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Dear learners welcome to lecture-03 of the second week. Classification of Shell Surfaces

we have already done. 
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Today we will  discuss the Strain Displacement  Relations  and representing the  strain

displacement  in  a  curvilinear  coordinate  system.  I  will  explain  briefly  about  the

orthogonal curvilinear coordinate system. The very first system all of you aware of is the

cylindrical coordinate system.

In the cylindrical coordinate system; the Cartesian coordinates are and , and 

unit vectors associated with that are ,  and . In this system, this is the radial 

coordinate and radius r making an angle  with respect to  and this is the length or 

longitudinal axis of the cylindrical coordinate, means the cylinder is like this. Now we 

are going to analyze the z-axis, R and .

How do we represent the cylindrical coordinate system? Along r direction unit vector 

will be , along  direction unit vector will be  and along z-direction unit vector will

be .  and are not constant, they are a function of . 

In the very first week, I already explained during the transformation that the component 

along the  = ;  =  , and  = ; then, r can be represented in terms of 

cartesian coordinates.



From here, we can say that these and  can be represented in terms of r, , and z.

The  can be represented as . We can say that r,  and z can be expressed in 

terms of cartesian coordinates.

This is the relation in the cylindrical coordinate system and this is also a curvilinear 

orthogonal curvature in one direction singly curved surfaces. If you are interested to 

solve the problem of singly curved surfaces, then cylindrical coordinate is the best 

choice. Whether you talk about a circular cylinder, elliptical cylinder, or cone. We can 

analyze these problems in the cylindrical coordinate system.

For a doubly curved or spherical coordinate system, where the radius in both the 

directions is the same  = = . How do we represent this spherical coordinate 

system in Cartesian coordinates? Like the same way we represent in cartesian 

coordinates and ; let us say, this is R single radius in the spherical system and 

the point is here.
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Sometimes, this R is denoted as r or . It will be  and R is making  angle with 



respect to . The very first equation:

  = ;     = ;   and  = .

In this way and can be represented in terms of R, , and . 

Similarly, instead of y, you can say this is  and  will be obtained. Here the unit 

vectors are in R, , and directions.

Similarly, the curvilinear coordinate system; these are those special cases where the 

curvature is either in one direction or both directions, but the radius remains the same. 

Now, we are coming to the general case of the doubly curved surface, where the radius

  . How do we express that system? Already I have given you enough 

information about the curvilinear parameters.

Let us say, a point in 3-dimensional space is represented by m and this point can be 

defined in terms of , , and . Along  the unit vector is , along unit vector 

is , along unit vector is . We can represent a point and ultimately, we aim to 

represent in the Cartesian system and .  the curvilinear system can be 

expressed in terms of and , r and  can be expressed in terms of  and , R 

can be expressed in terms of and  and  can be expressed in terms of that.

This Cartesian system can be expressed in terms of , , and . If you remember the

position vector r, we can write: 

Previously I expressed in terms of a 2-dimensional curvilinear parameter. But now I have

expressed in terms of this. Distance ds square can be expressed:



 

If you remember, in the first fundamental form I explained those E, F, G. Similarly, in a 

3-dimensional case; it is extended to , , and . Most of the books are based on the 

theory of shells or curvilinear coordinate system; , , and are known as scale 

factors and non-negative functions of positions.  is normal fixed Cartesian system 

basis vector, whereas,  is a curvilinear basis system.

Then, how do we transform that  in terms of the Cartesian system?

  

Similarly, we can write in terms of  and . 



It will be a transformation matrix for transforming from second-order tensor or third-

order tensor or fourth-order tensor. That is why we use this transformation system. What

are , , and ? These are the same as in 2-dimensional 

;   ;   
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The del operator can be represented like this . 

The purpose of explaining this thing is to make you aware that it is not very difficult, it is

just a system to represent a curved surface. These are some terminologies used in the 

theory of elasticity to develop the strain displacement relations.

Derivation of strain displacement relation is not the part of this course, but for the sake of

completeness, I will briefly explain the basic steps. The gradient of u can be obtained by 

this relation   and strain can be obtained by this relation

. The gradient of u plus transpose of the gradient of u will give you the 



linear set of strain displacement relations in a curvilinear system.

Strain = 

Already, I explained that in the Cartesian system or a rectangular coordinate system that 

what is . is deformation sometimes the deformation matrix, or deformation 

gradient:  

By using this, we can get  and . 

