Theory of Composite Shells
Dr. Poonam Kumari
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Week - 03
Lecture - 01
Derivation of Governing equations

Dear learners welcome to the 3rd week, lecture 01. In this lecture, | am going to derive

the basic Governing equations for a shell

(Refer Slide Time: 00:45)

Topic Covered Till date
NU/{L/‘/ baic @7“}7’“ e

Week-2
Tferentn ¢ 9 Myf%m
Thin st Hom ¥

In the first week, we have covered the preliminary basic equations of shells. In the
second week, we have derived the theory of differential equations of the theory of shells
and started the basic formulation of thin shell theory. In the 3rd week, | am going to

continue the development of the theory of shell governing equations.
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We were on the strain energy or elastic strain energy of a shell that can be written as

oU or sometimes it is known as oW, internal work done. For a 3-dimensional case:

oU = [oy08,dv :Cj 0,06, AA, (da)(dB)(dg)

gc—.b
I\J‘D_'-—.r\)\j

Here, dV is the volume of the shell. we can write that volume of shell is

v = A A, (da)(dp)(ds).

LimitsareOto o or 0to £ or sometimes we may say that & goes from ¢, to «, and

S goes from S, to f,. It doesn't need to be 0.

If we open this explicitly, oU will be:

K — R
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J. 01,0E), + 05,085, + 115071, + 1130713 + 7530755 |AA (da)(dﬂ)(dg)
= = = ==
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It will be a very huge integral, but we will divide it into sub integrals like 1., 1,, I;, I,

and I, and extract the terms in the integrations.
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For the case of calculation:
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If you take the first variation in this, it will be

0&), +¢ 0.



In the expression of &) :
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Here, j these are the

%Jr@ai“rﬂ terms are related to linear, L
da a, df R 2A

oy ¥, 03

terms are related to the curvature.
da a, 0f
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non-linear terms, and E(

Here, in & we take 1 by A common and in &}, also 1 by A will be common. Substitute

the expression of 0&,, by taking 0:
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The linear term will be:

8 Oa aa, of

1 l aulO + auZO %4_ WOai
(“gJai 0o a3, of R
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Similarly, the nonlinear term will be:

i oW, _ AUy, OOW, . a,0U,
A’ da R oa R,

For example, y =u® and if you want to take the first variation of y, then dy = 2udu

Similarly, twice will come up, it will get canceled and nonlinear terms will be expressed

like that. Same way the curvature term will be:
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Here a, is kept inside because we are going to use this in the definition itself.

The dV will be: a1(1+ %]az (1+Rij(da)(dﬂ)(dg)

2

If you take it inside, then £1+ Fi ] will be canceled, inside remains a,,a, and (1+ ¢ ]
1

2

o,, and (1+ RiJ will be taken common and if you put a,,a, inside, then a, get
2

canceled. Finally, the term will look like this:
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The linear term will be:

oW,
oy (1+ Ri](azaum o TOUR, 5 T34, —0] .
2
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Same way, the non-linear part will be:

O'llg(l-f- Rij(azéz//l,a +81//2a1,ﬂ) .

2

In the non-linear part, there is A, so, A will get canceled, and another A remains at
the bottom. The curvature term will be:
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Now, we can use the definition of stress resultant.
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As per the definition of stress resultant:

o [1+Rij(dg)

2

N‘é—'—u'\)\3

0-11(1+Rij§(dg) Ny, =

2

011[1+R1J(dg) M,, =

2

N11 =

N‘é_'—.m\j
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Right now, we are not using the definition of N,,, but we are using the definition of N1,

where Nu is defined as another resultant:

Nll=

o [1+ Rij(u %jl(dg)

2 1

N‘é_!—.m\:r

When we derive a non-linear one, then we have to consider this new definition Nu;:.
Sometimes in some books, it may be star, tilde, delta means we have to give a separate

symbol for this definition.
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Using the following substitution for all terms we reduce to

N, a0, =(N,a,0u, )u -(Nya,) oy, M, .0y, =(M, .0y, )(, -(Mya, )‘\, o,

Wt
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If we use these definitions, they can be written like this N,,, M,,, Niu. Now, in term
du,,,, , there is a derivative. We want to reduce this derivative; we want to get rid of this

derivative. The standard approach is that N,,a,0u,, can be written as:

N,,8,0u; = (N,8,0Uy )., —(Nya, )., AUy

We have to apply the same procedure and M,,a,0y; will be:

M,a,0y, =(M,a,0v,),, —(M,a,),, Oy, .

