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Week-1 Review

+ Basic Definition of shell geometry
+ Derivation of First fundamental form
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Dear learners welcome to the first lecture of the second week. In the 1st week, we have
done the basic definition of shell geometry, derivation of first fundamental forms, and

derivation of the second fundamental form of surfaces.
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Principal curvature

g df‘r:dr'_ L(da) + Mﬁmiﬁ]rj-ﬁhd Fundg

We ki " —= = - ;
e iy E(da) +2F(de)(dp)+G(df)— |34 fuwds.
. L+2MA+NZ dp
0 K=——r—r Eq. 18 here, A=—
" M Eaegr . B9 e
For the values of /4 for which the normal curvature s maximum or minimum,
Ky s

di
Which gives, from equation 18

(M+NA)(E+2Fh+Gh*)(F+Gh)( L+ 2MA+NA*}=0
(M+NA){(E+Fh)+(F+G)}=(F+Gh){(L+Ma)+(M+NA)}
(M+NL)(E+FA)=(F+Ga)(L+Ma)

(MG -NF)\* +(LG - NE) A+ (LF-ME)=0 <~ (Eq. 19)

+ Solving equalio_n-19_g|_v;wo roots of A : 4 and 'j'-‘l}

In the first week, we have derived the definition of curvature, normal curvature K, can

dnds _L(da) +2M(da)(dB)+N(dp)’

be writt K, =
e written as drdr E(da)’ +2F(da)(dB)+G(dB)’

This numerator term is known as the second fundamental form and the denominator is
the first fundamental form of surfaces. If we divide it by da , top and bottom, then it

reduces to equation (18)

_L+2MA+NA’ where, 5 _ 9B
" E+2FA+GA° da

dK
If we differentiate equation (18) with respect to A and equate to 0; d)b” =0,
(M +NA)(E +2FA+G2*) - F +GA)[L+2MA+NA*) =,

ultimately it reduces to a quadratic equation

(MG - NF)A* +(LG - NE) A+(LF - ME) =0

and the solution of the quadratic equation gives the two roots. A : AandA,



(Refer Slide Time: 02:11)

+ These two rools will give two extremum values of normal curvature K K and K, .
One of them would be the maximum curvature ( say & is the maximum) and other
woulld be the minimum curvature (say K, is the minimum).

+ Since, the normal curvalure is a curvature of a normal section of the surface ata
point, therefore K and K, represent the principal curvatures of the surface and
corresponding curves are called principal curves of the surface. Radii £, and , are
called principal radii of curvature,

+ The principal radii of curvatures are the maximum and the minimum radii of
curvatures out of all possible radii of curvatures

1 2y o . :
R, = —f = lisminmum radiiof curvature as K, is the maximum curvature
ek WP'Y'\ Lt

R; - !\— smaxmum radiiof curvature ﬂﬁK; is the minimum curvature W

+ Since principal curves are orthogonal to each other ; we get, for principal curves
"—-___-_k

i

¥ ot ul
du

These two roots are extremum values of normal curvature K, : K, and K,, and these

are known as principal curvatures. If you are interested to find the principal radii then we

E
cansay that R =—=— and R, = But the formula written here is valid when

£ 6_1
L K, N K,

the parametric or principal curves are orthogonal to each other
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+Hence, £=0 must satisfy equation 19 for principal curves.

e
«For i=0 , equation 19 yields ( LF-ME)=0. i

+ From equation 10 we have, ;}{g'/j}:r"”‘i ; where I-I=JEG—F3 S0-
H s R

+ Since, principal curves are orthogonal, we have, f = (.

—
+ Hence, for principal cuves . § >0 = EG>0 = E >0 and G>0,
+ Therefore, (LF-ME |=0 =M=0 as F=0and E 0.

+ Hence, we conclude that for principal curves (as well as orthogonal curves),
M=0 and F=0

+In that case, equation 17 wou_la become - d =1, (da ]" +N(dp ]"

+ Hence, for the principal curves the principal curvature would be given by
e -
|- -

(Eq. 20) G




How to reduce this? In case, A is 0, it must satisfy equation (19)

(MG~ NF)A* +(LG - NE) A+(LF - ME) =0 for the principal curves.

