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Dear learners welcome to lecture-03 of the second week. Classification of Shell Surfaces

we have already done.
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Today we will discuss the Strain Displacement Relations and representing the strain
displacement in a curvilinear coordinate system. I will explain briefly about the
orthogonal curvilinear coordinate system. The very first system all of you aware of is the

cylindrical coordinate system.
In the cylindrical coordinate system; the Cartesian coordinates are x,,Xx,,and x;, and

unit vectors associated with that are ¢, , ¢, and ¢, . In this system, this is the radial

coordinate and radius r making an angle 6 with respect to x; and this is the length or

longitudinal axis of the cylindrical coordinate, means the cylinder is like this. Now we

are going to analyze the z-axis, R and 6.
How do we represent the cylindrical coordinate system? Along r direction unit vector
will be ¢, , along 6 direction unit vector will be o, and along z-direction unit vector will

be ¢, . ¢, and g, are not constant, they are a function of 6.

In the very first week, I already explained during the transformation that the component
along the X, = rcosf; x, = rsinf , and x; = z; then, r can be represented in terms of

cartesian coordinates.



From here, we can say that these x,,x,,and x; can be represented in terms of r,0 , and z.

The x; can be represented as x,(r,0,z). We can say that r, O and z can be expressed in

terms of cartesian coordinates.

This is the relation in the cylindrical coordinate system and this is also a curvilinear
orthogonal curvature in one direction singly curved surfaces. If you are interested to
solve the problem of singly curved surfaces, then cylindrical coordinate is the best
choice. Whether you talk about a circular cylinder, elliptical cylinder, or cone. We can

analyze these problems in the cylindrical coordinate system.

For a doubly curved or spherical coordinate system, where the radius in both the
directions is the same R, = R,=R . How do we represent this spherical coordinate
system in Cartesian coordinates? Like the same way we represent in cartesian

coordinates X,,X,,and X, ; let us say, this is R single radius in the spherical system and

the point is here.
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Sometimes, this R is denoted as r or 7. It will be 6 and R is making ¢ angle with



respect to x, . The very first equation:
X, = Rcos¢p; x, = Rsinfsing; and x, = RcosOsing .

In this way x;,x,,and X, can be represented in terms of R, 6, and ¢ .

2 2 2
R=\/x"+x," +x,

Similarly, instead of y, you can say this is x, and ¢ will be obtained. Here the unit

vectors are in R, 6, and ¢ directions.

Similarly, the curvilinear coordinate system; these are those special cases where the
curvature is either in one direction or both directions, but the radius remains the same.

Now, we are coming to the general case of the doubly curved surface, where the radius

R, = R,.How do we express that system? Already I have given you enough

information about the curvilinear parameters.

Let us say, a point in 3-dimensional space is represented by m and this point can be
defined in terms of @, , a,, and a;. Along o, the unit vector is él , along «, unit vector
is ¢, , along o unit vector is o, . We can represent a point and ultimately, we aim to
represent in the Cartesian system x,,x,,and x;. «,, the curvilinear system can be
expressed in terms of X;,Xx,,and X;,rand 6 can be expressed in terms of X, and x,, R

can be expressed in terms of x,,x,,and x; and ¢ can be expressed in terms of that.

This Cartesian system can be expressed in terms of ¢, ¢, , and a;. If you remember the

position vector r, we can write:

r=x/(a,o,,0)e +x,(a,o0,,0;)es

Previously I expressed in terms of a 2-dimensional curvilinear parameter. But now I have

expressed in terms of this. Distance ds square can be expressed:



(ds)” =(hda,)’ +(hda,) +(hda,)’

If you remember, in the first fundamental form I explained those E, F, G. Similarly, in a

3-dimensional case; it is extended to 7, , A, , and /,. Most of the books are based on the
theory of shells or curvilinear coordinate system; 4, h,, and h,are known as scale
factors and non-negative functions of positions. ¢, is normal fixed Cartesian system

basis vector, whereas, ¢, is a curvilinear basis system.
Then, how do we transform that ¢, in terms of the Cartesian system?

~ dx, 1 ox,
e =—-e =——
ds, h oa,

Similarly, we can write in terms of ¢, and ¢, .

oy o P, 1%

er=—-g = e,
ds, h, da,

~ dx, 1 ox,

e3=—-re =——-¢,
ds, hy, da,



It will be a transformation matrix for transforming from second-order tensor or third-

order tensor or fourth-order tensor. That is why we use this transformation system. What

are h, h,,and h,? These are the same as in 2-dimensional

2 . 2 . 2
( hl) = x/c,(z1 'x/c,oc1 ’ ( hZ) = xk,a2 "xk,(zz ! ( h3) = xk,(z3 ‘xk

oty
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The del operator can be represented like this E e —
i T’z ax
The purpose of explaining this thing is to make you aware that it is not very difficult, it is
just a system to represent a curved surface. These are some terminologies used in the

theory of elasticity to develop the strain displacement relations.

