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Dear learners welcome to the first lecture of the second week. In the 1st week, we have 

done the basic definition of shell geometry, derivation of first fundamental forms, and 

derivation of the second fundamental form of surfaces. 
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In the first week, we have derived the definition of curvature, normal curvature  can 

be written as 

 This numerator term is known as the second fundamental form and the denominator is 

the first fundamental form of surfaces. If we divide it by , top and bottom, then it 

reduces to equation (18) 

        where, 

If we differentiate equation (18) with respect to  and equate to 0; ,

ultimately it reduces to a quadratic equation 

and the solution of the quadratic equation gives the two roots. 
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These two roots are extremum values of normal curvature :   and , and these 

are known as principal curvatures. If you are interested to find the principal radii then we

can say that   and . But the formula written here is valid when 

the parametric or principal curves are orthogonal to each other 
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How to reduce this? In case,  is 0, it must satisfy equation (19)

 for the principal curves. 

If  equals to 0, this equation (19) becomes 0. And from the equation of the normal, we 

get this equation where H  > 0. If principal curves are orthogonal, then F = 0 and M = 0 

and this will give you nothing. Ultimately for the principal curves, we conclude that F & 

M are equal to 0 and it reduces to equation (20) 

. 

We cannot reduce from the previous equations, by just putting  = 0 or  = 0. And

now from this equation, we can say that the curves where either  is constant or   is

constant; for constant - lines  = 0, if  = 0, then . 
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For a constant, - lines = 0, because there is no change in  for a constant -line

which gives you  . So, through this assumption, where principal curvatures are

orthogonal to each other, we get  and . 
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Now, we are going to find out the derivative of the unit vector along its parametric lines,

which is very important.  These derivatives help us to frame up some more theorems

which are ultimately used to develop the fundamental equations for the surfaces. 

Consider three orthogonal unit vectors, if I say this is surface (s), you may assume in any

direction  and . So, take  is increasing here. At a particular line here  is constant

and  is increasing here, and at a particular line here  is constant. 

There is no need to worry about x and y if we have a grid system. What is a Grid system?

A line here x values remain constant. Over here x is constant if we draw like this over 

here y value is constant. In the same way, we can say that here on which line it is going, 

for perpendicular lines  value will be constant and here  will be constant, let us say

, , and so on. 



We consider three mutually orthogonal unit vectors, , , and , where  is a tangent 

vector along line 1, and  is a tangent vector along line 2, and  is the surface normal. 

These are oriented on a surface at a given point such that  and  are tangent to  and

 directions (first line and second line of curvatures) and  is normal to the surface. 

This triplet of unit vectors moves over the surface because if we move from one point to 

another point some different tangents can be defined. 

Now, the direction of these unit vectors changes. However, their magnitude remains 

unity and they are still orthogonal to each other. If you remember initially, I said that in a

circle, if you change from here to here, its tangent vector changes. So, it’s sign changes.

 can be defined as ; = ,  is lame’s parameter. So = . Same way

, and = . So,  = . is lame’s parameter  

then  and it can be written as .

Assuming the parametric curves are principal curves and they are orthogonal. We can 

find the derivatives of surface normal and derivatives of tangents. Since,  and  are 

perpendicular to , they must lie in the tangent plane formed by  and . So, this is a 

very important frame-up that  and , will be perpendicular to  and they will lie in 

the tangent plane  and .
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If this is the condition, then we can write that = a + b  because they lie in the plane

of tangent plane, where a, b represents the projection of  on the plane  and . 

Now, multiply this equation with . If you multiply with this equation with ; then,

 and . So, basically, this term will go to 0 and it remains ‘a’. From here 

we can say .  =  (  is  upon ). So, this is the definition of  and

.

Same way if we multiply  with the , then  and from here this .