If A equals to 0, this equation (19) becomes 0. And from the equation of the normal, we
get this equation where H > 0. If principal curves are orthogonal, then F=0and M =0
and this will give you nothing. Ultimately for the principal curves, we conclude that F &
M are equal to 0 and it reduces to equation (20)

o LY L(da)’ +N(dB)

CE+GA E(da)’ +G(dB)’

n

We cannot reduce from the previous equations, by just putting df8 =0 or da = 0. And

now from this equation, we can say that the curves where either f is constant or @ is
: . L
constant; for constant f - lines df =0, if df =0, then K, = rh
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— -
+ For constant /3 - lines : d =10 . which gives EK':%K\

- For constant & - Ines ; der=0 , which gives |k =K =N/,

it _I;_—'—"‘{_'g__.--‘l
+ The development of theary of thin elastic shells is considerably clarified if the
principal curves are taken as the paramelric curves.



For a constant, @ - lines da = 0, because there is no change in @ for a constant & -line

which gives you K, =—. So, through this assumption, where principal curvatures are

Ql=

orthogonal to each other, we get % and %
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Derivatives of Unit Vectors along Parametric lines

+ Consider three mutually orthogonal unit vectors [H -.mch]) that are oriented on a
surface at a given point such that 7, and s, are tangentto ¢ and /3 directions ;‘2 !¢ ﬁ
—_— |

respectively and ” is normal to the surface.

» As this triplet of unit vectors moves over the surface, the directions of these unit
vectors change (however their magnitude still remains unity and they are st
orthogonal to each other). ——— ;i

o BBy o B n A o Foxr,
1 5——== ; h===== :and n=fixf=—=
=(Ir) A [ral A, e 1
= =
+ Assuming parametric curves are principal curves (5o that they are orthogonal), we
- i b e kvt Johe
findthe . and ., (the derivatives of 71 ) 4 W ﬁ

Y
—_— !

p P g
+8ince, 1, and #,, are perpendicular to i , they must lie in the tangent plane

i - —

formed by frand 1 . b :
v ¥ "

Now, we are going to find out the derivative of the unit vector along its parametric lines,
which is very important. These derivatives help us to frame up some more theorems

which are ultimately used to develop the fundamental equations for the surfaces.

Consider three orthogonal unit vectors, if I say this is surface (s), you may assume in any
direction @ and . So, take f is increasing here. At a particular line here f is constant

and @ is increasing here, and at a particular line here @ is constant.

There is no need to worry about x and y if we have a grid system. What is a Grid system?
A line here x values remain constant. Over here x is constant if we draw like this over

here y value is constant. In the same way, we can say that here on which line it is going,

for perpendicular lines B value will be constant and here @ will be constant, let us say

a,, a,,and so on.



We consider three mutually orthogonal unit vectors, ,,7,,and ;, where 7, is a tangent
vector along line 1, and 7, is a tangent vector along line 2, and ; is the surface normal.
These are oriented on a surface at a given point such that 7, and 7, are tangent to @ and

B directions (first line and second line of curvatures) and ; is normal to the surface.

This triplet of unit vectors moves over the surface because if we move from one point to

another point some different tangents can be defined.

Now, the direction of these unit vectors changes. However, their magnitude remains
unity and they are still orthogonal to each other. If you remember initially, I said that in a

circle, if you change from here to here, its tangent vector changes. So, it’s sign changes.

=
:r’l

¢, can be defined as /1 =
ry

. , - r,
= 4,, 4 is lame’s parameter. So ;= — . Same way

A

1

A K,z
[ =r—7 and
7',2

A~ T .
ry|=4,.80, ¢, = A;z 4, is lame’s parameter
2

A , _ r, XF,
then ,; = 7,x7, and it can be written as ——=
A1A2

Assuming the parametric curves are principal curves and they are orthogonal. We can
find the derivatives of surface normal and derivatives of tangents. Since, ;1’1 and ;Aq,z are
perpendicular to ;, they must lie in the tangent plane formed by 7, and 7,. So, this is a

very important frame-up that ’2»1 and 7., will be perpendicular to ;; and they will lie in

92 9

the tangent plane 7, and 7,.
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+ Hence, they can be composed into components along p 1|[|:l}.- .
Q@ »

+ We can write, 11, =af) + bi> ~ where a and b represent the prcjections of 1,

on fand I, , respectively.