Derivation of strain displacement relation is not the part of this course, but for the sake of

completeness, I will briefly explain the basic steps. The gradient of u can be obtained by

A

auA

this relation u# = E E (

de . . . .
U a—/) and strain can be obtained by this relation
a

i

1 . : oy
= 5( Vu + VuT) . The gradient of u plus transpose of the gradient of u will give you the



linear set of strain displacement relations in a curvilinear system.
. 1 T
Strain = ¢ = E(Vu +Vu )

Already, I explained that in the Cartesian system or a rectangular coordinate system that

what is Vu . Vu is deformation sometimes the deformation matrix, or deformation

) ou, Ou, Oou, Oou, Ou, ou, ou, OJu, ou,
gradlent: Vu=—a—7—a_7—a—)_9—7—
ox, ox, dx; ox, 0x, ox, Ox; 0x, OXx,

1

. . d du, Ju
By using this, we can get €, = a—u and €, = —(—1+—2) .
x

ox, 0x

Similarly, if we open it explicitly and add it together, we will get the strain in the

curvilinear system. But definitely, this will be an entirely different and huge expression.
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The basic steps to derive a strain displacement relation in the curvilinear coordinate

system is let us say point M, located in the 3- D space having position vector ;- and the

curvilinear parameters @, @,, @, and this position vector r = x,¢, + x,e, + x,e, then,



point M has the Cartesian coordinate system.

Now, representing M into a curvilinear system, I already explained that

x, = x,(a,,0,,0,) = x,(a;) and a, = o, (x,,x,,x;) =, (x,)- ¢, is the basis vector of

curvilinear system, the change in length dr can find out by dr = dx,.gl. .

A point M or its nearby point is N. Up to that length is changed, a small change in r + dr .

A change in length in the material coordinate system can be represented like this.
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The length of a very small segment ( ds) P —drdr.

By following the same procedure, we will get

- - - -

d d d
dr = _rdal + _rdaz + —rd()c3 = t1d(11 +t2d(l2 +t3d0€3
8061 aaz aa3

Ultimately, ( ds)’ can be represented as g .



Here, (dS)2= Z‘].l‘](a’a])z +t2.lz(d0£2)2 +Z3.t3(d063)2 dr.dr

It will give you g; . In most of the books of theory of shells, it is represented by ;. And

ultimately it further can be expressed in terms of lame’s parameter 4,.4,.
g;=til; =44,

(ds)* = 47 (da,)” + 4.2 (da,)” + 42 (da,)
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This change in ¢ ; let us say point M changes to )7"and N changes to N°. We aim to
find the strain. From r to ,* this will be u (displacement vector). So, g; is a symmetric
tensor which links two coordinate systems x, and ¢, through the invariant property of

the length.

For an orthogonal system; when i = j, then g, =0. M & N of length ds embedded in a
differential volume element, this differential volume element is linearly transformed to a

new configuration whose length segment is 4s"and now itis 4", A" and N’
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As per the definition, the final length minus the original length will give you the strain.
(ds”)" - (ds)* = 2y,dada,
Ultimately, this can be expressed in terms of 2y,

2yy =Gy —gy =Au,; + Au; +uu,

Vi

hh,

L

The physical strain €; can be represented as: €; =

where A’ = A*, h, is equivalent to A4, (4, 4,, 4,) which are the lame’s parameters. In

this way, strains can be evaluated.
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Strain displacement relations
Let u be the displacement vector, with componentsu, (e, . )(i=12.3) inan

orthogonal curvilinear coordinate system (a.8.¢) . Then,

u(a,ﬁ,g):ul(a,ﬁ',g);l+zlz(a,ﬁ,g)2g+u_1(a,ﬁ,g);r e

=

Where u,,u,, and , are displacement components along #,,, .and n directions
respectively. /1,/2,and 1 are unit vectors along  «, /3, and ccoordinates.

