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Dear learners welcome to week- 08 lecture- 02. In the lecture- 01 of the week- 08, I 

developed a bending solution using the three-dimensional elasticity. The solution for 

governing equations for the developed and all-around simply supported case was done. 

Initially, I tried to develop the solution for angle ply shell panels where that x is equal to 

0 which means it can be of infinite length along the x-direction. Along the   direction 

panel is simply supported and the governing differential equations are obtained.  
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Those equations were like this: 

Where, X  = , , , , ,
n n n

T

n n n rr zr ru v w    
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 is the differential equation  



Where 0 1 2, ,A A and A are the matrices and 0Q  and 1Q  are the temperature thermal 

matrices that mean loading vector for temperature case.  

Here, we see that this is the first-order differential equation with a variable coefficient.  
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The solution to this equation can be done in a number of ways. In the literature, this 

equation can be solved using the power series method, but in the power series method 

convergence is an issue i.e., sometimes for a particular stacking sequence or geometric 

configuration, the power series does not converge very fast. 

Then an approach is developed that is known as the successive layer approach. In this 

approach cylindrical shell or each lamina is considered that it is made of n or p number 

of fictitious layers and this layer thickness is very very small so that the governing 

equation in that regime can be considered as a constant. 

And, we know that the ordinary differential equation with a constant coefficient can be 

solved easily for the case of a plate using the Pagano solution. The Frobenius method 

was applied to solve this equation.  

In the original Frobenius method:  

The complementary of the solution CX  = 
0

i

i

i

r Y 


=

 . 



Recently, the modified Frobenius method was applied i.e., instead of r here e  is 

taken.  

The reason behind taking an exponential instead of r is let us say i = 0, which gives the 

complete solution for an ordinary differential equation with the constant coefficient. 

These series converge fast.  
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In this field, the three-dimensional solutions are very rare or I would like to say that for a 

special case, special boundaries we can get the three-dimensional solutions.  

In that direction, the first solution was reported by Chandrashekhar and Gopalkrishnan in 

1982 using the Fourier and Bessel series expansion. They solved the three-dimensional 

problem of a cylindrical shell. Then Renetal, Varadan, and Bhaskar solved the 

cylindrical composite laminated shell.  

Soldator and his group Soldator and Hawkes using the successive approximation 

technique have solved a number of problems of cylindrical shells with simply supported 

boundary conditions free vibration of cylindrical laminated shells and buckling of 

laminated cylindrical shells and they also tried for the clamped boundary condition cases. 

Bhimaraddi and Chandrashekhara in the same 1991 and 1992 solve the problem of free 

vibration and static of cylindrical shells. 

In this direction handful of papers are available. A very famous book “Laminated 



composites and plates and shells 3D modeling” by Jiangqoye was published in 2003. In 

this book the three-dimensional solutions of plate and shell made up of composites 

started from bending, free vibration, and buckling have been discussed and it is one of 

the good books for the case of three-dimensional solutions. 

The other issues are also resolved, such as how to develop an algorithm for solving 

differential equations specifically for first-order differential equations in with state-space 

technique, and then the direct calculation of exponential of a matrix and various 

techniques are explained. 
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In the case of a successive layer approach; let us assume a layer is made of p-imaginary 

sub-layers and each layer will have some different thickness. It is assumed that the 

thickness of all fictitious layers approaches zero uniformly as p approaches infinity. If 

you divide it into an infinite set of layers then definitely the thickness of that imaginary 

layer is going to be 0.  

Upon choosing a suitably large value of a p, even that in thickness, thickness is small, if 

you divide it into further 10 layers or 20 layers then it is very very small. In that case, it 

becomes an individual layer and a thin-walled panel and the governing differential 

equation can be solved easily. 
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There is another approach which is the modified Frobenius method. Using this method 

professor Kapuria and Dumir in 1997 or 1996 developed three-dimensional solutions for 

piezoelectric shell panels and finite shells in which some layers are made of composite 

and some layers are made of piezoelectrics. 

The modified Frobenius series method is one of the most advantageous methods 

compared to other methods here equations are directly solved. Therefore, the 

complementary solution can be expressed like this:  

( )
0

(1)C i

i

i

X e Z equation 


=

=  .  