3
Now, consid Rl ,,}‘i B e ok B
ow, consider _'_';I_i"_% I‘“[E'M(y{]

i L o
r_-u_,:"i ”":u[’yﬁ]-h(f.--f‘):fl {J"_-”‘I:ﬂl
— A - il 5 J
Since, fi-h=l; ft2=1;and 1:-1=0

p—

L
il 1 11 ) O
Weget, a T and b=0,

Z P
Hence,| m,=—h | = T
| AI ) \\_

-,

If this is the condition, then we can write that ;q,l =ay,+ by, because they lie in the plane

of tangent plane, where a, b represents the projection of ;1’1 on the plane 7, and ;,.

Now, multiply this equation with , . If you multiply with this equation with 7, ; then,

f11=1and 7,7 = 0. So, basically, this term will go to 0 and it remains ‘a’. From here

~ A I’, .;/l, A . . . o, . L
we can say ¢,. n, = f (¢, is r,, upon 4,). So, this is the definition of i and
1 1

A

2

. LA A Sr Ty, LA oA
Same way if we multiply »,, with the ¢,, then 2.n, = =21 and from here this 4, .y,
1

=0. So, this term is going to be 0. For an orthogonal system, it is going to be 0. From

these two equations, b=0 and a = E We can say that 7, = ;f 1. Now, we will further
1 1



1 E
simplify it, if & =—— (radius of curvature) and it can be written as — and E = 4°
K, L !

lame’s parameter.

L

L A L
— from here R, is here and 4, goes from here, so — = —. Hence, — can be written
A R 4 4

1

as El in terms of lame’s parameter and radius of the curve. In this way we will get the
1

A A

. 1
equation here, 7, = 2 I,
1
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I, - L= N,
Which gives, R
| Eq2) Nz
Following the similar procedure we can show| 11, - A A A D
Np= C tn“‘d'{l
These t tions are known as Th f 3 ;
S8 (WD equalions are kn nj_ eorem ol Rodngues. 2 f"\\‘z i C e @
| =
Theorem of Rodrigues ?E N 5 el
- B L%
n,==th ad n,==tt ¥ = d
el R; _R___ @‘ L) L
; =0

Hence, dn=n, da+n,, d
ence, dn=n, da+n, df,

P \ LY

[ A, = | hi
dat| <2 |dp hhD._d
|y v

= Lb\;lz‘::;\
VY A

Theorem of Rodrigues gives the derivative of unit normal vector to the surface "
along the principal parametric curves. -~
s ——

MNow we will find derivatives of rand 1.

By following the same procedure, I am just going to derive it further, let us say ;z,z =cy
+d;, . Now, if you multiply this equation with , it will give you c. If you multiply this
equation with the help of ;, that gives you d, let us say (2) and (3). Because we know

A

¥y M,y

that 7, and 7, are perpendicular to each other then, =c.



A

Ty, 1, . .
And —2—2=d. These are orthogonal to each other (curvilinear parameters), this is

1

N
going to be 0, so ¢ becomes 0. From here we can say that d = R
2

: I N . F A’
Now, using the concept of K, = .G and from there again N = ek F becomes —2
2 n

~ A A~ ~ A~
Using these concepts we can derive that 72, = Flf 1 and 7,, = R—zf 2. The surface normal
1 2

A A
derivative along one direction can be written as Elt 1. A & A, are the lame’s
1

parameters, these are very easy to calculate, and R & R, are the radii of curvature.

These two differential equations are known as the theorem of Rodrigues. These are very

useful in developing the theorem for surfaces. Now, we can derive some more relations.

1 2

A oa . N A ~ A~
Letussay dn=n, do+n,,dp =>dn=(E‘t1)da+(R%tz)d/5

;1,1 and ;q,z can be replaced with the help of the theorem of Rodrigues. It gives the

derivative of the unit normal vector surface along the principal parametric curves.



