,.
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Where T, = N, + M., .
R

For the case of a plate, R is oo, will be equal to N,

1M,
a, O,

V,=Q,+

We have converted 5 boundary variables to 4 boundary variables using the concept:

Same way, one can go for that edge where « is constant then you have to consider v, ;

w, remains the same. In this way, the edge where o is constant, the variables will be

found.
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Now, we have various support conditions. If we say that an edge is free, then the natural

variables sometimes called stress variables
N,=0,T,=0,V,=0,and M, =0.

And these variables U, =U=w, =y, are known as essential or kinematic variables.

In-plane stress resultant T, and shear force M, is going to be 0.

If an edge is clamped then U, =U,=w, =y, =0.

Simply supported boundary condition is a mixed type boundary condition and in this, we
find several movables simply supported, immovable simply supported, sometimes there

is another classification that hard simply supported and soft simply supported concept. If
T

nt?

we talk about a movable concept, that a normal resultant N V, deflection, M

nn?

the moment is going to be 0. Generally, deflection V, and moment M, are fixed.

The transverse deflection V, = 0 and the normal moment couple M. =0, but these two
variables N, and T, we change with that. If we say that instead of normal stress

resultant N, we can use U, and instead of T, we can use U, will be equal to 0, then

nn?

this type of boundary condition is known as an immovable boundary condition.

Let us say another setup that N, =0 is final, instead of T, we cansay U, =0, w, =0,

and M, = 0. If we choose a variable like this, it is known as hard simply supported.



And, in most cases, analytical solutions are available for hard simply supported boundary
conditions. And, this N, =0, T, =0, V, =0,and M, =0 type of boundary condition

is also known as soft simply supported boundary conditions.

Already immovable concept is given here. So, we can choose from the variables that are
going to be specified.
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Now, a small concept is also there, if we talk about a very thin shell, % and Ri can be
1 2

neglected. If this is the condition then our N, = N,, .

The definition of N, :

N, = ITlZ £1+ Ring
I 2

The definition of N,, :

jle (1+%Jdg .

N?_l



Therefore, N, # N,,, because of this term é and =
1 2

But, 7, = 7,,.

If we say, the shell is very thin, then % and Ri can be neglected and in that case:
2

N,, = N,,. Same way, M, =M,,.

The following equation is the sixth equilibrium equation that exists for the case of thin

shells:
My My +Ny —N, =0.
R, R

If we are talking about a thick or moderately thick shell, this concept is not required and
the previous differential equations are valid. But, if you want to analyze a very thin shell,
then we need a correction term because we do not get this equation through principle of

variations.

We can say that by vanishing moment about the normal to the reference element, that

N,, —N,, = 0. This is the 6th equation, and, it cannot be obtained from the Hamilton
principle, because it is an identity. If we say that this concept N,, —N,,, if you want to
write in that form that is going to be O:

j[lﬁ-%}[l—k%j(fﬂ—qz)dg 0.

0 1 2
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In most of the cases, when we have a spherical shell where R, = R, , then :

Ma My,

R R +N,,—N, =0

When we say it is a flat plate, then this equation is also satisfied. And, if we say that shell

is symmetrically loaded in that case:
N12: N21: Mlz = MZl = O
The shear resultant in-plane displacement and couple is going to be 0.

We have proved that it already has been established, in the literature and in the books,

, . . M, M . .
that N,, - N,, vanishes in every case, but this term —2. ——2 may exist, this may be
2 1

small. Therefore, a correcting term is introduced in the first two equations. And, the

procedure is given in most of the thin shell theory books.
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What is that extra term included? Detailed derivation can be seen in a very recent book
by J N Reddy on “Theory and analysis of elastic plates” or in the Harry Krauss book, and
in other shell theories book also. Now, M,, is denoted by M,,, and M,, = M,, because
h
2
they are same I ¢r,dc.
—h

2

Here C, is a constant 1l L
2 R,

Coa,M,, , will be added in equation (1)

1

@[( NiBo ), =N +(N21a1),ﬂ + Ny, +C0%M12,ﬁ}+%+(l\|ﬂ a,R, (Wo'a _%Jj

1 a . .
+N12 a—R(Wo,ﬂ —U,q R—ZJ"‘% :(Ioulo + |1W1)

2°1 2

. Similarly, in equation (2) Coazl\7llz,a with the minus sign is added.