If we take the derivative with respect to r or with respect to  , then we can find the 

second equation:  
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The governing equation was ,rX = 1 2 1
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First, we have to convert it into   because we have taken a non-dimensionalization 

coordinate  .   varies in each layer from 0 to 1.  



First of all, we have to convert ,rX into  .  

K  = 1k

k

R
r

t

+− . Using those concepts:  

( )2 22 ,s s X  + + =
( )

( ) ( )

2 2

1 0 1 0

2

0 1 1 0 1 0

2

2 (3)n

s A R A A A t X

RQ Q s R Q Q tQ T equation

 

 

 + + + + 

 + + + + 

.  

Where, A contains ( )0 1 1 2 1A R A A R s+ +  these matrices. 

Now, substituting equation 1, equation 2, and equation 3.  
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Finally, that equation becomes like this: 

( ) ( ) 

( )  ( ) 
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Here you can see that these are the coefficients of  . Some are the coefficient of 
0 , 

some are the coefficient of 
1 , 

2 and 
3 . Now setting the coefficients of 

0  and 
i , 

1i  , and setting it to 0 leads to an eigenvalue problem: 

( )2 2

1 0 0 00s Z s A I Z AZ Z − − = = = . 



Where lambda is the eigenvalue of a matrix A and 0Z  is the eigenvector of matrix A, 

where, matrix A is ( )0 1 1 2 1A R A A R+ + , it contains all the terms it is not just simply A 

and then we can find the recursive relations when we go for setting i = 2 = 0, i = 3= 0. 

From there we can find: 

1iZ +  =   ( )0 1 1 2 2 1i i iZ Z Z i  − −+ + +  

0Z  is taken out, we assumed, in this case, 1Z = 0, it is valid for 1i  . Because when i is 

put 1 it becomes 2. Therefore, we can find the recursive relations. 
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Finally, the solutions can be written in terms of a series. Now, we have found the 

eigenvector and an eigenvalue.  

We can write the solution the same way as I discussed previously if roots are real or 

roots are complex conjugate, then we can write:  

1 1 2 2cX FC F C= + .  

1F  = ( ) ( )1 1

0 0

cos sini i i i

i i

e R z I z    
 

= =

 
− 

 
  . 

We found out that for the case of composite laminates not more than ten terms are 



required in a series. For the case of a constant, it was just a real part of the eigenvector, 

but now it is a summation of a series from i to  . One can find the convergence term 

and add all these terms together and multiply with e .  

Similarly, 2F  can be obtained as ( ) ( )1 1

0 0

sin cosi i

i i

i i

e R z I z    
 

= =

 
+ 

 
  . 

Sometimes 10 terms or 20 terms are required for a four-layer composite panel. In this 

way, we can write the complementary solutions where   is the real part of the root and 

  is the imaginary part of the root. Since we have 0 1Q and Q  temperature loading due to 

that, we can write the particular solution.  

The particular solution PX  = 
2

0

j j

i

H A
=

   

0

i

j i

i

H e Y 


=

=  .  

As I have said that for a known temperature let us say   is known to you, we can find a 

particular solution like this. As the mechanical and thermal equations are not coupled, we 

can solve the temperature equation independently and use the results here for getting the 

particular solution under thermal loading. If there is no thermal loading then this 

particular part will not be there. 
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The final expression is  ( ) ( )X F C = , in which we add the particular solution as well 

as the complementary solutions.  

As we have started from taking time like u is the function of r,  , z and time. For the 

case of a static bending   = 0 and has no thermal loading.  

The equation will be X = FC, where C is the arbitrary constant. 

Now, we are going to solve for 4-layer, 5- layer, or 10-layer composite laminates. Each 

layer will have the variables u, v, w, rr , r , rz . How many variables we are going to 

have?  

If we take an example of a 4-layer composite shell panel then at each interface we need 

to satisfy 6 boundary conditions let us say 1k ku u+ − = 0. 

Similarly, 1k kv v+ −  = 0. 

The same way we are going to satisfy rr , r , and rz . 6 variables in each layer, we are 

now having 24 variables. 

Can we set up the 24 governing equations? Yes, 18 from these three interfaces and 3 

from the bottom, and 3 from the top. We can have 24 boundary conditions. We can apply 

that let us say three rr , r , rz . Three at the top and three at the bottom and six at the 

interfaces. 