Same way, we will treat this N1 as one term, and here ow,,,, is a derivative comma «

so, it will give two terms and a1R1 will give you one term.

From this, we will get:
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| have done it purposefully separately so that we can, later on, take it out of the equation.

[Nu—[ e —%D ow, will be one contribution and
%4 «

LNll ( vy — 31:110 j][alaR:JmJ will be the second contribution and the very first term
8

N,,a,0u,, will go to the boundary along o because here « is derivative. We can

integrate along «, o will be limits, o isequal to o, to «,.

One from linear N;,a,0u,,, one from the moment M ,a,0y; , and one from non-linear

Nn—( e 31:110 jawo , we will have three terms which will be on the boundary and
a

integration on the d 5. These are generally colored pink so that we can categorize them

as boundary terms. For 1,, 1., 1, and I, we will proceed with the same procedure.
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First of all, we have to write the explicit expression of 0&;, and 0&,,.
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If we put the variation, here you take E common, from there, A, will get canceled A

will remain.
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Due to the non-linear term, we have to define a new variable which is N2
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If we use these definitions, the expression for 1, will become
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Using the following substitution for all terms we reduce to
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If we substitute here and following the same procedure as we have done for |, case to

get rid of derivative g terms, ultimately, it will give you this expression
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Here, the first term is the linear contribution, second term is the non- linear contribution

and the last term is the boundary term, but this time, it will be on the boundary of g, f,

to £, and integration over de .
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Now, the integration of 1,:

(71267/12)A1A2 (der)(dB)(ds)
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¥, expression is very big and it has two parts: one part in which E is common in

1.
another part E IS common.
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Here, 1 by A having some coefficients and 1 by A, having some coefficients. From

here, 1, will be:
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At the last the green one is the non-linear term.

In the first term, A will get canceled, A, will be above. In the second term, A, will be

canceled and A, will be above. We will get the two contributions.
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We already know the definition of N, is:
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The definition of N,, is:
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The first term will give a contribution of N,,, the second term will give a contribution of

—
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N,, and third & fourth terms are ¢ M,, and ¢ M,,. And here is a new contribution N

If you go back in this combination A A, will get canceled. Ultimately, we have a new



definition of Ny, is:
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linear contribution. The terms like &,0U,,,, 0Uy 4, 3,0¥,,, &0, 5, OW

b.p and ow, ,

are having derivative along « and £.

We have to convert it into a primary form and proceed further. It will become:
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In this way, you will get all the terms that will be in the area and the rest of the terms like

the whole derivative with respect to g and whole derivative with respect to « going to

the boundary.

There will be some terms which will be on the boundary of g: 5, to S,

dg

o

ILleazauzo +Mpa,0y, + Ni [Wo,ﬁ —Uy, %ngOJ

B 2

And there will be some terms which will be on the boundary « : «; to «,

P
da .
B

I( N,,3,0U; + M 8,09, + N2 [WO,a —Uy, %]awo]

a

Whenever we have a whole derivative with respect to £, that will go to the g boundary.

When we have a whole derivative with respect to « , then it will go to « boundary.
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If you substitute it in the equation 1, will be:
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The definition of Q;:
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It will be replaced by Q, and the whole integral becomes in plane integral « and 5.
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And finally, the terms will look like this
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Similarly, I, will be:
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If we substitute the value taking del:

Then, the terms will look like this:

I, _Iji%a(aﬁﬁ -4 fum +aow, J(H%}(da)(dﬂ)(dg).