=0. So, this term is going to be 0. For an orthogonal system, it is going to be 0. From 

these two equations, b = 0 and a = . We can say that . Now, we will further 



simplify it, if  (radius of curvature) and it can be written as  and E =   

lame’s parameter. 

 from here  is here and  goes from here, so  = . Hence,  can be written 

as  in terms of lame’s parameter and radius of the curve. In this way we will get the 

equation here, . 
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By following the same procedure, I am just going to derive it further, let us say = c

+ d . Now, if you multiply this equation with  it will give you c. If you multiply this 

equation with the help of  that gives you d, let us say (2) and (3). Because we know 

that  and  are perpendicular to each other then, = c. 



And  = d. These are orthogonal to each other (curvilinear parameters), this is 

going to be 0, so c becomes 0. From here we can say that .

Now, using the concept of   and from there again .  F becomes 

Using these concepts we can derive that   and . The surface normal 

derivative along one direction can be written as .  &  are the lame’s 

parameters, these are very easy to calculate, and & are the radii of curvature. 

These two differential equations are known as the theorem of Rodrigues. These are very 

useful in developing the theorem for surfaces. Now, we can derive some more relations. 

Let us say     

 and  can be replaced with the help of the theorem of Rodrigues. It gives the 

derivative of the unit normal vector surface along the principal parametric curves. 



The very first theorem is the theorem of Rodrigues. The starting one is derivative of the

surface  normal  will  lie  in  the  plane  of   and  ,  using  the  simple  mathematics

multiplying  with   and   we can  find  the  basic  relations.  Now,  we  will  find  the

derivative of   and . 
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First, we will consider that   and 

 Now,  and  . So, we can say that  =  which is the mixed 

derivative of  and , if you change the order, it does not affect the position vector. 

We can write that  

can be written as  and  can be written as . 

The differentiation of the first function will be . 

From this equation, we can say that  and can be written as:



 and 

We know that  ; ;    and . 

Similarly, ; ; ;  and so on.  
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Let us say vector  and its derivative  and  are perpendicular to this and will lie 

on the plane of  and . This is the starting. We frame up the equation again

, 

where a and b represent the projections of   on  and  respectively. 

If you multiply this equation with , that gives you 

 ultimately, it gives you b. 



If you multiply with  it will be 

 ultimately, it gives you a. Because  is 0. 

Now,  and  are perpendicular to each other, their product will be 0. From here we set

up another set of equations that 

This term which we are using here can be written as 

 Now, we will find . 
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We will use this equation (22) here and multiply with :

.  will give you 1, this term will vanish and again  is also perpendicular to . It 



only contributes to this term. 

Again, ; because surface normal  and  are perpendicular, so their dot product 

is going to be 0.

Taking differentiation with respect to 1 gives you this equation 

. 

; Hence, a =   

What is the substitute of that?   substitute is ; from the theorem of Rodrigues

 = 1;  hence, 

If you substitute all values then  can be written as: 

The derivative of the tangent vector along the first direction can be represented like this. 
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The same way we can derive the derivative of the tangent vector along the second 

directions. Those will also perpendicular to  and they will lie in the plane of  and . 

Now, you multiply with   and . From here, you again get equations d and c and using

the concept of , now this time taking derivative with respect to 2:

. 

For deriving the previous equation, we have taken the derivative with respect to 1. 

Again,  and =  using the theorem of Rodrigues. 

Hence, c = 

 Now, you see that  are perpendicular to each other, it is going to vanish.  c is going 

to give you 0. Now, we are interested to find d. We have to multiply  with  that 

will give you the value of d:

  . 
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Here, .  

. 

In this way, we get these two equations: -

   and    

Similarly, following the same procedure, we can get  and . Again, let us say  

will lie here plane of  and . Following the similar procedure; the same way  also 

will lie on the same plane. 
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Similarly, we will get two more equations which are written here:

   and    

These four differential equations are giving you the relation of derivative of tangent 

vectors along the parametric curves 1 and 2, which can be represented in terms of lame’s 

parameters and radius of curvatures. These four formulas are known as Weingarten 

formulas. And these PPTs were prepared by our M. Tech student Vaibhav Raman. 