1 ~ Q 1 au
a[_Nnam +(N22a1)ﬁ +Nya,, +(N12a2)va _COa‘ZMlZ,a:|+R_§+£N 2 —asz [Wo,ﬂ —_2R220 D
+N12—(W0,ﬁ —Uy, %j*‘% :(Iouzo + I1‘/72)

2 1



If we do these corrections, then the exact form of Sander’s shell theory is obtained. But
this correction is required only for thin shells, if you are interested to derive for
moderately thick shells or thick shells, then the previous 5 equations are completely

valid.
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Now, we talk about the boundary conditions. Already, we have discussed that we should
specify stress resultant, moments, in-plane displacement, rotations, but where? Because
in the shell, in a plate, or in a beam it is clear that there are open boundaries. If you talk

about a plate or a beam, their boundaries are available.

But, in the case of the shell, it is not true. If, you talk about a complete closed shell, like a
sphere, then where do you provide the boundary conditions? There is no open end

similarly for a cylindrical shell, a completely closed shell, it is difficult.

The previous set of equations are applicable when you have both ends, which means
corners are available for the boundaries. If a shell has no boundaries, it is completely

closed, the coordinate lines & and g on the middle surface of the closed shell, will be

closed.

The concept of boundary condition will lose its meaning. In the case of a complete or
closed shell, the boundary conditions are replaced by the condition of periodicity means,

you have to do periodically to satisfy the boundary condition symmetric concept.
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A shell is closed with respect to one coordinate and open with respect to another
coordinate. Where the coordinates are closed, the condition of periodicity will be

applied, and the coordinate in which the shell is open, we apply the regular boundary
conditions, which we have obtained.

This type of information is given in the book thin plates and shell theory, analysis and

applications by Theoder Krauthammer and Edward Ventsell. In that book, chapter 10 or
11 is devoted to the shell.
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If a shell is open, it is perfect to work concerning both coordinate lines like panels. We
can say, sometimes you find in the literature that a shell panel is solved instead of a
closed shell. In structural applications, an airplane wing is like a panel or roof of any

structure.

If it is closed like a spherical dome then it will be different, but these days you see the
roof of metro stations, parking lots, any garden, or greenhouse are having this kind of

panel system.

You can apply on both the edges following boundary conditions. Already we have

discussed that edge where « is constant. When this is your g ; £ is increasing over this
edge, over this line, £ is going to be constant. normal will be g and over this line « is

constant.
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One can specify the boundary conditions. In the Kirchhoff Shell theory, | have already
told you that we can obtain love Kirchhoff shell theory by substituting the expression.
From this equation,

1
a,a,
from this equation

1
aa,

[ M3, +(Mya,) | +(Mpd,) , +Myay, |=Q = (1t + 1,7, ) we will get Q and

[—Mnam +(Mpay) , +Mya,, +(M12a2)‘a]—Q2 = (Ui, + 1,47, ) we will get Q,.



By multiplying with a, and differentiating with « and £, putting it here give you this
[_&_ sz ]+ (Qla? ),a n (Qzai),ﬂ

= 1,W, . equation (3)

Rl RZ a1a2 a1a2
And, same way substitutes the value of Q in this
1
1 ~
ai_a[( NllaZ ),a - N22a2,a + ( N21a1)’ﬁ + leai,ﬁ + CoalMlz,ﬂ]
’ equation (1)
Q

+E+q1 (Ioulo + |1‘ﬁ1)

And substituting the value of % in this

2
1 ~
ai_a[_Nllal'ﬂ +(N22a1)'ﬂ + N21a2,a +(N1232 ),a _Coalez,a:|
Q equation (2)
+R_2+Q2 (Iouzo + |1’/72)
2

We will get three equations. These three equations will be valid for CST (Classical Shell

Theory).
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Following are the shell equations which are available to us:



1 Q1 1 U,
—1(N,,a -N,a, +(N,a) +N +—=+| N -
aiaz |:( H 2)’0( 2 ( 2 )’ﬁ lzaiﬁ:| R1 ( B ale [WO’U! Rl jj

1 a, ) )
+leﬁ Wo,ﬁ—UZOR—Z +q1: |0U10+ Ill//l

2 need tobe modified

as per CST
1 Q 1 au
a— N,a, , +(N22a1)ﬁ +Nya,, +(N12a2)‘a +R—z+(sz R, (Wo,ﬁ - 7?220 D
N Y “| 1 L/
+N12 R Wo, 5 —Upg R +0, oz + L)
2 1 need tobe modified
as per CST
1 .

a |:_M22a2,a +(Mlla2 ),a +(M2131)Y/3 + MlZai,ﬂ]_Ql = |1u10 +
a,a, need tobe modified
as per CST

1r " ..
A A _Mllai,,b’ +(M22a1),/; + M21a2,a +(M12a2 ),aJ_Qz = I1uzo + IzV/2

a L
aa, need tobe modified

as per CST
Nll_z(WO;a_a1U10J] +[m(wo’ﬁ_a2u20] +
aQ ) a R

( R1 2 2
a
aa, [le Wo,ﬂ_uzo%j] +

- 2 ’a

+[_ﬁ_ N22j+ (Qa,), N
Rl RZ aia'Z a1a2

But can we work with this? Can we get the solution just by solving these equations?

We have to first convert them to the primary variables. What are the primary variables?

Uy, Uy, Wy, v, and y,. We have to convert this set of equations into these primary
equations then only we can solve it.
Even today, solutions to these equations are very difficult. Why is it difficult? You see

that these are the partial differential equation with variable coefficients. Here the

coefficients are varying with respectto « and g.

These are the PDE with variable coefficients. These are difficult to handle. From the day

when the first shell theory was proposed, since then we have specialized in development



or solution techniques for a general shell theory.

Let us say a shell is subjected to membrane loading, not any transverse loading or
bending loads. There is a lot of application in the industry where a shell is acting as a
membrane. And, there are some applications where it will take the flexural bending, and
there are some which have axisymmetric loading, by doing so one by one some terms get

eliminated and solutions become easy.

(Refer Slide Time: 46:53)

Types o $mte 4 Shvem for Han shalbr-
Shull puskloms = caculubion ¢ Skmap ond Shiin b duffiadt
=5 Govering epuations > puthal dufferenital ef vations o i
Vorakle) (,oe#{ b -
e‘btairunz etk sdwhion v oy duffrc
T an Aoma, cary aps condiduadl for Skt
1. membiane. oy o S"w‘/z - Efted ¢ bendig 2
hishing I8 o B thadvyg.
exomiplen: A Hollow spkm'ical shalls Subpaded 4o nsice.
omd oukside wnifonm \J"RMW(Q

The types of state of stress for thin shell-like membrane theory of shells: Effect of
bending and twisting is neglected in this theory. For example, a hollow spherical shell
subjected to inside and outside uniform pressure will be covered under a membrane

theory of shells.
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We have a case of pure bending or flexural state of stress: some studies have been done

or the equations are solved, but, from an actual physical point of view this condition is
very dangerous, it is not possible for the case of a shell. because a small bending force
may cause huge flexural stiffness. Bending and stretching cannot be decoupled, if, there

is bending there will be some stretching effect also.

Then we have the mixed case (membrane +flexural) which is the more complicated one.
And then the case of Axisymmetric, then the loading, because of the loading also the
equations get simplified, then the case of skew-symmetric, and Axisymmetric case. To
date the most generalized shell is not solved, they are mostly regular shells, formed by
the revolution of surfaces like cylindrical shells or spherical shells; the structures are

made out of that.

In 90% of literature or books, the cylindrical shells, conical shells, and spherical shells
are solved, their governing equation is slightly less complex. But the other shells may
have a completely different profile or doubly curved, even today, shell equations are
difficult to solve for those.
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In the next lecture, 1 will derive the equations for a plate, cylindrical shell, spherical
shell, for the given governing equations. First, we will try to find that can we get the
governing differential equations for those special cases? | will explain that first and then

we will proceed further.

Thank you very much.