Similarly, if we open it explicitly and add it together, we will get the strain in the 

curvilinear system. But definitely, this will be an entirely different and huge expression.
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The basic steps to derive a strain displacement relation in the curvilinear coordinate 

system is let us say point M, located in the 3- D space having position vector  and the 

curvilinear parameters , ,  and this position vector   then, 



point M has the Cartesian coordinate system.

Now, representing M into a curvilinear system, I already explained that

 and .  is the basis vector of 

curvilinear system, the change in length can find out by . 

A point M or its nearby point is N. Up to that length is changed, a small change in r + .

A change in length in the material coordinate system can be represented like this.
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The length of a very small segment . 

By following the same procedure, we will get

 

Ultimately, can be represented as . 



Here, =  

It will give you . In most of the books of theory of shells, it is represented by . And

ultimately it further can be expressed in terms of lame’s parameter .
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This change in ; let us say point M changes to and N changes to . We aim to 

find the strain. From r to  this will be u (displacement vector). So,  is a symmetric 

tensor which links two coordinate systems  and  through the invariant property of 

the length.

For an orthogonal system; when i  j, then  = 0. M & N of length ds embedded in a 

differential volume element, this differential volume element is linearly transformed to a 

new configuration whose length segment is and now it is ,  and 
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As per the definition, the final length minus the original length will give you the strain. 

Ultimately, this can be expressed in terms of :

 

The physical strain  can be represented as: 

where ,   is equivalent to which are the lame’s parameters. In 

this way, strains can be evaluated. 
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Ultimately,  can be expressed as:

If you substitute two in that equation gives you strain components. So, in this way we 

derive that strain components in a curvilinear system, though I have to move briefly, for 

sake of completeness, I have given you the basic steps. Later on, for details, one can try 

the derivations.

The linear part of the strain; normal and shear strain can be expressed like equation (4)

. 

This type of expression is given in most of the books based on linear shell theories. If 

you are interested to develop buckling analysis of shell, then you should consider some 

geometrical non-linearity.
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For that purpose, I have given the complete expression of strains having non-linear terms

also.

 is the linear part and this

is the non-linear part

And below is the expression for :

this is corresponding to the linear part



Remaining is the non-linear part.

An expression like this is given in the book of Theory of Plates and Shells by J N Reddy.

There are many books published on Shell Theories. The books on linear shell theories 

discuss only the linear part of the strains. The books which are developing the non-linear 

shell theories consider the non-linear part. For the sake of completeness, I have given the

linear and non-linear relations of the strain component and displacement. 

But still, we need to work on this we cannot take as it is. Because for the shell case the

   and . 

In lecture 02, I derived those relations for a reference element and  = 1 for a doubly 

curved shell. If you remember, we have taken that  coordinate R + dr. , ,  

comes like this. 

We have to substitute those values here to get the final form of  or . Afterward, we

can use it for our purpose. 
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First, I will explain the linear relation, if we go back to the previous slide, this first 

equation tells means . 

This can be open up. Right now, this is in index form, we have to open all these terms

and then use the concept.

I will explain for the linear case, for non-linear case one can derive.  For the linear case;

can be open up like this where  = ,  =  and  = . Because we have taken 

a system. Now, these are , , and  coordinates.  derivative with respect to .

The point to be noted here is that ( ). Because we have expressed that

We can take the derivative with respect to  and  = . 

 is the lame’s parameter, which is ; where r ( , ),  ( , , ) . Through this

relation  also becomes a function of .

This expression can be expressed as the first function as it is the differentiation of the 

second function. Then, the second function as it is the differentiation of the first function.

.

This is   and   will get cancel. In this way, we will get three terms. 



Again  is also a function of . 

We have to express this  with respect to the derivative with and .  can be 

expressed; if you take the derivative with respect to  and if you ultimately open it, it 

becomes:

We have to open this, then it will be easy to work on it. 

From here we can express it as:
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If you remember the theorem of Rodrigues:

 



Hence, 

Ultimately,  will be:

- equation (5)

We have derived the relation for the theorem of Rodrigues, Weingarten formulas, or 

Gauss Codazzi equations, we are going to use this. Here  is find out in this form. So, 

this equation (5) is our final form which we are going to use for developing the shell 

theory, this is the linear strain displacement relation. 