2

The definition of Q, is:



After replacing with Q, the term will be:
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There is a derivative with respect to £, we have to get rid of that and then, 1, will be:

al
II[Qz (aa,0y,)-Q, alaéauzo +(Qa), Mo}(da)(dﬂ) on the area.

And only this [(Q,a,0w, )

to S,.
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Mpa, ;+0,a0, )51)/1 + (M”a, = (Mya, ) ,~Myay, - (M, )‘a + Qzalaz)éy/f

(

Nonlinear(NLT')+ boundaryterm
/\/\/ N A

Now, we have to club all the terms, like the terms corresponding to the kinetic energy

and the terms corresponding to the potential energy.

B 0 (Uloaulo + UyOUy, + WoOW, ) +1 (Uma Y1+ OUygl/y +UpgO W/, +1/,0Uy, )
_+|2 (Wlay/1 +‘/726‘//2)

:lalaz(da)(dﬂ)Jr

_( Nnaz ),a + N22a2,a _( N21a1)”3 - lealﬂ Ql R1 j|au10

8,8,
Rl

N11a1a2 N22a1a2
R R _[(Qlaz),ﬁ(Qzal)ﬁﬂaW“

(MZZaZ,a _(MllaZ ),a _(M21a1),ﬁ - Mlza:l,ﬂ +Q1a1a2)a‘//1 +
_Mllai,ﬂ -(M zzai)ﬁ -M,a,, —(Mlz%),a +Q2a1a2Jaw2 +nonlinear term + boundary term

Ny,a, 5 _(szai),ﬁ Ny, , _(leaz )’a -Q, }auzo +

QO —

In this slide, I have only put the terms kinetic energy plus the linear contribution of the

strain energy, there will be some non-linear contribution and boundary terms also.

It is a very big equation and the most important part is that here I have arranged the

coefficient in terms of ou,,, du,,, ow,, oy, and Oy, . Ifweaddall I, I,, I, I, and I,

and clubbing the coefficient of ou,,, du,,, ow,, dy, and Oy, together will help us to

frame up the governing equation easily.
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Non linear terms
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—| N2 | Wy 5 —Uyy =% | | OWy — N120Uyg —=| Wy, — Uy, +
2/) 4 1 2

These are the non-linear terms. The first contribution is due to |, the second

contribution from 1, and third and fourth contribution from |I,.
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Boundary terms
: 3 - a amy ). [
+I (N0, + Myya, 0y, ) + N, —'[ww, B }(—-OJOWD da
. a ) i

.dﬂ

a=al
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§ ST a| *“ R

AI”

al\

+j(A’\']:a:Ju:ﬁ‘W]:a:dl//:)+]§'1:[\1'0ﬁ Uy = jou 1 dp j
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a, R,
au, ). |
[ (N a,0u, + My,3,0p; ) + NM—L e — }awo ds
“ 4 Rl B=P,
B
+J N,,8,0U;5 + M 8,0y, + N2 (Wo,a —Uyp, %jawo] da
a 1
a 2
]| Nypa,duy, +Mypa,0, + Nz | W, — Uy, R—?] awo] dg
B 2

a

+J.(Q2

B

) dB+](Qadw,)da

And these are the boundary terms. The first contribution is from 1,, second from |,

third and fourth from |, and the last contribution is from 1, and I . These are the

boundary terms. Here, the pink and red ones are the linear contributions, the black and
blue ones are the non-linear contribution. Till now, we have clubbed the coefficients,

boundary terms, non-linear terms, and linear terms separately.