Then, strain-displacement relations for normal strains (only considering linear terms : Love’s shell

theory) are given by
) 4 8 (u
LN M N D) R
L 0a,\ 4,) 4 00, 4

4 =a'[l+%J;Az =a?(l+RiJ;A; =1 ‘/E :lr’l|:al and ‘/a:‘rvz|:az

Where |

S5

,
= {”\ and a,are Lame cnmlams}

o =a;a,=p;ad a;=¢

Ultimately, u ( a,p ,g) can be expressed as:

u(a, B =u1(a,/5,g);1 +u2(a,/3,g);z +u3(a,ﬁ,g);3

If you substitute two in that equation gives you strain components. So, in this way we
derive that strain components in a curvilinear system, though I have to move briefly, for
sake of completeness, I have given you the basic steps. Later on, for details, one can try

the derivations.

The linear part of the strain; normal and shear strain can be expressed like equation (4)

e o O (w ), L Q4

"aa\ 4] 4 2 A\ oo,
This type of expression is given in most of the books based on linear shell theories. If
you are interested to develop buckling analysis of shell, then you should consider some

geometrical non-linearity.
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Strain displacement relations having nonlinear terms

B fu ) 1 & (o4) 118 (u) 1&udd| 1 Qu, u, 04,
g=—{ L =Y | L o —| Lt -
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For that purpose, I have given the complete expression of strains having non-linear terms

also.
g O (m), Lgu (04| 110 (w) 1Gu 4
"oda | 4 AIZAk do, | 2|aa,| 4, AIZAA, dat
1 04
£ = n +—Z—" L | is the linear part and this
da, \ 4] A = A4\ o

O (u), Lgu 04
do, | A ) A H A4, da,

And below i1s the expression for ¥, :

A d (u) 4 9 (u N1 (ou, w94 \[ du, u; 04,
y,=——| — |+ —— — [+ —_— - -—
oA da 4] Ado | A | 4 A4\ da, A4 da, || da, A da,

+1 du. u; 04, +1 ou, u 94 0 H,_{_l‘ukﬂz‘f,
A\ da;, A da, A4 | da, A, aa da; | 4 A =\ 4, da,

!

1 & [y, _u; 04, ’
24° k;ﬁ- da, 4, da,

+
2

1 & (0w, wu 04 . .
+— -4 is the non-linear part
247 A\ da, A4, do,

A 0 . A 9 (u,
r C B S 0 D this s corresponding to the linear part
A, da,\ 4| 4 da;| 4,



Remaining is the non-linear part.

An expression like this is given in the book of Theory of Plates and Shells by J N Reddy.
There are many books published on Shell Theories. The books on linear shell theories

discuss only the linear part of the strains. The books which are developing the non-linear
shell theories consider the non-linear part. For the sake of completeness, I have given the

linear and non-linear relations of the strain component and displacement.
But still, we need to work on this we cannot take as it is. Because for the shell case the

A=al1+2| and 4, =a,|1+2)|.
R R,

1

In lecture 02, I derived those relations for a reference element and 4; = 1 for a doubly

curved shell. If you remember, we have taken that S coordinate R +dr. 4,, 4,, 4,

comes like this.

We have to substitute those values here to get the final form of €; or V;. Afterward, we

can use it for our purpose.
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First, I will explain the linear relation, if we go back to the previous slide, this first

equation tells €, means €, .

81 =i(u_l)+i|:u_la_z4l+u_28_14]+u_38_14l
oo

A) A4 da 4,08 A, dg

This can be open up. Right now, this is in index form, we have to open all these terms

and then use the concept.

I will explain for the linear case, for non-linear case one can derive. For the linear case;

€, can be open up like this where o, = @, o, = B and a, = S . Because we have taken

u
a system. Now, these are @, 3, and S coordinates. j derivative with respect to o .

1
The point to be noted here is that u, (a, B,5 ). Because we have expressed that

ula,B,s) =u1(a,/3’,g);1 +u2(oc,/3,g);z +u3(a,ﬁ,g);3

We can take the derivative with respectto & 4, and 4, = q, (1 + %) .
1

a, is the lame’s parameter, which is 7, .7, ; wherer (@, ), 4, (@, ,5) . Through this

relation a, also becomes a function of S .

This expression can be expressed as the first function as it is the differentiation of the

second function. Then, the second function as it is the differentiation of the first function.

(1 ou u aAl) [ul 04 u, 04 uy, 04,
E=|l—————F7— |+ —

A da A’ da | |A’da A4 B A4 dc
u, 04,
This is —A_a_ and A_a_ will get cancel. In this way, we will get three terms.

4 da AA, 0B Ad, dc

1 ou, u, 8A1+ u, 04,

1



Again 4, is also a function of S .

We have to express this 4, with respect to the derivative with fand S . 4, can be

expressed; if you take the derivative with respect to 8 and if you ultimately open it, it

becomes:

—— +——
4 da  AA, 9B R R,

Ao wy Af  ag) w04 ag
: A4, og |

We have to open this, then it will be easy to work on it.

