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Dear learners welcome to week- 03, lecture- 02. In this lecture, I will cover the Shell 

Governing Equations that we already have obtained in lecture-01 of week- 03. Now, we 

will discuss those in more detail and the associated boundary conditions also.  
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We shall derive the set of governing equations. In the last lecture, I have covered the 

kinetic energy, internal work done, and derive the relations of external work done. I 

clubbed all the terms together and equated it to 0.  

As per the Hamilton principle: 

  
0

0

T

I EK W W dt       



Potential energy will contain two contributions, the first one is corresponding to the 

internal work done IW  and the second one is corresponding to the external work done 

EW . IW  is the strain energy of an elastic body. 

(Refer Slide Time: 01:56) 

 

If we club all these equations; contribution of kinetic energy K  , the contribution of 

strain energy IW , and contribution of external work done EW .  
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Here in the first equation,  0 10 1 1 1 2 10I u I a a u    is the contribution of kinetic energy 

1 1 2 10q a a u  is the contribution of external work done  
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      is the contribution of internal work 

done having linear contribution, and 1 102
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 is the non-linear contribution. 

Here you see that all are having 10u  coefficient.  

We have clubbed 10u  coefficient, kinetic energy, external work done, and internal work 

done. 0 to t integration outside the whole expression and area integration is outside N 

and that is going to be 0 plus the contribution the coefficient of 20u .   

20u  coefficient will have: 
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 0 20 1 2 1 2 20I u I a a u     kinetic energy and  

2 1 2 20q a a u  external work done.  
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     the linear term for internal work done 

and  1 10 2 1 1I u I      kinetic energy.  

We do not have even the external work done in 1  .  

The coefficient of 2  has: 
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Now, we have clubbed all the equations at one place and integration from 0 to t, and 



these 10u , 
20u , 1 , 

2 , and 
0w  are the arbitrary variations. And, their coefficients 

are integrable over the range 
1  to 

2 .  

We can use the fundamental theorem of variational principle, which we call the 

fundamental lemma of a variational principle. If we use that these 10u , 20u , 1 , 

2 , and 
0w  are arbitrary. So, these coefficients must vanish. This will help us to get 

ordinary differential equations.  
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We will get 5 ordinary differential equations:  
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equation 5  

In some of the shell theories book the equations (3) and (4) are kept at the bottom and in 

some of the theories it is kept in between.  

Here, we can see that all the equations are coupled, you see that these terms 1Q and 2Q  

are in equation (5), 
1Q  is in equations (1) and (3), 2Q  is in equations (2) and (4). They 

are coupled through this shear and the non-linear term also equations are coupled 

together. 

If you talk about a plate equation, for a rectangular plate: 

,xx xN  + ,xy yN  = 0 equation (1) 

For a static case: 

, , 0xy x yy yN N  . equation (2) 

If you talk about a classical plate:  

, , , 32 0x xx y yy xy xyM M M q    . equation (3) 

Here these in-plane equations are not coupled through equation (3), the moment 

equations are not here, or if you write in terms of FSDT here 1Q  & 2Q  do not come. 

We can solve these two equations equation (1) and equation (2) independently and 

equation (3) independently, but for the case of the shell it is not true they are coupled 

through 1Q  & 2Q . So, we cannot solve those equations independently. Each equation 

affects the other, they are related to each other.  

If a shell is thin, the bending effect or a bending force may cause extension in stretching, 

large stretching, significant stretching but, in the plate, it will not. This is the first 



observation and the second observation is that we can take consideration of non-linear 

terms means, without non-linear terms we can consider. Generally, for thin shell 

theories, non-linear terms are not considered but linear terms are considered.  

These are the standard general equations. If a shell is symmetric, then 1I  the mass 

moment of inertia will be: 

 
2

1

1 2

2

1 1

h

h

I d
R R

 
 



  
    

  
  

If we talk about a thin shell, these terms are neglected. Whether if you talk about 

Sander’s theory or love Kirchhoff of shells. Generally, they don’t consider this effect, 

because the thickness is small and radius is very large as compared to one these are 

negligible. 

