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Dear learners once welcome to week-07, lecture-01. Before going to this, I briefly 

discuss whatever we have covered to date. In week-01, I discussed the composites, 

material, and the basic Shell equations. Week-02 was related to the development of the 

theorem of surfaces and strains.  

Under week-03, governing equations for a doubly curved shell were developed. Under 

week-04, discussions and various special cases have been discussed. In week-05, the 

bending solution and MATLAB program was elaborated.  

In week-06, the extended Kantorovich method and Levy solutions were presented. And 

in this week-07, I am going to discuss the buckling of the shells. And in week-08 I shall 

develop the three-dimensional solutions.  
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First of all, why do we want to study the buckling of shells? This is the statement given 

by David Bushnell, he is a pioneer done a lot of work in shell buckling, both 

experimentally as well as theoretical.  

And there is a website called shellbuckling.com is devoted to the analysis of buckling of 

various types of shells, papers and other experimental works are discussed in detail on 

shellbuckling.com, it was prepared by David Bushnell. 

To produce efficient or reliable design and to avoid unexpected catastrophic failure of 

structure shell are important components. It means that the shells are the important 

component, we are interested to produce efficient reliable designs. It is very important to 

study buckling in the shell as compared to plates or beams because shells are very thin 

and buckling may occur due to a variety of reasons. 

In the case of a plate or case of a beam, it is due to the axial compressive load. But in the 

case of a shell, it is beside the axial compressive load the buckling may be due to the 

external pressure or the combined effect.  

There may be a local buckling due to the concentrated load or may be due to some 

geometrical imperfections, earthquake, temperature, initial stresses, or residual stresses. 

There are a variety of reasons due to which buckling may happen. 
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Before going into the subject of buckling of shell, let us review, today is 28 December, I 

am recording this video, it is showing there are 18000 articles in which the buckling of 

shells is discussed, and they may be theoretical, experimental, functionally graded 

nanocarbon tubes, isotropic metals, or maybe of a different kind due to imperfections or 

different geometry and different boundary conditions. Shells may be toroidal shells, 

spherical shells, cylindrical shells, or any kind of shell. It is shown that 18000 articles are 

divided, out of which 10000 articles are related to the buckling of cylindrical shells. 

You can see that a very huge amount at least 50% of work is related to the buckling of 

cylindrical shells. Buckling of the cylindrical shell is a very important topic. Previously, 

in the case of bending, I said that a cylindrical shell is a most-simple shape, a lot of work 

has been done in that direction. 

But when we talk about buckling, I would like to say that cylindrical shell is not simple 

when you compare the experimental results with the theoretical results there is a high 

mismatch. That is the reason a small imperfection in the cylinder may cause an entirely 

different state of buckling.  

A major reason is that whatever we are predicting, let us say, the critical load of 

buckling, practically your actual situations happen very early as predicted. Buckling may 

be analysed in 3 steps, one is the pre-buckling (just before the buckling), 2nd is buckling, 

and 3rd is post-buckling (after the buckling).  

I think in plates nobody studied about the post-buckling, very less work is related to 

post-buckling or pre-buckling, you have only heard about the buckling. But in the shells, 

these terms are very frequently used and a lot of paper is devoted to all 3 stages of 

buckling of the shell. 



So, I think in plates nobody studied about the post-buckling, very less work is related to 

post buckling or pre-buckling kind of thing you have only heard about the buckling.  

There may be some experimental or theoretical works are available, maybe some 

empirical formulas are used. After the 1980s or 1990s computer codes were used to 

study the buckling of shells.  
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What do you mean by a buckling?  

When we call a shell is buckled or a plate is buckled; I think at the undergraduate level 

the concept of column buckling is present, if a column is there and if you apply an axial 

pressure P at any boundary condition, it may try to bend like this. 

let us say, this is a column and you are trying to put the axial pressure over there, you are 

increasing the pressure by delta. After some time, it reaches a point where it changes its 

shape. This means a large deflection takes place. A sudden change of a shape or a 

bending due to a load is called buckling. 