Now, the External work done is left. We have to add it because in Hamilton's principle,

T

IaK —(8WI — oW, )dt =0 . We have identified the terms, the contribution of kinetic

0

energy, and contribution due to the internal energy and put it in a simplified form



arranged in ou, ow, Oy, Oy, coefficients. Now, we have to evaluate external work

done.
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Extennal Wok dons-

External force vecter
_ )€
Cd’ﬁ;f) = 2/ (4}6/
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0, — Compomend akery -
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93~ tmpanent along normag Ny N2

In the external force vector: let us say a force vector q is acting on a surface. It is acting

on a reference surface ¢ because the shell is thick, so, we assume that though sometimes

it is acting on the top of the shell, the external force vector is taken as at the reference

surface.
CI(Ol,,B,t) = ql(afﬂ’t)'ﬁ +qz(aaﬁat)t2 —q3(a,,8,t)t3

g, component along the « direction, g, component along g direction, and d,

component along normal (n). Generally, the surface normal (n) is in the upward

direction, but when you apply pressure, it will be in the opposite direction that is why it

is taken as g, and normal is in the downward direction.
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Now, these q,, g,, and g, may contain all possible types of body or surface load acting

on a unit area of the reference surface. It is not just a pressure that you say that only
mechanical pressure is not applied, let us say the shell is resting on an elastic foundation,

the stiffness of the foundation resisting force can be modeled as ku, , time, damping

coefficients 4 , and velocity of the foundation ;.

g, can be defined as:
0, = P~k — AU,

Where, p, is purely mechanical pressure, ku, is the stiff foundation or stiffness of a
foundation resisting, and AU, the damping coefficient and the velocity of the foundation.

Similarly, we can find g, and q,:

9, =P, — kzuz _Zzuz
0; = Ps —Ksly — 4U;

We can say that we are going to analyze a shell resting on an elastic foundation and
some damping coefficient is also considered or pure mechanical loading. In this way you

can take consideration in this q,, q,, and q,.
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Now, we are coming to the edges. Let us say there will be stress resultants acting. If we

talk about the in-plane resultants or those force components, over this edge £ is constant
and over this edge « is constant. Stress resultant on an edge where £ is constant: there

will be force resultant N,,, N,, and shear force Q,will be acting. The total force will be:
F, = (Nt + Nt +Q,n) Ada .

Similarly, the couples M, and M, may also act on the edges.

Ml = (_M12t1 + Mltz)Azdﬂ
M. =

2 (_M2t1 + M21t1) Ada

We can say that the resultant M, will be on the edge where « is constant and M, will

be on the edge, where £ is constant. Here, the force F, will be:

F =(Nt +Nyt, +Qn)Ade,.

In this way, we can say that on the edges; there may be some force resultant and coupled

resultants are acting.
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As we have previously assumed that all the body and surface forces
acting on the shell may be replaced by statically equivalent forces
acting on the reference surface, the work done by these forces is

514/S=J.quzi(a,ﬁ,0)ala:d0@ﬁ\// G=9 ?\1—.01

ap 2= qZ

The final expression for the work of the body and surface forces is

oW, = “’(‘]15111{ - 61351130/— q;5vtﬁlla3dad/3 Y, = @@%
DL EXIAT (NEE

ap

A
P H
5W€]=”z/,+%§gj+§i53’)az[l+%]({ﬁ6{§ fw/ @EA
2 C(fg g

B¢ -

Now, if you say that the outside forces are acting on these edges, they may also

contribute to the external work done. Later on, you may think that a problem that in
which a shell and some edge moment is applied over that edge or that some normal
resultant force is acting on the edge, we may consider this kind of situation, for that

purpose let us say some work is done.

And work done due to surface forces oW, will be:

W, = j j gou(a, S,0)a,a,dad B
B

a

At the reference surface ¢ is 0, therefore, A reducesto a and A, reducesto a,. oW,

the external work done due to the surface forces will be:

oW, = Ij(q1au10 +0,0U,, — Qy0W, ) aa,dadf.
ap

Here, you can write u, instead of u,, as u, is equal to u,+¢ y,, here ¢ is 0, only the

contribution is due to u,, .