This 1I  can be 0, but if you talk about a thick shell, then definitely it will have some 

contribution. In the other way, if you talk about a plate. For the case of a symmetrical 

plate, 1I = 0 but for the case of a shell, 1I  0. That is why we have kept 1I  in the 

equations. Here, in the equation you see 1a  & 2a , in most of the books this 1a  & 2a , is 

taken common.  
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If we take 
1a  & 

2a  common, then this governing equation will look like this 
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The loading term and the dynamic term will not contain 
1a  & 

2a .  

In the book of the theory of shells, you will find the final form of governing equations. 

The previous set of equations was the intermediate part just after the integration. This is 

the exact form that is represented in various textbook taking 
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Now, we move to the boundary conditions. In lecture-01 of week-03: 
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These are the contribution due to 3I  
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This is the contribution due to 
4I  and 

5I .  

Here 
1  to 2  and 

1  to 2  is more consistent compared to writing 0 to   or 0 to  . 

The reason behind that is   can take any value, it is not necessary to start from 0, it can 

be anything.  

You may say that 0 to 30˚ or 30˚ to 60˚ between that some component is there of volume 

element. And, these are the contribution of the edge work: 
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




              due to 2eW  

We have put it together and equate it to 0. Ultimately, the area integral and the boundary 

integral are going to be 0: 

0A B      

definitely the time will be there. Taking integration from 0 to t or 2t  to 1t . And at the end 

add dt . The whole equation will be equal to 0. Before proceeding further, let us say we 

have a term: 

 
0

t

A B C D       0dt    

We will say that all individual integration to satisfy this, A , B  need to be 0, that is 

the first thing, this integration d  is going to be 0, this integration d  is going to be 0, 

and so on.  

Inside this “A”, we have a term: 

 1 1 2 2 3 3 0a b a b a b dt    



To satisfy this equation individually each term needs to be 0.  

We will club together all the integration which are under d and under d  line. These 

terms will go to d and these terms will go to d . We will club all the terms under one 

head along   edge and  edge. 

(Refer Slide Time: 15:56) 

 

If we do so and collect all the terms under   and under  . In the first one, 

       

 

2

1

22 1 22 1 20 22 1 22 1 2 21 1 22 1 10 21 1 21 1 1

2 201 1
22 122 1 2 1 0 0 0 0, 10 0

2 2 1

,

N a N a u M a M a N a N a u M a M a

da ua a
Q a Q a w N w w N w u w

a R R

 

  

 

 







          

   
           

   



 the boundaries are associated where   is constant. And, in second integral  

       

 

2

1

11 2 11 2 10 11 2 11 2 1 12 2 12 2 20 12 2 12 2 2

1 102 2
11 121 2 1 2 0 0 0 0, 20 0

1 1 2

,b

N a N a u M a M a N a N a u M a M a

da ua a
Q a Q a w N w w N w u w

a R R

 

 

 

 







          

   
           

   



  is constant. This means if we have a patch like this and we are always saying this is 

  and this is  . Here,   is equal to 1  and 2 .  

This is the edge where   is constant. Over these edges these conditions will be satisfied 

and, on this edge,   is equal to  1  and 2 . It may be 0 because you have taken the 

coordinate system here itself so, it will be 0. These variables need to be satisfied. 



I have already told you that we are going to put this term   22 1 22 1N a N a = 0, this term 

 22 1 22 1M a M a  = 0, this term  21 1 22 1N a N a  = 0, and so on and 
0w  coefficients.  
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If we do so, we will get an edge where   is constant, either and or conditions are there, 

either 22 1N a  or 20u , sometimes we can say prescribed. The very reason to write like this 

we are not saying that 22N  = 0, but we are saying 1a  will get canceled from both sides. 

You can cancel it, or take it same, there will be no problem. 22N  = 22N . 