Wherever  comes is represented by 1. This expression becomes like this. 
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Now, for the sake of completeness that  is the Codazzi's equation. This 

expression: 

is taken from the non-linear terms. Non-linear terms are very big these can be reduced to 

this form by using the suitable process. One can derive this also. I have not done the 

derivation of the non-linear part, but these are given in professor J N Reddy book. 

Next is ; the linear expression for :

 . 

Using the same concept, you will get the expression . This is the beauty of these 

expressions that once you get for one then you don’t need to derive for others. 

Let us say for  if you derive strain in one direction then you need not derive in the 

second direction, just by using the symmetry one can find out the complete relation for 

the second case.  will be:

 This will be the linear expression in  the strain in the second direction, and this term:

 

It is corresponding to a non-linear form. If you have derived for , then you need not 

derive for  based on symmetry you can write. 
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Next, the expression for  is expressed like this:

for a linear one. 

So, here you see , , and  will give you nothing because  is our constant it

is not a function of . 

These will not contribute only from a linear this term will come up: 

Because,  

And from the non-linear one, this term will come:

  

Now, we have to similarly find the expression of  means the shear strain components,

which are again for the simplicity or remembrance that I have written.



I would like to mention it here, please do not get afraid of these big equations all these 

equations are given in the books, one need not remember these equations. Only you have

to know the basic concept of how to do a differentiation if it is two functional or the use 

of Gauss Codazzi's equation or any other form. All these things are given in the books. 

Based on your requirement you can convert it into your form. Sometimes postgraduate 

students or doctoral students, just by looking at the equation they think that it is very 

complex or they will not understand. It is not like that these equations look big, but they 

are not complex, one can understand and derive easily.
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One should not get afraid of these big equations. Here again   will be:

The linear expression plus some non-linear expression. This expression with respect to

 and  ;  we can say that   is  not  a function  of  .    will  come out  and get

canceled.  will be:

Next is the non-linear terms contribution:

We need to just work on it because  is a function of  and  is also a function of  

so, we have to find it further. Similarly,   and   can be expressed using the basic 

concepts. 
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Later on, you see that ,  based on the time we will evaluate it further and the 

same way  we can evaluate. We have to find this term  and similarly . 

can be expressed as:

Ultimately  is expressed as:

 

 And  will be:

  using Gauss Codazzi's equations. 



And,   will be: . 

Only the linear part I have written for simplicity, later on, one can derive for the non-

linear expression also.
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We have derived the basic strain displacement relations, in terms of , and . 

There are many shell theories. The very first shell theories are applicable for a thin 

elastic shell, developed by Love and it is known as Love’s and Kirchhoff Shell theory. It 

is the extension of the 2-dimensional plate theory to the shell.

The assumptions are similar to the case of plate theory that the thickness of the shell is 

small as compared with the other dimensions. The transverse normal to the undeformed 

middle surface not only remains straight but also normal to the deformed middle surface 

after deformation. This assumption is the same as Kirchhoff's plate theory if you go for 

an Euler Bernoulli beam for 1-D case. 

The strains are infinitesimal so that all non-linear terms are neglected, these have taken 

only the linear contribution of the strains. And transfer normal stresses are also 



negligible means, if this is the thickness direction then , , or  are going to be 

neglected for the thin elastic shell. 

If we talk about a moderately thick theory and consideration of von Karman type non-

linearity, then the transverse normal is inextensible. The first assumption is taken and 

transverse normal stress is small as compared with the other normal stress component 

and may be neglected means, can be equal to 0. Because,  is very less as 

compared to others  or , I am talking about in terms of cylindrical coordinate 

system.

If you talk about any variable , , and , instead of that you will write ,  and

in terms of curvilinear parameters. Then, it says that normal to the undeformed 

middle surface of the shell before deformation remain straight, but not necessarily 

normal after the deformation.

It tells you that the transverse shear strain exists because we are interested to solve thick 

shell theories. The deflection and strains are sufficiently small so, that quantities of 

second and higher-order magnitude can be neglected except for the second-order 

rotations. This means, we can say , second-order derivatives may be neglected, but 

the first order will be considered. 

The rotation about the  and  axis is moderate, we can retain the second-order term 

for example, generally  will be retained by following these 

assumptions. 
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In the case of love’s Kirchhoff's first approximation the assumption of displacement 

field; one way is that you assume displacement field just by following the Taylor series 

expansion. Based on the assumptions we can get mathematically the expression of the 

displacement field. As it said that  = 0,  = 0, and  = 0 for thin elastic shells. 