Now, on the edges the work done will be: let us say this is the £ edge and this is the «

edge, will be d g and dg. oW,, will be:

W, = [ [ (5,00, +T,0u, + T,,0W) 3, [1+ Rijd pdc .
B

2
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on a typical edge of constant# where the bars refer to the edge values.

oW, = [ [ (7.0 + Eu, + )y (1 +%]dad§ —

al 1) —

Substituting the terms of displacements in the above equations we get

W= {3, (6m+ o, )+, (G + GO, +rl (5n ( ]dﬂd(
B¢

Using the equations of stress resultants and moments we get ,_j"r "*é/

_ _ _ _v d
W, =[N0+ N o, + 0w, + Mﬁwl +11,.0p, |adB !
ﬂ e —r —

Using the definition, here ¢ is the integration. We can use those concepts of integration
and before going to proceed further, let us define the work done over this edge where g

is constant. OW,, will be:
_(((= = = S
oW, = ”(r218u1 +5,,0U, +T,,0W) 3, [1+ aj dadg.
Fs

If we substitute the value of u,, u, and u, because we know u, = u,+¢ y,, and so on

then, oW,, will be:

oW, = Jj(a-ll(aulo +6-61//1)"'2_'12 (auzo +g81//2)+z_'138W0)aQ [1"' Rijdﬂdg
Bs

2

Using the concept of stress resultants and moments here we get N,, means the applied

outside. It is slightly different, but definition wise same as the bar is R, .

oW, will be:

oW, = I( N0y + Njy0Uy, + Gla\NO +M,,0, +M,,0 ‘//z)azdﬂ :
B

This will be the contribution from edge 1.



(Refer Slide Time: 30:55)

W, = ”[622 (5“20 +46y, ) Ty (5"10 +4oy, ) ’ fz}é\wo}al [l ' %}ad(

al 1

Using the equations of stress resultants and moments we get

W, = '[[A_/ﬁuw + N+ Ofw+ My, +M§g/2}a@z -

a

Then, the contribution from edge 2 oW,, will be:

“-(0_'22 (O, + 50w, )+ Ty, (OUyg + O, ) + TppOW, ) 8y (1+%Jdadg
Bs

And if you use the concept of stress resultant and moments, it will become:

oW,, = j( N21aulo + szauzo + Qzawo + M218 Wit MZZaWZ )aida '
B

(Refer Slide Time: 31:21)

Total work done

W, +0W,y +0W,, = ”(‘115“10 + 4,01y = 4:0W, )“ﬂzdadﬂ /|
ap §=d,
+H1\7“az5um +N,,a,011,, +Qa2§w0 + M, a,0p, + M a8y, ]dﬁ‘
ﬂ_ _ _ _ _ h| &=
I[Nnal&/m +N,ya,6u,, + Q,a,0w+ M, a0y, + Mya,0p, ]da
a ﬂ:&




Now, we have to club all the work done oW, + oW, +0W,, and it will be:

Ij(qlaulo +0,0Uy, — G50W, ) aa,dadf
ap

+ I( N113'28ulo + N12a26u20 + Q_lazawo + Mnaza v, + Mlzaza ¥V, )
B

a, dﬁ
_ _ — — — B
+I(N21aiaulo +N,,8,0U, +Q,8,0W, + M, 8,0y, + M,,8,0y, )‘ﬂl do

B

The first term will contribute to the area and the other terms oW,, and oW,, will

contribute to the boundary terms.

j( N,2,0U; + N,8,0U,, + Q2,0W, + M8,y + M,,3,0, ) : dg
ﬁ 1

Here o isequal to ¢, to o,

I( N,,@,0U;5 + Njya,0U,, + (52318\’\/0 +M,,2,0p, +M,,2,0y, )‘ da

P
Y, B

Here g will be g, to g,.

We have obtained the total work done, strain energy, kinetic energy and we have clubbed
them together. In the next lecture, | will be using the fundamental lemma of variational

principle to develop the governing equations.

Thank you very much.