On the edge, 22N  the external in-plane resultant then at the boundary the internal stress 

resultant and 22N = 22N . Same way at the boundary the displacement 20u = 20u , this may 

be 0, may not be 0.  

We should write in a more general form. And, the second reason to put this 1a  is there 

are some cases where the boundary is free, if we talk about a circular plate, then it will 

be ( 22N  r ) = 0, not just 22N  .  

Then, you may ask from where this ‘r’ is coming. So, this is 1a . That is why I have kept 

1a . 

In the first case: 



 

22 1 22 1 20 20

21 1 22 1 10 10

22 1 22 1 2 2

21 1 21 1 1 1

N a N a or u u

N a N a or u u

M a M a or

M a M a or

 

 

 

 

 

 

 or 
20u    

2 1Q a +    2 201 2
22 120 0 0, 20 0

2 2 2mod mod

,

need tobe ified need tobe ified
as perCST as perCST

a ua a
N w w N w u w

a R R
 

   
       

   
= 2 1Q a or

0w  

These are the 5 variables at an edge where   is constant. Only out of these variables we 

have to choose the edge where   is constant.  

And the other edge where   is constant we have another 5 variables. They are: 

12 2 12 2 20 20

11 2 11 2 10 10

12 2 12 2 2 2

11 2 11 2 1 1

N a N a or u u

N a N a or u u

M a M a or

M a M a or

 

 

 

 

 

 

 

1 2Q a  + 1 102 2
11 120 0, 20 0

1 1 2

,
a ua a

N w N w u w
a R R

 

   
      

   
 = 1 2Q a  or 0w .  

These are the cases applicable when the geometry and coordinate axis are matching. 

For example, you have taken boundaries like this and your variables are also like this 

 and  . The normal and tangents are along the same coordinate axis. But there may be 

a case where you have chosen a coordinate system some like that, but we are getting a 

boundary like this, a corner like this, instead of this we are getting a curved shape. Then, 

over this boundary what are the variables to be specified? So, at the boundaries, we have 

to say in terms of tangent and normal. 
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I am going to write these variables in terms of  t̂  and n̂ .  

0 0

0

0

0

0

0

nn nn no no

ns ns so so

n n

nn nn n n

ns ns t t

N N or u u

N N or u u

Q Q or w w

M M or

M M or

 

 

  

  

  

  

  

 

Now, we say that if n̂  is   then t̂  will be  , then you can directly map these things. If 

n̂  is  is equal to 1, then it will be: 

11 11 10 10

12 11 20 20

1 1 0 0

11 11 1 1

12 12 2 2

0

0

0

0

0

N N or u u

N N or u u

Q Q or w w

M M or

M M or

 

 

  

  

  

  

  

  

If, n̂  normal is   then you can find the rest of the variable. It is better to write in a more 

general sense. Depending upon the requirement you can convert it into the explicit form.  
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Now, I am coming to the very first shell theory, the Love Kirchhoff shell theory, in that 

theory 23  and 13  are neglected and 33  is also neglected. Based on the assumptions that 

the transverse axis remains perpendicular to the reference surface, before and after the 

deformation, there is no change the angle remains 90˚.  

If we pose those constraints, then the rotations will be known in terms of in-plane 

deformation and transverse displacement. 

10
1 0,

1 1

1u
w

R a
    and    20

2 0,

2 2

1u
w

R a
     

If you know all these things, you will get 5 differential equations that can be converted 

into 3 equations using this concept.  