Another matrix is formed which is K matrix, then K  = 24 X 6 and  C = 6 X 1 and the 

load that boundary conditions at rr  = 2P+  at the top and 1P−  at the bottom. This is a 

linear algebraic equation.  

We can find C =  
1

K P
−

. 

In this way, a cylindrical shell under mechanical loading can be solved. If we say that 

under the thermal loading, then:  

( )F C + PX = X  

Then again, we have to apply the temperature.  



There will be no pressure, only the temperature terms will be there. Temperature loading 

terms come from these particular solutions.  

FC  = PX−  

C = 1 PF X− .  

In this way the constants can be found and substituting back gives the variables u, v, w at 

any   location.  

Along the thickness, we can find all the variables under pressure loading under thermal 

loading.  
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If it is a case of a free vibration then the pressure is going to be 0, there will be no 

temperature then the right-hand side   K C = 0.  

For that case, the non-trivial solution will exist only when its determinant K  = 0.  

The procedure I already explained is how to get the natural frequency of such a system in 

the Levy solution of a cylindrical shell. For this system, there is 2  if this is the natural 

frequency then the determinant K = 0. 

By assuming an initial guess hit and trial procedure then we can proceed and find the 



bounds and ultimately, we can find the frequency of the system. In this way, an infinite 

set of frequencies can be obtained whether in the case of two-dimensional shell theory 

we can get only five natural frequencies at a time for a particular m or n, but here for a 

particular m or n we will get an infinite set of frequency. 
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Now, force vibration case: after calculating the fundamental frequencies, we can take in 

the ratio of force upon the natural frequency, and then we can proceed from 0 to 2, 0 to 3 

and in the loading case:  

P = 0 cos sinp t n  .  

Here, putting the value load function and deflection and phase plots can be obtained and 

in this way, free force vibration of the system can be obtained. For that we must know 

the forcing frequency; if we know the forcing frequency, the same way as pressure 

loading, we can obtain the results.  
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Modeling of a cylindrical shell in an abacus for static analysis is uploaded as a small 

tutorial.  

You can go through in that you will understand how to model a cylindrical shell in 

commercial software and how to get the results. Ultimately, whenever you develop your 

theory or develop a theoretical model you want to verify or compare, in commercial 

software you can similarly model that and can analyze. 
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Now, I will briefly explain the finite shell model. In the case of an infinite shell, we 



assumed that 
,zw is going to be 0, where w is just a function of r and theta. But, for the 

case of a linear finite shell, this type of strain displacement in cylindrical coordinate is 

considered.  
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And the following constitutive relations are considered: 
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And following equations of equilibrium are considered: 



,
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,

, ,
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2 r
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r r

w
r r
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  
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 
  
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You see that we have 3 equations of equilibrium and 6 constitutive relations. Ultimately, 

we have 9 equations, variables u, v, w and 6 stresses rr ,  , zz , zr , r , and z . 

Similarly, here also  , zz and z can be expressed as a dependent variable. 

If we ultimately convert these three equations and from here 
,r r , there must be some 

,  , 
,r r  and 

,rz r . From these three equations, we can develop six differential 

equations. 
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And, we assume that this is a finite shell along the length L and this total variation is let 

us say  . We can have a boundary condition at x = 0 & L or we can say Z = 0 & L and 

then we have a boundary condition   = 0 &  . 

If we choose that all of these are simply supported Navier solution.  

We can assume the solutions like 2sin n  along the 2  = 
x

L
.  



1  = 



 along   direction, along x direction and the time function can be expressed 

cos t .  

We can express the variables like this: 
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If we assume solutions along x directions or z-direction and   direction then the set of 

governing equations reduces to only differential equations along the radial coordinate. 

And finally, the governing equation is expressed the same way and it can be solved 

similarly to the previous case. 



   

1 2
0 2

, , , , ,

,

rr zr r

r

X u v w

A A
X A X

r r
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 
= + + 
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In this lecture, I am going to discuss a very recent article that is the three-dimensional 

formulation for levy-type transversely loaded cross-ply shell panels. I would like to say 

that even till date the solutions for a levy-type cylindrical shell panel are not very much 

reported. Only three or four papers are reported in these directions specifically for the 

analytical solutions we are interested. 

We can do the finite element solutions; we can do some differential quadrature methods 

or scale boundary finite element method SBFEM. There is a number of techniques by 

which we can solve the cylindrical shell panel or any kind of shell panel subjected to 

different boundary conditions and loading, but the development of an analytical solution 

is difficult. 