=  by  = 0.

We are not taking the non-linear part.  becomes constant if you integrate with respect 

to  and find in terms of mid surfaces then  constant. 

Then,  expression will be:

  

If you write down properly, you take left-hand side terms to the right-hand side. And, 

then for a middle reference surface; convert into a reference surface where ,  =

, and  = . 

This expression becomes:



 

If you integrate with respect to , multiply with the  then this is the differentiation:

 

And the integrating constant will be a function of  and . Now, we have to evaluate 

this integrating function .
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This integrating function says:

 

From that expression can be expressed as:



This is the expression for displacement, in the first direction and based on the 

assumptions loves Kirchhoff's theory.

Now, I would like to point out here that if we want to verify it to be a special case of a 

plate; for the case of a plate, what is  and ?  = 1 and  = . This expression will

go away and it will reduce to - . Anybody can express the classical plate theory

or Kirchhoff's plate theory; it reduces to that if  =  and  = 1.

That is why I said that if you can develop equations for a shell, definitely plate and beam 

will be the special cases of classical theory. If you are developing a classical theory, it 

reduces to a classical form. If you are developing a higher-order it will reduce to a 

higher-order form.

This term here we denote , then similarly here gamma  expression will 

be:  

Then,   expression will give you that . 

For the case of love’s Kirchhoff shell theory  and  will be expressed like this:

 

. 

But if you talk about a higher order; the first-order specifically of shell theory then  

and  will be unknown to you.
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We can express finally, the displacement field like this:

 ,  and . 

For the case of love’s Kirchhoff shell theory  and   are expressed. But for the 

FSDT and  will be unknown to us. , , and are expressed and these 

components , , and  = 0 for Love Kirchhoff shell theory. From here that most of

the theories start differentiating, based on the strain displacement relations. 

I would like to say that almost more than 20 different types of shell theories are 

presented in the literature, and out of which some are very popular like Flugge shell 

theory, Lurye cell theory, and Novozhilov shell theories. Retaining some terms or 

deleting some terms gives you an entirely different shell theory. 

The purpose is different, sometimes we are interested to solve and develop a governing 

equation for a membrane type, for a thin shell, for a thick shell, or a shallow cell. 

Based on the requirement the terms can be retained or deleted. The general expression 

that we have for a linear case strain  in equation (5) will be retained in the case of 

Byrne, Flugge, Goldenveizer, Lurie, and Novozhilov. This expression is taken as it is in 

the strain displacement relations.
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If we use the value of ,  and , then this expression becomes like this:

 

  equation (17)

And ultimately the terms related to the stretching are clubbed together, and terms relating

to the bending are clubbed together. 

     

And finally,  can be written as  plus . This is the way we write the expression 

of strain.



 (Refer Slide Time: 44:01)



Similarly, : substituting the value of ,  and  then arranging the stretching and 

bending terms. 

 equation (18)
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For  expression; 

 equation (19)

Substitute those expressions properly.  and are retained here, but in the end, we will

have to convert it to back. 

   



 

These equations (17), (18), and (19) are given in the following shell theories.
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In Love’s and Timoshenko's shell theories; they have neglected the expression of   

and   in (17) and (18) expression. If we neglect those terms after the differentiation, 

then these expressions will be slightly different like this 

 equation (17.1)

 equation (18.1).



equation (19.1)
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There is another set of equations, these are the equation of Reissner and Naghdi, where

they have neglected before the derivation. This shell theory is for a shallow shell theory.
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The expression will be slightly different, very few terms will be there. The curvature is 

used, but  and  are neglected, it is saying that the shell is very thin and we have to

take care of these terms. So, in this way by retaining some terms or deleting some terms 

will give you an entirely different shell theory.

If you want to develop a shell theory based on Reissner and Naghdi, then you have to 

consider, the strain displacement relations derived in equations (17.2), (18.2), and (19.2).

 equation (17.2)

 equation (18.2)

 equation (19.2)

And if you want to do it for love and Timoshenko, then you have to consider the strain 

displacement relations used in equations (17.1), (18.1), and (19.1). But in our present 

case, we are going to use the general expression, which is used by Flugge cell theory, 

and we are going to develop governing equation using strain displacement relations. 

In the next lecture, I will explain the stress resultant and start developing the governing 

equation of shell using the variational principle; the principle of Hamilton.

Thank you very much.