10
1 10 0,

1 1

20
2 20 0,

2 2

3 0

1

1

u
u u w

R a

u
u u w

R a

u w









 
   

 

 
   

 



 



The same way you see here that at an edge we need 4 boundary conditions, that we will 

have 4 variables 
10u , 

20u , and one will be a slope 0,nw  and 
0w . First of all, we need to 

modify the boundary conditions, so, that we will get these 4 variables.  
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Already, I have said that if you apply Love Kirchhoff's assumptions, it will be 8 order 

PDE partial differential equation. We can satisfy the maximum or we can solve 8 

variables. So, we need 8 boundary conditions. For the case of FSDT, we have 10 

boundary conditions, but in the classical shell theory, sometimes we called it CST 

(classical shell theory), it will have 8 boundary conditions. 
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For that purpose, we have to modify the boundary conditions. What are the variables we 

are going to modify? Right now, I am doing without non-linear terms. So that it will be 

easy to explain, but if you include the non-linear term one can proceed with that also. 

From explanation point of view, in this case, I have deleted the non-linear terms and I am 

proceeding further.  

     

   

2

1

22 1 22 1 20 22 1 22 1 2 21 1 22 1 10

21 1 21 1 1 2 1 2 1 0

0
N a N a u M a M a N a N a u

d
M a M a Q a Q a w

 


 










       


     
  

This is the edge, where   is constant  

     

   

2

1

11 2 11 2 10 11 2 11 2 1 12 2 12 2 20

12 2 12 2 2 1 2 1 2 0b

N a N a u M a M a N a N a u
d

M a M a Q a Q a w

 

 










       

     
   

This is the edge, where   is constant 



     

   

2

1

22 1 22 1 20 22 1 22 1 2 21 1 22 1 10

21 1 21 1 1 2 1 2 1 0

0
N a N a u M a M a N a N a u

d
M a M a Q a Q a w

 


 










       


     
  

This is integration along the    

This term  21 1 21 1 1M a M a    needs to be modified  

These terms  22 1 22 1 20N a N a u  ;  22 1 22 1 2M a M a   ; and  21 1 21 1 10N a N a u   don’t 

need any modification. 

2  is the rotation. When we are talking about the second direction the rotation will be 

in that axis. We don’t need to modify this term  22 1 22 1 2M a M a    .  
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If we substitute the value of 1  in this  21 1 21 1 1M a M a   term.  

10
1 0,

1 1

1u
w

R a



    .  

If we put, 10
1 0,

1 1

1u
w

R a



     



The term 10

1

u

R


 will give a contribution to this 22 1 22 1

10

1 1

M a M a
u

R R

 
  

 
 term.  

0,

1

1
w

a
  will give a contribution to this  21 21 0,M M w   .  

It is a derivative with respect to  . We will further reduce it to 
0w . 
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If we proceed further, it will give you two terms:  

 21 21 0
,

M M w


    and  21 21 0,
M M w


  . 

 If you integrate this term  21 21 0
,

M M w


    it will go to the corner   

And will look like this  
2

1

21 21 0,
M M w



 
   .  

Generally, we do this derivation before adding the external work done, then 

 21 21 0,
M M w


   will go to the contribution of 0w .  

0w  has this  2 2 21, 2 2 21, 0a Q M a Q M w      contribution  



0w  contribution has   
2

1

21 21 0,
M M w



 
   this contribution known as Kirchhoff shear, 

corner terms. 
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Now, the boundary condition will be either 22 1 22 1 20 20N a N a or u u   

 The next combination will be: 

21 21
21 21 10 10

1 1

M M
N N or u u

R R

   
      

   
 

22 22 2 2

1 1 21, 1 1 21, 0 0

21, 21,

1 1 0 0

1 1

M M or

a Q M a Q M or w w

M M
Q Q or w w

a a

 

 

  

   

   

 

And, this term 
21,

1

1

M
Q

a


  is known as Kirchhoff shear nV  or 1V .  
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If, I write in terms of n̂  and t̂  it will be: 

0 0

0

nn nn no no

nt nt to to

n n

nn nn n n

N N or u u

T T or u u

V V or w w

M M or  

 

 

 

  

 

Where ntT  = nt
nt

t

M
N

R
 .  

For the case of a plate, R is  , will be equal to ntN   

nV  = 
1 nt

n

t t

M
Q

a 





.  