From here we can express it as:

oa, J ( q
p " IB\R
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4 0a A4 \0B R 0B ) A4\R IJrER-%
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ROV-T\

al

el il —

da @ f R
-~ =

A - BN

Lypea?

If you remember the theorem of Rodrigues:

G\ _Gn_ 0 (a)_ 104
Rl 2 Rz p Rl Rz p




1 du, u, (da, ¢ aaq u, (aq
Hence, € =——+—"| —+=>-— |[+——| —
4 0o AA,\IB R, B ) A4 \R

%4_“_2 1+i %+u_3 ﬂ
da A4, R, ] A4\ R

g Lot [, c 0w (o) 1
A da A4, R, )IB A4 \R A,
Ultimately, €, will be:

- - equation (5)

1

Al

1 |0u, wu, daq a,
=t U, —
da a, 0 R

We have derived the relation for the theorem of Rodrigues, Weingarten formulas, or

Gauss Codazzi equations, we are going to use this. Here €, is find out in this form. So,

this equation (5) is our final form which we are going to use for developing the shell

theory, this is the linear strain displacement relation.
Wherever 4, comes is represented by 1. This expression becomes like this.
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al 22

R is the Codazzi's equation. This

a
Now, for the sake of completeness that (;1) =
2

1), 2

2

2 2
) 1 du, u, da, a, du, u, da, au, a,
expression: + —~ || —+——+u, — | +| —+—— | +| —-uy —
247 [\ da 4, IB R da a, I do R

1

is taken from the non-linear terms. Non-linear terms are very big these can be reduced to
this form by using the suitable process. One can derive this also. I have not done the

derivation of the non-linear part, but these are given in professor J N Reddy book.

Next is €, ; the linear expression for €, :

O (), L (104 w04  u; 04,
Bla,)] A\a da a, B a, 35 |

Using the same concept, you will get the expression €, . This is the beauty of these

expressions that once you get for one then you don’t need to derive for others.

Let us say for €, if you derive strain in one direction then you need not derive in the

second direction, just by using the symmetry one can find out the complete relation for

the second case. €, will be:

1 (ou, wu, da, a,
—| =+ ——=+u,—=
A\ 0B a oo R,

This will be the linear expression in €, the strain in the second direction, and this term:

2 2
L | Y IO (ORI B L S
247 |\ aB  q, da R, B a da B R,

It is corresponding to a non-linear form. If you have derived for €, then you need not

2

derive for €, based on symmetry you can write.
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Next, the expression for €, is expressed like this:

9 (% +1 94, +u_28A3 +u_36A3 for a linear one.
g\ 4] A4\ 4 da A4, 0 4 d¢

04, 94, 4, . . . : .
So, here you see —, %’ and z will give you nothing because 4, is our constant it

is not a function of @, f8,¢ .

U,

g

These will not contribute only from a linear this term will come up:

04, 04, 04
Because, 4, =1=>—2=—2=—"2
da  Ip  d¢

=0
And from the non-linear one, this term will come:

2 2 2
R R I R I (Y
2\ d¢ il il

Now, we have to similarly find the expression of ¥; means the shear strain components,

which are again for the simplicity or remembrance that I have written.



I would like to mention it here, please do not get afraid of these big equations all these
equations are given in the books, one need not remember these equations. Only you have
to know the basic concept of how to do a differentiation if it is two functional or the use

of Gauss Codazzi's equation or any other form. All these things are given in the books.

Based on your requirement you can convert it into your form. Sometimes postgraduate
students or doctoral students, just by looking at the equation they think that it is very
complex or they will not understand. It is not like that these equations look big, but they

are not complex, one can understand and derive easily.
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One should not get afraid of these big equations. Here again y,; will be:

4, 0 A4, 0
Yy = + nonlinear
Gl sl

The linear expression plus some non-linear expression. This expression with respect to

S and f; we can say that 4, is not a function of B. A4; will come out and get

canceled. v,; will be:

1 duy a2 J (u,
A ap dg | 4,
Next is the non-linear terms contribution:

1

u _——— —_——
af a da R, i R,

au2(8u2+u_la&+a_2 )+%(aul uzaa2)+au3(% a ]
3 2

We need to just work on it because 4, is a function of S and u, is also a function of

so, we have to find it further. Similarly, y,; and y,, can be expressed using the basic

concepts.