The very first theorem is the theorem of Rodrigues. The starting one is derivative of the

surface normal will lie in the plane of ; and 22, using the simple mathematics
multiplying with ;, and ;, we can find the basic relations. Now, we will find the

derivative of 7, and 7,.
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i I

First consider, 4;| ==L="0 and , _ -
[ryl A~ [r,l A, \
= Anh=r, od Ai=r, v
For continuous
1

second derivatives | ;:, ; J;,\ Where. I o #r_ v &r L
N | opom " daidf|
‘_’\:I‘}':“’lg\fj]‘l __:’ "Y =5 5 )
. i i (Eny]. = )
AfitAh, = Ay lr+A, ="z
- |'. S e .
_>I:.|——}AII‘..‘+A|.J‘.—.~’\‘.‘I:]-vf
el RV e -Gl

- b

.I.' —— —— ~ (Eq.22)
&= '1.*\‘1':.,'.’\_..,!.' f\,.,{l}
o 4TS e
Note that : I'; B : a s J i
e B = TSR TE Ak |
l:\l.. i 8, ;\l A ;\I—\ VA, ;—\
 fa o ape oded 7 a8
. . . ;_ _ry ;_Eaz_raz
First, we will consider that 7t = = and 2 = y
I/',l 1 r:z 2

7., which is the mixed

NOW, All‘1 =r, 22 and A2t2 =V, So’ we can say that Py = Ta,

derivative of df and da , if you change the order, it does not affect the position vector.

We can write that (r,l) "= ( r,z) = (Altl) = ( Aztz) ”
r, can be written as A, ;l and r,, can be written as 4, 22.

The differentiation of the first function will be 4,,, f+ 4 21,2 =4,, tr+ Az;z,l .

From this equation, we can say that ¢,, and ¢,,, can be written as:



~ 1 A N N N 1 ~ ~ ~
t2,1=Z At,, +A4,,ti — 4,, t2| and t1,2=Z Aytr, +4,, t1— A4, t

We know that ;171 _o9n : 21,2 =%; A271 _9% and ;2,2 _9n
do ap do
o 04 04 04 04
Similarly, 4, =—; 4., =—>; 4,,,=—=; 4,,,=—=> and so on.
oo (:)/J) Jo 6)[3
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Now, ;..I and ;,,_\ are derivatives of ;‘ . So, they must lie in the plane formed

by 1 and1: -

So,we canwiite {1, =an+bi, ,whereaand b represent the projections of /1,

on uand /2 , respectively.
" \ O

-

A a A WA LA . S b
Now consider, f_"h\l:(.‘(ﬁ'/l‘/)-:h[.f_-'ﬁ'_‘] _-j)) JC'Il"‘:l'.ﬂ - Z

;I';'_kl:Lf(;i";i')"h(/i},'%:] . = i Qm = Q

n

Since, ;J'-:i—i; FI; =] g and :a;~—(} '—'___?'E|
Which gives, !'r:.r;-h_l and a=n,
Since, frh =0 44120

hoomd tq

Let us say vector 7, and its derivative f ,, and 7 ,, are perpendicular to this and will lie

on the plane of ;, and ,. This is the starting. We frame up the equation again

h, = Cl;’l +bt2>
where a and b represent the projections of 21,] on ; and 7, respectively.
If you multiply this equation with 22 , that gives you

;2 .;1,1 =aqa ( ;2 IA’l) + b( ;2 ;2) ultimately, it gives you b.



If you multiply with , it will be

A A
A A

nti, = a(n.n) +b( n.tz) ultimately, it gives you a. Because ni is 0.

Now, 7, and , are perpendicular to each other, their product will be 0. From here we set

A A A

up another set of equations that (tz-tl) w=ty, L+ttt =0

A

This term which we are using here can be written as b =1,.11,, = —.t2,, .1

Now, we will find ;2,].

(Refer Slide Time: 20:10)

Using equation 22, h——i;:_l';j ——“L{AIEL__. +A|,:;| -A:.,;.‘}';L
A, !

e
Since, fi+f:=0 and ﬁ‘f!.:—“
: ]
Which gives, [h=——1L |~ e B
A, hE=©
L - "
Since, nhi=0
—
(.ﬂr-h}.l-n_‘ di+h ey =0
e
asnhy=-n,hv"
a==n,-h= - IfJ'lfl ol
- R
7 s A‘ . . .'\I"
| n, [y ¢ Theorem of Rodrigues
9 R
e ot K s D
Hence, ny=an+bt=-—tn-—Lp [/