It is the very recent year 2020 paper by Isa Ahmadi and I would like to discuss that in 

this paper beautifully the governing equations are converted into only x and   by using 

the concept of Lagrangian interpolation. I am going to explain this. 

Let us first go with that paper; in that paper, the longitudinal axis is considered as x, 

where the radial axis is considered as r and the circumferential axis is considered as   

where u displacement is taken along x-axis, v taken along   axis and w is taken along 



the radial axis. 
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Here, I would like to point out that in this paper the equation of equilibrium is written 

slightly differently not as I have written previously or given in some other books. If we 

write the equations like this then the governing equations can be developed very 

smoothly.  

( ) ( )
0

1

1 1
0 (1)

R

T

r r rx r

R

r F equation
r r r x r





   



   
+ + − + =    

  

( ) ( )
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1

1 1
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R

T r
r x

R
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r r r x r


   


   



   
+ + + + =    

  

( ) ( )
0

1

1 1
0 (3)

R

T r
rx x xx x

R

r F equation
r r r x r





   



   
+ + + + =    

 .  

rF , F , and xF  are the body forces. 

This is the very first step the equation of equilibrium is written slightly differently. If you 

open all these things, it becomes the same, but now they have been written in such a 

way. The next assumption is that in each layer it is sub assume that this is made of some 

imaginary layers. These imaginary layers are called numerical layers and these interfaces 

are called numerical interfaces. 



In these layers a radial coordinate varies and let us say kr  will be inner of that layer and 

outer of that layer radius. We can say that we can divide a layer into sub-layers. The 

reason behind dividing mathematically or imaginary sub-layers is that they assumed a 

function   that varies along the radial thickness direction. It varies linearly from one 

layer to another layer. 

In an actual sense if you divide a single layer into two, let us say from here, it will go 

linearly from here to here, but if you divide it into some small layer, it may take a 

quadratic or any kind of a variation. The accuracy of inter-laminar stresses will be very 

high for such cases. 
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Let us say that u, v, w are a function of (x, ) and kr  is the radius at K-th layer and kU , 

kV , and kW  is a function of ( ),x  only.  

Each layer will have three displacements. We will be going to have 3N + 1 variable; 3 at 

the top and 3 at the bottom. In this way, 3N + 1 variables are required. 

( ),U x   1 2 1, ,....... nu u u +  

( )  1 2 1, , ,....... nV x v v v +=   

( )  1 2 1, , ,....... nW x w w w +=  



These layers we can easily divide into n numerical layers. Let us say if we divide it into 

two numerical layers 1, 2, and 3, we will have 3 layers and 2 interfaces. 

ku  (x, ). And what about kr ? Along the radial direction, he has chosen a function   like 

  varies from 0 to 1.  

Here   varies from ( )k r =  1

1

k

k

r r

t

−

−

−
, the bottom layer coordinates upon the thickness of 

that bottom layer. 

This   is totally a function of r. In each layer, this   will also be different.  

We will have n + 1.  

Ultimately, u = ( )i U   

v = ( )i V  

w = ( )i W  

Now, from here this   is varying from each layer. 

If you remember in the case of first-order shear deformation theory from bottom to top 

linearly varying, we have taken a function  , but here a function is taken in each layer it 

varies linearly and we have as many layers and variables. This is the known coordinate 

system ultimately. 
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Now, we can develop the weak form of this. This is the equation of equilibrium if we 

multiply to develop a weak form of this:  

Let us say,  
0

i

R
T

R

rdr .  

Ultimately, 

    
0

(1)

i

R
T

R

equation rdr  = 0 

   
0

(2)

i

R
T

R

equation rdr = 0 

    
0

(3)

i

R
T

R

equation rdr  = 0.  

Where   is the Lagrange interpolation function. This is the weak form generated. 
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Now, using the integrating by parts we can develop the finally equations as following: 

  ( ) ( )

  ( ) ( )

  ( ) ( )

0

0

0

1 1
0

1 1
0

1 1
0

i

i

i

R
T

r r rx r

R

R
T r

r x

R

R
T r

rx x xx x

R

r F rdr
r r r x r

r F rdr
r r r x r

r F rdr
r r r x r





   





   




   




   



   
+ + − + =    

   
+ + + + =    

   
+ + + + =    







.  