1 Ju J (u

Yis = — Al_ —

A do ac |\ 4

o | (Ou oy 0ay ay ) 0wy (0w, w94y ) Ouy (Ou; &
Aldgc\da a, 0 R dg\da a, 0B ) dc\da R

y, oA O fu ) A0 (), 1 0w, 0ay (0w, u, 0a 4y
A, da\ A, ] A p\A4A ) AA|\of a da)\da a, I R

1 du, u, da, \(du, u, da, a, du, a du, 4,
+— || ———— || —+ ——+ =, |+ — -y || ——-—u,
AA, |\ da a, 0B )\ df a do R, da R B R,
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Ou u 04 1 0u
i B b B
0s A 0 4 oa

Ou u 0 ag | 1 du,
e eered L Tl Lo
0s 405 R ) 4 oa

ou o (a )| 1 0u
Yp=———| 2 +—=2 - (Eq.8)
B o A\R) 4 da

13

- A,ﬁ[m) Aga(m
Similarly, Yo=——| = *—=—| =
4,06

o

4,) 4,08\ 4

Which gives (Eq.9)

And (Eq. 10)

Jd u . . .
Later on, you see that Py A_z based on the time we will evaluate it further and the
o 2

u
same way —- we can evaluate. We have to find this term 7,, and similarly y,,.
1

7., can be expressed as:

du, u18_1‘11+L%=>8u1_u1 ] (a alg)_l_ 1 du,
1

Cds A ds A da  dg Aag| ' R 4 da

Ultimately y,; is expressed as:

ou, u, (a 1 du,
Vi3 = 9 4\ R t
s A\R | A4 oo

And 7,; will be:

0 10
e B ) L using Gauss Codazzi's equations.
s A\ R, |4, p



A 0 A 9

And, 7, willbe: 2L 2|2 2 (K

A, da\ 4 | 4 p\ 4,

Only the linear part [ have written for simplicity, later on, one can derive for the non-

linear expression also.
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Basic Shell Assumptions

+ Assumptions for moderately thick shell theory with von Karman type non-linearity:
e e

1. The transverse normal is inextensible (i.e. £,=0 ) and the transverse normal G2 2@
stress is small compared with truemm:mn'nal_______st@slsfcqmpqngnts and may be Gt e
neglected—

2. Normals to the undeformed middle surface of the shell before deformation remain fa S
straight, but not necessarily normal after deformation. Cpb

3. The deflecons and Stramsare sufficiently small so that the quaniities of
second- and higher-order magnitude, except for second-order rotations about the
transverse normals, may be neglected in comparison with the first-order terms. R
4. The rotations about the & and /3 axes are moderate so that we retain Ry
)in the @

€5 )

second-order terms (i.e., terms that are products and squares of the terms

strain—displacement relations (the von Karman nonlinearity). 2~
pl ( y) @] 3

+ The Love's first approximation theory for thin elastic shells further assumes that @,Q

1. The thickness of the shell is small compared with the other dimensions. =~

2. The transverse normals to the undeformed middle surface not only remain \mu\'\"&l jD s
straight, but also normal to the deformed middle surface after deformation.] St
3. The strains are infinitesimal so that all nonlinear terms are neglected. — T‘ 622
4. Transverse normal strew e o id
0

We have derived the basic strain displacement relations, in terms of 4,, 4, and 4;.

There are many shell theories. The very first shell theories are applicable for a thin
elastic shell, developed by Love and it is known as Love’s and Kirchhoff Shell theory. It

is the extension of the 2-dimensional plate theory to the shell.

The assumptions are similar to the case of plate theory that the thickness of the shell is
small as compared with the other dimensions. The transverse normal to the undeformed
middle surface not only remains straight but also normal to the deformed middle surface
after deformation. This assumption is the same as Kirchhoff's plate theory if you go for

an Euler Bernoulli beam for 1-D case.

The strains are infinitesimal so that all non-linear terms are neglected, these have taken

only the linear contribution of the strains. And transfer normal stresses are also



negligible means, if this is the thickness direction then 0, ,0,_, or 0., are going to be

neglected for the thin elastic shell.

If we talk about a moderately thick theory and consideration of von Karman type non-
linearity, then the transverse normal is inextensible. The first assumption is taken and

transverse normal stress is small as compared with the other normal stress component

and may be neglected means, 0. can be equal to 0. Because, O, is very less as

compared to others O, or 0,,, I am talking about in terms of cylindrical coordinate

system.

If you talk about any variable @, 8, and ¢, instead of that you will write o, , 04, and

oo

O_ in terms of curvilinear parameters. Then, it says that normal to the undeformed

middle surface of the shell before deformation remain straight, but not necessarily

normal after the deformation.