We will use this equation (22) here and multiply with 7, :

A A ~ ~ 1 ~ ~ ~ A~
b=tth,,=—t2, .11 = —Z[Altl,z +4,, +A4,, tz].l‘l
2

A

#, .1, will give you 1, this term will vanish and again 7 ,, 1s also perpendicular to £ It



. . Al >2
only contributes to this term. b =—-——+

2

Again, ;,7, = 0; because surface normal ; and ;, are perpendicular, so their dot product
is going to be 0.
Taking differentiation with respect to 1 gives you this equation

A A A

(n.h ) w=n, i +nt, =0,

A A A A

Ny, =—n, 1’ Hence, a =, 4

What is the substitute of that? 7.z, ,, Substitute is —;1,1 #1; from the theorem of Rodrigues

A A A N A
-n, 1 =-—t.ty = 1; hence, a = _El
! 1

If you substitute all values then 7 ,, can be written as:

4 Ay,

ty=an+bt, =——n—-—2=1
1

The derivative of the tangent vector along the first direction can be represented like this.
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Now, we can alsowrite ¢, =cn+d(; ,where ¢ and d represent the projections

% . R
of fy,, onnand/:. ‘I’h'L

—

Now consider, Ff {(fn ){u’[!!)

f:*-h.: '-=L‘(J}';} ] i u’[ HF }

Sincel A om O - A
nn=l: sty =l and net=0
A ,-'n'*_‘.\ A A
il sd=tin) and c=nn, 7
4 Fa a L=
Since, =0

(u h ] =Ny, 40, =0

A4 » a A

f—'.’:'i’_|=“l/ n., 'f;l

: : i _ jjle: f

e=0| i p

. . Theorem of
Rodrigues

=Ml ==N,h=

The same way we can derive the derivative of the tangent vector along the second

directions. Those will also perpendicular to 7, and they will lie in the plane of ; and 22 .
Now, you multiply with 7, and , . From here, you again get equations d and ¢ and using

the concept of n;l , now this time taking derivative with respect to 2:
(n.l‘l) sy =Ny L1 +nt,, =0,

For deriving the previous equation, we have taken the derivative with respect to 1.

NN A A~
Again, ¢ =nt,, and n,,= R—zl‘ 2 using the theorem of Rodrigues.
2

A~ -
Hence, c = ——2.h
RZ

Now, you see that 7, 7, are perpendicular to each other, it is going to vanish. c is going

to give you 0. Now, we are interested to find d. We have to multiply 7 ,, with 7, that

will give you the value of d:

PN 1 N ~ ~ o~
d=11,2.[2 =;|:A2l‘2,1 +A2,1lz +A1,2Z‘1:|.l2.
1
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Hence,weget [ . =dt, = d=1,1

J

LIS | i . s
Using equation 22, df =f1,,11 = A_{A"J'\" Ayl -f\._...h]--lf;

Since, 1420 and fy, - h=0

We get, | d= A J/
L _..AJ._
. 5 g e

o, fl,=ch+dis= "F;/
——— .‘\

Hence, derivatives of 1, are given by

Pt T , = "
_A_ _A\_ _\T J'cz,n

12 |

i E@2 L

A
Here, d =—*.
ere, p)

~

t,, = cn+dty-
In this way, we get these two equations: -

A4 A . A~
-—Ltn-—L2¢, and t2,) = L2y

for= Rl Az Az

Similarly, following the same procedure, we can get ;2,] and ;2,2 . Again, let us say ;2,]

will lie here plane of 7, and 5, . Following the similar procedure; the same way 7, also

will lie on the same plane.
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Similarly, derivatives of 12 are found to be given by

Ao Ns =P
[ A st
K, 1
A:‘! i M
l’__l. ]—'{l B i
Equations 23 and 24 are known as 'Weingarten formula.
Weingarten’s formula =
2 At Kok & K8
Iy _FH__J\_.-“ v Ny T!;
I iy % T_J} oA B
| A, ‘-\"I o) .‘\|.~ A n1i|1'£:“__,
| iy = ==tni—==t 5 = == | o "
i A R % I}
\ ' : - Dl fa] ¥
___________'_—‘_—ﬂ_’ ?11, 1\ L 7
PPT prepared by ! b hl
Vaibhav Rarman Pratap

Similarly, we will get two more equations which are written here:

A, - a

A Ae A
t2,2=——7’l—A11 and tr, = L2 4,

2 1 2

These four differential equations are giving you the relation of derivative of tangent
vectors along the parametric curves 1 and 2, which can be represented in terms of lame’s
parameters and radius of curvatures. These four formulas are known as Weingarten

formulas. And these PPTs were prepared by our M. Tech student Vaibhav Raman.