Now, we can apply the integration by part and sum using this concept. Here,  (r), iR  to 

0R . What is the other variable rdr?    

This is only a function of r. If you remember: 

11N  = 
2

11

1
2

1

h

h

d
R


 

−

 
+ 

 
   

The same way, this ( )
0

i

R

rr

R

r rdr   can be defined as some coefficients, we can obtain 

analytically the value of those functions. 
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If we do so it gives you three partial differential equations in x and  .  

    ( )

   

 

1 1
, , ,

1 1
, , 0

1
, , 0

x x r

x x

x x x x

R R M N q x
R R

M M Q R
R R

M M Q
R

  

    

 

   + + − = −   

   + − + =   

   + − =   

 

By doing so, it reduces equations into x and    

Where,  , ,x xM M M   = ( )
2

2

, ,

h

T T T

x x

h

dr      
−
 .  

The same way,   ( )
2

2

, ,

h

T T

x xr r

h

R R dr    
−

=   

( )
2

2

, , , ,

h

T T T

x r xr r r

h

r
Q Q N dr

R
      

−

  =    

( )
2

2

, , , , ,

h

T T T

x x x x x

h

r
M M M R dr

R
        

−

  =    . 



From here definitely, we can apply the levy-type boundary condition, we have only 

along x and  .  
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Using the shell constitutive relations, you can say: 

  =   Q   

And let us say xxM = 
2

2

h

xx

h

dr
−
 .  

From here substituting these things, it can be expressed in terms of shell constitutive 

relations, and substituting back here ultimately these three equations are converted into 

displacements u, v and w and let us say linear operator is equal to loading something. 

Now, this linear operator may have a derivative with respect to x and a derivative with 

respect to   and sometimes it may have a double derivative and so on. If we want to 

solve this type of problem, let us say along x = 0 & L is simply supported. 

We can assume u, v, w accordingly whether it comes sine or cosine along x axis 
x

n
L


 , 

if we substitute into these equations. Ultimately, this equation is reduced to an ordinary 

differential equation in   coordinate. Those ordinary differential equations can be solved 

analytically. Now, it does not remain in the partial differential equation. 



And, the most important part is that these equations are with constant coefficients 

because the function of r is taken into the integration like in our previous cases. It will be 

just like an algebraic equation; we can solve it. I would like to say that is a slightly 

different approach, we have tried to develop using the Hamilton principle, but here by 

just using three equations of equilibrium those equations are obtained. 

And, it has been found that results are in very good agreement, and most importantly the 

interlaminar stresses. What is that? Why we are interested to have all kinds of difficult 

formulations and so on? 
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When you have a different boundary condition at the edges if this edge is free then the 

stress variation over here is very huge so that rr , r  and rz  causes the delamination. 

We are interested to find an accurate estimation of rr , r  and rz  . In this way, a levy-

type solution is presented. 

There is some more type of solutions available like using the extended kantorovich 

method recently one of my Ph.D. students Shransh Kar developed a three-dimensional 

solution for a cross-ply panel using the EKM approach. Where that is subjected to 

arbitrary boundary support conditions solved using the multi-term approach. 

Recently, I have seen the free vibration analysis of a cylindrical shell using the scaled 

bound finite element method is solved. In this way, we can get the solutions of 



cylindrical shells, and sometimes the other kind of shells like, spherical shells and 

conical shells are also tried. These analytical solutions are most important.  

We should try to develop the first analytical solution if not possible then we can go for a 

finite element solution. In this direction, I would like to say that in the nineties the first 

solution of static bending of composite laminate shells was proposed, but now it is 2020 

that solutions of a levy type cylindrical shell are proposed.  

It took 30 years in that direction of analytical solution whether you talk about EKM or a 

slightly new technique. One can try in this direction can we develop some series of 

analytical solutions or can we try to solve a more complex problem like cylinders with 

the hole or the buckling of the cylinders or the fatigue analysis of the cylinders.  

I would like to say that even the cylinders under impact loading, composite cylinders 

under impact loading, and composite cylinders under blast loading under fatigue are still 

the area of research. Some have different configurations, and different cut-outs, some 

have some stiffness, and a variety of loading is possible in the case of a cylinder. We can 

try these things. 

Thank you very much. 

 