It tells you that the transverse shear strain exists because we are interested to solve thick
shell theories. The deflection and strains are sufficiently small so, that quantities of

second and higher-order magnitude can be neglected except for the second-order

ou
rotations. This means, we can say Py second-order derivatives may be neglected, but
1

the first order will be considered.
The rotation about the @ and f axis is moderate, we can retain the second-order term

for example, generally (u;,,,)" =(u,., )2 will be retained by following these

assumptions.
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According to Love’s first approximation theory for thin elastic shells :

&=057,=0;7,=0

Oty

& :T:O =1 =C0nstam:wU (say) (Eq. 11)
0¢g
ou\ u [a ) 1 du, Qu 1ow, u(a
Now yﬂ:q—l dali] =l _-«_':0 = 4_1:__A_0+_l =1,
“\oc) 4\R ) 4 0a o6 4oa 4\R&) )
B G G i 2 e s G U8
au 1 ow, u
atg=0 (=y,md4=a)=>|2| =-——72+12 %
— 05 )., & 0@ 9{ R) v

ou, 1w u
s| 2| BT @
0g) , \& 0 R

Integrating equation 12 with respect to &

S

4 A
“1:(12%+“w ]§+C1(a’ﬁ)
o\ imoe R v Ry

In the case of love’s Kirchhoff's first approximation the assumption of displacement
field; one way is that you assume displacement field just by following the Taylor series

expansion. Based on the assumptions we can get mathematically the expression of the

displacement field. As it said that €; =0, y,; =0, and y,; = 0 for thin elastic shells. &,

= duy by dg =0.

We are not taking the non-linear part. #; becomes constant if you integrate with respect

to S and find in terms of mid surfaces then u; = w, constant.

Then, y,; expression will be:

o _wmfa), 10w
g A\R | 4 oo

If you write down properly, you take left-hand side terms to the right-hand side. And,

then for a middle reference surface; convert into a reference surface where ¢ =0, u, =

Uy, and 4, = a,.

This expression becomes:



1 ow, u
=% e

(61) __Low wyfa
-0 a do  a | R a, do. R

Jdg -
If you integrate with respect to S, multiply with the S then this is the differentiation:

_i%_i.ui g+C1(a,ﬁ)

u, =
a do R

And the integrating constant will be a function of @ and f . Now, we have to evaluate
this integrating function C,(a, f3).
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at =0, (u,=u,) = C,(a,f) =, i
—

1 ow, Pud-=4 )=
Hence, u,zu,ﬁ[—f:ﬂ@ (4 //___7 e
A\ @ 0a \R \‘ Q= ®

» :H\n -0 % ﬂ

1 ow, u,
Nowdefine V4 =|-—— t—~ |~ (Eq.13)
a 0o R
-
Then, =yt WS (Ea.14)
Similarly,
Would give Uy=Up+ Y, § o~ (Eq.15)
P M
1 0w, uy, B WI) tY,L: A
Where, W =|m iy (Eq.16)
¥ a, 0f R

o UE it
Here, v, and i, are the rotations of a normal to the reference surface about the
aand [ axes, respectively.

This integrating function says:

atg:()’(”l =”10) =>C1(Ot,[3’) =U

From that expression u, can be expressed as:



This is the expression for displacement, in the first direction and based on the
assumptions loves Kirchhoff's theory.

Now, I would like to point out here that if we want to verify it to be a special case of a
plate; for the case of a plate, what is @, and R,? @, =1 and R, = % This expression will
go away and it will reduce to u,,- & W, . Anybody can express the classical plate theory

or Kirchhoff's plate theory; it reduces to that if R, = «© and a, = 1.

That is why I said that if you can develop equations for a shell, definitely plate and beam
will be the special cases of classical theory. If you are developing a classical theory, it
reduces to a classical form. If you are developing a higher-order it will reduce to a

higher-order form.

This term here we denote u, = u,, +3,¢ , then similarly here gamma y,; expression will

u, u
be: 7, =—2—-—%
s 4

4\, 1 ouy
R 4 9B

2
u
Then, a—; expression will give you that u, =u,, +1,¢ .

For the case of love’s Kirchhoff shell theory ¥, and vy, will be expressed like this:

1 ow, u
1/”1 =(___0+i)
a, da R

1 ow, u
wz = (___O_i_ﬂ)
a, 08 R,

But if you talk about a higher order; the first-order specifically of shell theory then v,

and ¥, will be unknown to you.
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Displacement - field approximation

We have, from Love’s first approximation theory for thin elastic shells :

A 1 ow, u
U=, +y, ¢ = a L= U(; T W
a 0a R
=iy + 1,6 i y <
1 ow, uy, J Y

1| 0u u,0a a
§=—| —+=—+u,—
Alda a,0f R

s M

We can express finally, the displacement field like this:
Up =y +Y\S, Uy = Uy +P,¢ and uy = w,.