Now, we have the theorem of Rodrigues and Weingarten formulas. Why we have 

derived this? What is the use? These formulas will help us to derive the theorem of 

surfaces. These are very much required to develop the differential equation for the 

theorem of surfaces. In that process we need these formulas, these are standard formulas.



Once you know, these 3 vectors  ,  , and   and using these relations we can find

derivative of   ;  derivative of  . Similarly, derivative of  ; derivative of   ;

derivative of  , derivative of . 
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Fundamental theorem of the theory of surfaces, we are interested to find three 

differential equations that relate the quantities , , ,  of a given surface. These 

equations are used to ascertain whether an arbitrary choice of these four parameters will 

define a valid surface or a real surface. So, to derive these relations we will be going to 

use the second mixed derivative of unit vectors.
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To derive the Codazzi equations we are going to use this relation the mixed derivative

= . 

We can say  . 

Now, using the formula of Rodrigues we can write like this:

 

And then differentiate with respect to 2:

 

Using the chain rule of differential that first term as it is the differentiation of the second

term. 

Now, we know that what is  and :



 =   and = 

If we substitute: 

and now collecting the coefficients of  and . 

If you arrange from the left-hand side or right-hand side then it is going to be 0. 
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Now, the question is that  cannot be along the line , they are perpendicular to each 

other. The relation will be valid only if their coefficients vanish. If we are saying that it is

going to be 0, then, = .

From this we get = s ; these two differential equations give you the relation 

between , , ,  and these are known as Codazzi equations or Gauss-Codazzi 



equation. Generally, these are known as Codazzi equations. Later on, the Gauss 

equations will come. 

Now, we are going to use the mixed derivative of tangential vectors = . Same 

way = .

Now, using the formula of Weingarten: 

 = and = 
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And it will give you this big equation

in which we have 

coefficients of ,  and . If we use  using the theorem of Rodrigues and 

theorem of Weingarten here. If we substitute these values:



 =  ;   = ;  and   = . 

This is a big equation and all things are to be taken as the left-hand side and equated to 0.

Here you see that equation to satisfy the coefficient of , , and  all are perpendicular

to each other, this equation will be valid only when its coefficients will vanish. From 

saying that coefficients of   will give you this equation 
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Then coefficient of  will gives you:

 Codazzi equations 



And coefficients of  gives you: 

the Gauss conditions 

These four quantities can be related by not more than these three homogenous equations,

and if they are to possess nontrivial solutions, then we can say that the role of Gauss-

Codazzi conditions gives you the fundamental theory of surfaces, and this term is known

as Gaussian curvature. 

And based on these Gaussian curvatures we classify the shell surfaces whether it will be

an anti-last stake, class stake or it will be a regular surface or developable surface based

on this Gaussian curvature. 
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Now, we have known that these Gauss Codazzi conditions are very important. Now, if E,

G, L, and N; this E and G comes from the first fundamental form, L and N come from 

second fundamental forms. If they are given as functions of the real curvilinear 

coordinate system  and , and sufficiently differentiable, and satisfy the Gauss-

Codazzi conditions. 



Then we can definitely say that there exists a real surface which will have a first and 

second fundamental form like this; +  1st form and 2nd form will be

+ . This surface is uniquely determined except its position in space. So, 

if they satisfy all the conditions, our surfaces are uniquely determined. 

Next, Gauss-Codazzi conditions are also known as compatibility conditions of the theory

of surfaces. If the surface is not satisfying those conditions if there may be a crack. So,

principal  curvatures  are  also  its  parametric  lines  if  they  satisfy  the  Gauss-Codazzi

conditions and they are orthogonal to each other.

With this, I end lecture 01. In lecture 02, we will study different surfaces; the 

Classification of Shell Surfaces.

Thank you 