Now, we have the theorem of Rodrigues and Weingarten formulas. Why we have
derived this? What is the use? These formulas will help us to derive the theorem of
surfaces. These are very much required to develop the differential equation for the

theorem of surfaces. In that process we need these formulas, these are standard formulas.



Once you know, these 3 vectors ;, 7, and 7, and using these relations we can find

derivative of n,,, ; derivative of n,,,. Similarly, derivative of ¢, ; derivative of ¢,,, ;

derivative of ;2,] , derivative of 7 by
(Refer Slide Time: 26:00)

Fundamentel theorem % m.mdaa.em{qqa

= Thiee differentiol e;(aahms that plate
Ha cruam’{"ia"r'& AU p-;, R, ond Ry § 0 §ven

Surface. -

> Thee eguations

whethgr, om abitr@”f

PaAﬂWLP*M Mhﬂ-dﬂ‘}wﬂ-

ot woed o ascefain

chotce & Huat ot
o vald Lurfag.

77‘\7 TD leul\fe MMWS ml)(ﬂ-A -becc“-d

Fundamental theorem of the theory of surfaces, we are interested to find three

differential equations that relate the quantities A4,, 4,, R,, R, of a given surface. These

equations are used to ascertain whether an arbitrary choice of these four parameters will
define a valid surface or a real surface. So, to derive these relations we will be going to

use the second mixed derivative of unit vectors.
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Fundamental Theorem of Theory of Surfaces

Gauss Codazzi conditions
Ay Ag By and By
D1 fferential LLledlll}ﬂ\ that re E.ilL the quantities
of a given surface are found from the equality of the mixed i
second derivatives of the unit vectors. These vectors have ~ n
5

continuous sccond derivatives. 1zl

=
&

1 —
=Ny i i pt ] ]
T U
Expressions for derivatives of ni along the parametric lines k ""ﬂ 3 Lj_ ;

|.‘-!,r-" =| 4y %
FANNEY
(R_z)l Ez + Rz tz[

x,'__ ..'e,.".,
A\ . AlA]
(—2) b+ A =2
R R\

‘V N

A = - .-—41\9

LEI{I)U._ O
1

A,
R_, ‘+le£2

Using Weingarten formulas

AN L AfAyy .
(R_l)z”ﬁ\m‘

To derive the Codazzi equations we are going to use this relation the mixed derivative

A A

Ny = Aoy

We can say (;1’1) ,2 =(;1,2) ) .
Now, using the formula of Rodrigues we can write like this:

A~ A,
—+h| =|=>n

Rl

2 2 N

And then differentiate with respect to 2:

AN~ AA, AN~ A A, ~
2l oh+ 2= 2| o+ 2.2y

R, R4 R ), R A4

2

Using the chain rule of differential that first term as it is the differentiation of the second

term.

Now, we know that what is 7,,, and 1,



A .~

1°2 ~ ~ 291
= and = 2
t2>] Az hH tl,z Al
_ ~ (4 A, “ A,
If we substitute: #1 || = | ——2|=t2 A A
Rl 2 R, Rz | Rl

and now collecting the coefficients of 7, and ,.
If you arrange from the left-hand side or right-hand side then it is going to be 0.
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L s TR
—¥- R —— g K'Fp; e

i, cannot be along £y as they both are perpendicular the contents in square brackets must be zew

(2) =% (;_],-T.J L@L” 2

These two equations are called i/ur‘_n Cosdazz) conditions

Now again we take the equation .=, continuoussecond
derivatives 112 = »
AT e by mz J:| 21
(t_u]lg o (tl.l)ll
P

r

Using Weingarten formula L [

Ay ;1
l

Now, the question is that 7, cannot be along the line 7,, they are perpendicular to each

other. The relation will be valid only if their coefficients vanish. If we are saying that it is

A A,
going to be 0, then, | = | = —*.
R ), R
From this we get 4 = =2
R TR

between 4, 4,, R,, R, and these are known as Codazzi equations or Gauss-Codazzi



equation. Generally, these are known as Codazzi equations. Later on, the Gauss

equations will come.