For the case of love’s Kirchhoff shell theory vy, and 1y, are expressed. But for the
FSDT ,and v, will be unknown to us. 4,, 4,, and 4;are expressed and these

components €;,7,;, and 7,; =0 for Love Kirchhoff shell theory. From here that most of

the theories start differentiating, based on the strain displacement relations.

I would like to say that almost more than 20 different types of shell theories are
presented in the literature, and out of which some are very popular like Flugge shell
theory, Lurye cell theory, and Novozhilov shell theories. Retaining some terms or

deleting some terms gives you an entirely different shell theory.

The purpose is different, sometimes we are interested to solve and develop a governing

equation for a membrane type, for a thin shell, for a thick shell, or a shallow cell.

Based on the requirement the terms can be retained or deleted. The general expression

that we have for a linear case strain €, in equation (5) will be retained in the case of

Byrne, Flugge, Goldenveizer, Lurie, and Novozhilov. This expression is taken as it is in

the strain displacement relations.



(Refer Slide Time: 43:27)

Putting value of 37,11, and i,

1| 0(u,+wy U, +W,c)oa a

£=— (10 ‘/1?)+( 20 '/_é-)_1+wo_1

! da a, 0 R
1| ou oy, (Uy+W,6)oa a

gl: i+g£ m{,M_l.{. 0_1 v
4| 0a " Oa a, 0p R

|-

1

L[ Ouy oy Oa, wya, ¢ (7(// 4 da

= 100 220 2 g PO 1 2 5]
&= =i z + i = : (Eq.17)

A1 oa 4d, (/ﬂ Rl A] oa d, (,ﬁ

Define
o 1 [0ny uyla wa Y A
6 =—| —=+22+— | and g,=—| = +2 =L
A\ Oa a, O A\ Oa a, Op

/——\___14__/\_—’_—__/

Then g] :g]O] + gg]l] /’
/ \

Stretching Bending

If we use the value of u,, u, and u;, then this expression becomes like this:

€, =L-a(”10 'H:Ulg) + X 'H/)zg%_'_woﬂ-
4 Ja a, df R,

e L [ du,, QU+ %eroﬂ'
4| da o a, df R,

£ _1((%‘10_*1"2086114_%)4_5-(6#)1 +1,U26a]) equation (17)

1_A1 da a, df R 4\ da a, Ip

And ultimately the terms related to the stretching are clubbed together, and terms relating

to the bending are clubbed together.

0
811 -

L L L YR o L S
A4\ da a, I R A4\ oo a, OB

And finally, € can be written as €, plus ¢€/,. This is the way we write the expression

of strain.
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Similarly, we can show

‘sz:L %.}uﬂa&.}m +i %+ﬁa& (Eq. 18)
A\0p ada R | A\0f a da

Define

ggzzL[%+%(’%‘z+Woaz ] and g;zzi[al//z +%%J

A\ 0B a da R A4\ 0B a Oa
Then G=bLtle; o
Stretching Bending S
A0 40 [
Ang N el et o
i M 4, 616[’41] 4 0“[’42] o Sk

Putting value of 2 and u,



Similarly, €, : substituting the value of u,, u, and u, then arranging the stretching and

bending terms.

g, =[O Mo 98, Wy | S [V, Y08, | oquation (18)
A\ a da R, A\ I a Jda

l (ou,, wu,da, wa 1(a da
0 [P o O Wl ) o1 L[ O%s W 0y
A\ B  a da R, A4\ B  a Ja

0 1
€, =&y +cE,,
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AI F “20+ [//1 ';
4 0a| 4

A 0 iy A 0w | 4 0w,
e w6l T Akl g a2 | B
4 0al 4, 4,00\ 4 ) 4 0al 4,

Define

b BB L B0 NG i (AR &0
T\ 4 aal @) 4 apl4) 4l 4

0 I
Then M=t tch,

—_ -

Equations 17, 18 and 19 are the equations given by Byrne, Flugge, Goldenveizer, j
Lurye, and Novozhilov.

For y,, expression;

4 0 (”m) 4, 9 (”20)
Ve =— 72| |T—5 —| 5 |t
A4, 08\ 4 4 dal 4,

Substitute those expressions properly. 4, and 4, are retained here, but in the end, we will

c %%(%) +%%(%)] equation (19)

have to convert it to back.