We have converted 5 boundary variables to 4 boundary variables using the concept: 

10
1 0,

1 1

1u
w

R a
     

Same way, one can go for that edge where   is constant then you have to consider 2 ; 

1  remains the same. In this way, the edge where   is constant, the variables will be 

found. 
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Now, we have various support conditions. If we say that an edge is free, then the natural 

variables sometimes called stress variables  

0nnN  , 0ntT  , 0nV  , and 0nnM  .  

And these variables 0no to nU U w     are known as essential or kinematic variables. 

In-plane stress resultant ntT  and shear force nnM  is going to be 0.  

If an edge is clamped then 0 0no to nU U w     .  

Simply supported boundary condition is a mixed type boundary condition and in this, we 

find several movables simply supported, immovable simply supported, sometimes there 

is another classification that hard simply supported and soft simply supported concept. If 

we talk about a movable concept, that a normal resultant nnN , ntT , nV  deflection, nnM  

the moment is going to be 0. Generally, deflection nV  and moment nnM  are fixed. 

The transverse deflection nV  = 0 and the normal moment couple nnM  = 0, but these two 

variables nnN  and ntT  we change with that. If we say that instead of normal stress 

resultant nnN , we can use noU  and instead of ntT  we can use toU  will be equal to 0, then 

this type of boundary condition is known as an immovable boundary condition.  

Let us say another setup that nnN  = 0 is final, instead of ntT  we can say toU  = 0, 0w  = 0, 

and nnM  = 0. If we choose a variable like this, it is known as hard simply supported. 



And, in most cases, analytical solutions are available for hard simply supported boundary 

conditions. And, this 0nnN  , 0ntT  , 0nV  , and 0nnM   type of boundary condition 

is also known as soft simply supported boundary conditions. 

Already immovable concept is given here. So, we can choose from the variables that are 

going to be specified.  
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Now, a small concept is also there, if we talk about a very thin shell, 
1R


 and 

2R


 can be 

neglected. If this is the condition then our 12N  = 21N .  

The definition of 12N : 

12 12

2

1N d
R




 

 
  

 
  

The definition of 21N : 

21 21

1

1N d
R




 

 
  

 
 .  



Therefore, 
12N   21N , because of this term 

1R


 and 

2R


 

But,  
12  = 

21 .  

If we say, the shell is very thin, then 
1R


 and 

2R


 can be neglected and in that case: 

 12N  = 
21N . Same way, 12M  = 21M .  

The following equation is the sixth equilibrium equation that exists for the case of thin 

shells:  

21 12
21 12

2 1

0
M M

N N
R R

    .  

If we are talking about a thick or moderately thick shell, this concept is not required and 

the previous differential equations are valid. But, if you want to analyze a very thin shell, 

then we need a correction term because we do not get this equation through principle of 

variations.  

We can say that by vanishing moment about the normal to the reference element, that 

21 12N N  = 0. This is the 6th equation, and, it cannot be obtained from the Hamilton 

principle, because it is an identity. If we say that this concept 21 12N N , if you want to 

write in that form that is going to be 0:  

 21 12

1 20

1 1 0d
R R

 
  

  
     

  
 .  
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In most of the cases, when we have a spherical shell where 1R  = 2R , then : 

21 12
21 12

2 1

M M
N N

R R
    = 0 

When we say it is a flat plate, then this equation is also satisfied. And, if we say that shell 

is symmetrically loaded in that case: 

12N = 21N = 12M = 21M  = 0 

The shear resultant in-plane displacement and couple is going to be 0. 

We have proved that it already has been established, in the literature and in the books, 

that 12N  - 21N vanishes in every case, but this term 21 12

2 1

M M

R R
  may exist, this may be 

small. Therefore, a correcting term is introduced in the first two equations. And, the 

procedure is given in most of the thin shell theory books. 
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What is that extra term included? Detailed derivation can be seen in a very recent book 

by J N Reddy on “Theory and analysis of elastic plates” or in the Harry Krauss book, and 

in other shell theories book also. Now, 12M  is denoted by 12M , and 12M  = 21M  because 

they are same 
2

12

2

h

h

d 

 .  