Now, we are going to use the mixed derivative of tangential vectors ¢,,,= f,,, . Same

way (;I,l) 2= (21,2)’1,

5

Now, using the formula of Weingarten:
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Since for equation to satisfy coefficients of 4 b and £, should be zero
Coefficients of , 1 _

And it will give you this big equation

AN < A (AL A A, - -
|2 n+Fn,+| 2| L+, | = A t2+AZ’1 t2,, | in which we have
R, R 4 ), 4 4)77 4

1 1 1

coefficients of n,,, t,,, and 1,,,. If we use n,, using the theorem of Rodrigues and

theorem of Weingarten here. If we substitute these values:



A A~ ~ s A A,
Ny, = R—zfz; tr, = 25 ; and t2,, = 2Lt
2 2 1
4 ~ A A A\ 2 A, A, 4,,, A\ 2 Ay Ay
— | n+—.—12 = | %2 = — |f | — = t+—=L =2 |=0
Rl ) Rl RZ 2 ) A’Z R" A A

1 1/ 1 2

This is a big equation and all things are to be taken as the left-hand side and equated to 0.

Here you see that equation to satisfy the coefficient of ,, 7,, and 7, all are perpendicular

to each other, this equation will be valid only when its coefficients will vanish. From

saying that coefficients of 7, will give you this equation

Ay Ay _AZ’I _Alaz -0
A

AZ . Al 1 AZ
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Coefficients of £, :
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The four quantities can be related by no more than three homogenous equations,
If they are to posses nontrivial solutions. Now we can indicate the role of the
Gauss Codazii conditions by stating the fundamental theorem of theory of
suffages. —

= (aussian curvature

Then coefficient of ;, will gives you:

n: A =@; A oA Codazzi equations
R) R’\R/| R

2 2 1




And coefficients of ;2 gives you:

p __AIAZ = A5y + Ay the Gauss conditions
> RR, | 4 |, | 4 ),

2 1

These four quantities can be related by not more than these three homogenous equations,
and if they are to possess nontrivial solutions, then we can say that the role of Gauss-
Codazzi conditions gives you the fundamental theory of surfaces, and this term is known

as Gaussian curvature.

And based on these Gaussian curvatures we classify the shell surfaces whether it will be
an anti-last stake, class stake or it will be a regular surface or developable surface based

on this Gaussian curvature.

(Refer Slide Time: 32:34)

ond N g oforchin

it E &L ond N
T iy
and suffia diforenhasl oncl
z,a!-isbﬂ e Glawm- Codazzt L@:’HT:O_Q ' i L
a
Eyo and 070, H«mmhﬁ 2nd Fudafom ,EL({«!?( t ("@-B)
s ki e e

: w un.iff-@g

Gray . Codazzi condihons 3 B

cmn;::w? cmdiiona o ey § Sudacs,

9 pr:naba_q cuneiunes ane odoo U Pardmb\c
L.~

Now, we have known that these Gauss Codazzi conditions are very important. Now, if E,
G, L, and N; this E and G comes from the first fundamental form, L and N come from
second fundamental forms. If they are given as functions of the real curvilinear
coordinate system @ and f3, and sufficiently differentiable, and satisfy the Gauss-

Codazzi conditions.



Then we can definitely say that there exists a real surface which will have a first and

second fundamental form like this; E(da)’+G(d)” 1st form and 2nd form will be

Lid a)2 +N ( dp ) * This surface is uniquely determined except its position in space. So,

if they satisfy all the conditions, our surfaces are uniquely determined.

Next, Gauss-Codazzi conditions are also known as compatibility conditions of the theory
of surfaces. If the surface is not satisfying those conditions if there may be a crack. So,
principal curvatures are also its parametric lines if they satisfy the Gauss-Codazzi

conditions and they are orthogonal to each other.

With this, I end lecture 01. In lecture 02, we will study different surfaces; the

Classification of Shell Surfaces.

Thank you