V2 = }/102 + g)’llz
These equations (17), (18), and (19) are given in the following shell theories.

(Refer Slide Time: 44:47)

2). Strain Displacement Relations : Equations of Love and Timoshenko :

If we neglect the terms @nd @ﬁer the differentiation in equations 17 and 18; then,
1 2

4=a, and 4,=a, .Inthat case, Equations 17 and 18 take the following form :

(0w, u,0a wa | ¢(0w, w,0q
g e s sl s e s (Eq.17.1)
a\0a a,08 R ) al\la a, Of

Define T e

1| Ouy 1ty Oa, wya 1(ow, w,da
Pt b U e U ) andsl‘,:—Lﬂ—z—'

a\da a, 0fp R al da a, 0
G
i =
Then 51:511+§5111
and
1 (0Ouy u,0a, wa, oy, W, da,
e B L bl #+h_» o
a,\0f ada R, | a\df ada
- e —— - - —_—

In Love’s and Timoshenko's shell theories; they have neglected the expression of %
1

and R% in (17) and (18) expression. If we neglect those terms after the differentiation,
2

then these expressions will be slightly different like this

_ L[ 0mg | 00 W) 6 (W, Y, 9a
al\da a, f R a\ da a, Ip

equation (17.1)

1

1Oy wg ey, wa,), ¢ (09, Y 0,

€ =
> a | a da R, a,\ 0 a da

equation (18.1).



A1 ouy, ulOG_A1 +i 1 du,, uZO%
T A\ 4 ap A B A\A4 da A da

i 1 oy, vy, 94 4, (1 oy, '/’2%

A\ 4 08 A B | A\A4 da A i

equation (19.1)
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Define

&=

1 (0u, u,0a, wa 1 (0w, w da
0 n Mo 7 o and6§2=f 1/2+h72

_Z B a da R a\ f  a da

Then gz = 532 FiE 5212

and for equation 19

A 0wy 4 0(uy A0 (w) 4 0w,
/e il b lend 1% o e e o
4,08\ 4 ) 4 0a\ 4 4,08\ 4 ) 4 0al 4,

A( 10w, u,04) A1 ou, u,dd
},'::A_I(__mu_lﬁ,i]ﬁk_h(__ﬁ-_&_-]

A A0B) A\4 da A da
E TR A I RS
A\A 0B A 0p) A\4 da £ o

There is another set of equations, these are the equation of Reissner and Naghdi, where
they have neglected before the derivation. This shell theory is for a shallow shell theory.
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Equation 17.1, 18.1 and 19.1 are the equations given by Love and Timoshenko.

3). Strain Displacement Relations : Equations of Reissner and Naghdi :

In this case terms 5 and £ are neglected before the derivation. Then equations 17,
1

18 and 19 take the following form.

Oty 1y OO, Wy oy, w, da
[ e B et |, 6| OV ¥ 00

oa a, Oﬁ]

- = (Eq.17.2)
e a0 R_) q
————
1 Ouyy g Oy wyay oy, , da
gae| SRR I oo (Ve Y (Eq. 182)
a\0f ada R, ) a\df a da

A A A A
a 0(uy) a 0 (u, a 0(y) a 0y,
}/|1=_IT S0 [ygeta: = f a0 +¢ g ke ) 0 8 +_~~_ 12
a,0f\ a ) a oa\a, a,0f\ a ) a0ala,




The expression will be slightly different, very few terms will be there. The curvature is

used, but % and R% are neglected, it is saying that the shell is very thin and we have to
1 2

take care of these terms. So, in this way by retaining some terms or deleting some terms

will give you an entirely different shell theory.

If you want to develop a shell theory based on Reissner and Naghdi, then you have to

consider, the strain displacement relations derived in equations (17.2), (18.2), and (19.2).

gl=i(%+@%+m)+g(%+h%

equation (17.2)
al\da a, f R a\ da a, Ip

e 1 (%+m%+m)+i(m+£%

,=— equation (18.2)
a,\ df a da R, a,\ i a da

w0 () a0 (),
a, 0B\ q, a, da\ a,

And if you want to do it for love and Timoshenko, then you have to consider the strain

c 4 i(wl )+ & i(&)] equation (19.2)

a, 0\ q, a da\ a,

displacement relations used in equations (17.1), (18.1), and (19.1). But in our present
case, we are going to use the general expression, which is used by Flugge cell theory,

and we are going to develop governing equation using strain displacement relations.

In the next lecture, I will explain the stress resultant and start developing the governing

equation of shell using the variational principle; the principle of Hamilton.

Thank you very much.