Here 0C  is a constant =
1

2 1 2

1 1

R R

 
 

 
 

0 1 12,C a M   will be added in equation (1) 

   

 

1 101
1111 2 22 2, 21 1 12 1, 0 1 12, 0, ,

1 2 1 1 1 1

2
12 0 20 1 0 10 1 1

2 1 2

1 1
,

1
,

a uQ
N a N a N a N a C a M N w

a a R a R R

a
N w u q I u I

a R R

    

 

  
           

  

 
     

 

. Similarly, in equation (2) 0 2 12,C a M  with the minus sign is added. 

   

 

2 202
2211 1, 22 1 21 2, 12 2 0 2 12, 0, ,

1 2 2 2 2 2

1
12 0 10 2 0 20 1 2

1 2 1

1 1
,

1
,

a uQ
N a N a N a N a C a M N w

a a R a R R

a
N w u q I u I

a R R

    

 

  
            

  

 
     

 

 



If we do these corrections, then the exact form of Sander’s shell theory is obtained. But 

this correction is required only for thin shells, if you are interested to derive for 

moderately thick shells or thick shells, then the previous 5 equations are completely 

valid. 
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Now, we talk about the boundary conditions. Already, we have discussed that we should 

specify stress resultant, moments, in-plane displacement, rotations, but where? Because 

in the shell, in a plate, or in a beam it is clear that there are open boundaries. If you talk 

about a plate or a beam, their boundaries are available.  

But, in the case of the shell, it is not true. If, you talk about a complete closed shell, like a 

sphere, then where do you provide the boundary conditions? There is no open end 

similarly for a cylindrical shell, a completely closed shell, it is difficult.  

The previous set of equations are applicable when you have both ends, which means 

corners are available for the boundaries. If a shell has no boundaries, it is completely 

closed, the coordinate lines   and   on the middle surface of the closed shell, will be 

closed. 

The concept of boundary condition will lose its meaning. In the case of a complete or 

closed shell, the boundary conditions are replaced by the condition of periodicity means, 

you have to do periodically to satisfy the boundary condition symmetric concept. 
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A shell is closed with respect to one coordinate and open with respect to another 

coordinate. Where the coordinates are closed, the condition of periodicity will be 

applied, and the coordinate in which the shell is open, we apply the regular boundary 

conditions, which we have obtained.  

This type of information is given in the book thin plates and shell theory, analysis and 

applications by Theoder Krauthammer and Edward Ventsell. In that book, chapter 10 or 

11 is devoted to the shell. 
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If a shell is open, it is perfect to work concerning both coordinate lines like panels. We 

can say, sometimes you find in the literature that a shell panel is solved instead of a 

closed shell. In structural applications, an airplane wing is like a panel or roof of any 

structure.  

If it is closed like a spherical dome then it will be different, but these days you see the 

roof of metro stations, parking lots, any garden, or greenhouse are having this kind of 

panel system. 

You can apply on both the edges following boundary conditions. Already we have 

discussed that edge where   is constant. When this is your  ;   is increasing over this 

edge, over this line,   is going to be constant. normal will be   and over this line   is 

constant. 
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One can specify the boundary conditions. In the Kirchhoff Shell theory, I have already 

told you that we can obtain love Kirchhoff shell theory by substituting the expression. 

From this equation, 

     22 2, 11 2 21 1 12 1, 1 1 10 2 1, ,
1 2

1
M a M a M a M a Q I u I

a a
  

       
 

 we will get 1Q  and 

from this equation 

     11 1, 22 1 21 2, 12 2 2 1 20 2 2, ,
1 2

1
M a M a M a M a Q I u I

a a
  

       
 

 we will get 2Q .  



By multiplying with 
2a  and differentiating with   and  , putting it here give you this 

   2 11 2 ,,11 22
0 0

1 2 1 2 1 2

Q aQ aN N
I w

R R a a a a

 
     
 

. equation (3) 

And, same way substitutes the value of 1

1

Q

R
 in this 

   

 

11 2 22 2, 21 1 12 1, 0 1 12,, ,
1 2

1
1 0 10 1 1

1

1
N a N a N a N a C a M

a a

Q
q I u I

R

   



    
 

   

     equation (1) 

And substituting the value of 2

2

Q

R
 in this 

   

 

11 1, 22 1 21 2, 12 2 0 2 12,, ,
1 2

2
2 0 20 1 2

2

1
N a N a N a N a C a M

a a

Q
q I u I

R

   



     
 

   

     equation (2) 

We will get three equations. These three equations will be valid for CST (Classical Shell 

Theory). 
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Following are the shell equations which are available to us: 



   

   

1 101
1111 2 22 2, 21 1 12 1, 0, ,

1 2 1 1 1 1

2
12 0 20 1 0 10 1 1

2 1 2 mod

2
11 1, 22 1 21 2, 12 2, ,

1 2

1 1
,

1
,

1
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as perCST

a uQ
N a N a N a N a N w

a a R a R R
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
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
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  

 
   

       
   

 

    

   

2 20
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2 2 2 2

1
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1 2 1 mod
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1
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a u
N w

a R R

a
N w u q I u I

a R R

M a M a M a M a Q I u I
a a




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



  
    

  

 
   

       
   

 


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  

 

 






 
 
 



 
 

         
 
 

      
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  
 

 

   

1
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1 2 1 2 1 2
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 
 
 
 

    
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      

 
      
 

  

But can we work with this? Can we get the solution just by solving these equations?  

We have to first convert them to the primary variables. What are the primary variables? 

10u , 20u , 0w , 1  and 2 . We have to convert this set of equations into these primary 

equations then only we can solve it.  

Even today, solutions to these equations are very difficult. Why is it difficult? You see 

that these are the partial differential equation with variable coefficients. Here the 

coefficients are varying with respect to   and  . 

These are the PDE with variable coefficients. These are difficult to handle. From the day 

when the first shell theory was proposed, since then we have specialized in development 



or solution techniques for a general shell theory.  

Let us say a shell is subjected to membrane loading, not any transverse loading or 

bending loads. There is a lot of application in the industry where a shell is acting as a 

membrane. And, there are some applications where it will take the flexural bending, and 

there are some which have axisymmetric loading, by doing so one by one some terms get 

eliminated and solutions become easy.  
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The types of state of stress for thin shell-like membrane theory of shells: Effect of 

bending and twisting is neglected in this theory. For example, a hollow spherical shell 

subjected to inside and outside uniform pressure will be covered under a membrane 

theory of shells. 
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We have a case of pure bending or flexural state of stress: some studies have been done 

or the equations are solved, but, from an actual physical point of view this condition is 

very dangerous, it is not possible for the case of a shell. because a small bending force 

may cause huge flexural stiffness. Bending and stretching cannot be decoupled, if, there 

is bending there will be some stretching effect also.  

Then we have the mixed case (membrane +flexural) which is the more complicated one. 

And then the case of Axisymmetric, then the loading, because of the loading also the 

equations get simplified, then the case of skew-symmetric, and Axisymmetric case. To 

date the most generalized shell is not solved, they are mostly regular shells, formed by 

the revolution of surfaces like cylindrical shells or spherical shells; the structures are 

made out of that. 

In 90% of literature or books, the cylindrical shells, conical shells, and spherical shells 

are solved, their governing equation is slightly less complex. But the other shells may 

have a completely different profile or doubly curved, even today, shell equations are 

difficult to solve for those. 
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In the next lecture, I will derive the equations for a plate, cylindrical shell, spherical 

shell, for the given governing equations. First, we will try to find that can we get the 

governing differential equations for those special cases? I will explain that first and then 

we will proceed further. 

Thank you very much. 