Buckling of beams and plates are easy as compared to shell. In the case of a beam and 

plate buckling is comparatively very easy, only one type of buckling for compressive 

stress can be done. But in the shell, why the buckling in the shells is difficult, and why 

do shells buckle more frequently than the plate?  

The reason behind that is thin shells are used for structural applications, these can absorb 

a large amount of membrane energy without deforming much. Because when we say that 

the shell is thin for membrane theory of shell, where the shell is subjected to in-plane 

stretching can store more membrane energy. Therefore, there will be less deformation. 



But, due to some loading conditions, boundary conditions, and some geometrical 

parameters, if this membrane energy is converted into bending energy, it resists very 

little amount of bending energy. Due to the bending effect, large deflections may take 

place, but the shells cannot absorb more bending energy. 
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If a shell is loaded in such a way that most of the strain energy is in the form of 

membrane compression, then the shell may buckle, which means when you are going to 

subject a shell under the compressive stress, then the shell may buckle. It can convert the 

strain energy or the membrane energy into bending energy. 

Buckling of a shell depends upon the loading of the shell, geometry of the shell, and the 

material properties of the shell. These are the important parameters. And further, we can 

say that in the shells during the manufacturing imperfection occur. Let us say, it is a 

circular cylinder, but along the length it may be slightly oval, it may not be a complete 

circle and this effect is known as imperfection causing a buckling. And the shell is thin, 

generally, they buckled more frequently.   
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There is a graph of axial loading and the end shortening, let us say, we have a very thin 

cylindrical metal shell.  

In this lecture first, I will discuss isotropic shells, how the buckling loads are affecting 

the end shortening or the behavior of the isotropic shells. Then, I shall discuss the 

behavior of composite shells. Let us say, a metal cylinder or an isotropic cylinder is 

subjected to axial stress.  

If you increase the axial stress, slightly its length is decreasing at a point, it follows a 

fundamental equation of equilibrium. If you remove that, if you reach a point A that is 

known as limit load, there it starts buckling, slightly bulging will come near the edge.  

Near the edge, at point, A bulging will take place. A state is reached that is known as 

limit load, and if you start further increasing, then a point B comes and that point is the 

bifurcation point. Why there is this bifurcation point? It may follow two routes one route 

is B to C another route is B to D.  

Let us say, from O to A shell deforms axis symmetrically along the equilibrium. Then A 

to B deforms axis symmetrically, but B to C if it follows this path, it bifurcates and 

further deforms axis symmetrically.  

But if it follows a path B to D, it may deform non-axis symmetrically and the behavior 

looks like this, these are no longer remain axis symmetry. Depending upon the 

imperfection and many other parameters, they may follow any path, but we can check 

through the experiment. From this point, they may go to two different routes.  
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There is a graph of axial load limits and total displacement corresponding to the load. If a 

cylinder is a perfect shell, then a black curve will follow a point B, an early bifurcation 

point, and point A limit load comes later.  

When we have an imperfection, which means instead of circular it is slightly oval or 

some defects are there, then it will follow a dotted line which is far below this black line. 

And lambda S is corresponding to limit load to the imperfection, and lambda C is 

bifurcation load, and lambda L is the limit load. This is the graph. Now, we can study 

both perfect and imperfect shells. In real life all shells are imperfect.  
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We can see this graph, when it is linear the initial displacements are very small. We can 



say that up to point B it is starting from here only because the deflection is very small. 

We can see that this graph is represented like 0 to B straight line and the red line B to D 

is for the imperfect shell. the red line. 

From this graph, it is seen that for the imperfect shells the buckling load is smaller as 

compared to the theoretical perfect shell, that is why there is a mismatch between the 

theoretical and experimental results because theoretically, we assume it is a perfect 

cylinder, there are no imperfections or the boundary conditions are perfectly applied if 

you say clamped or free, but in a real situation, this may not be true.  

For those cases, the buckling load may be different. And it has been experimentally 

observed that buckling load is very low as compared to the theoretical load.  
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There are various types of bifurcations buckling; when we have a neutral post-buckling, 

then the graph will look like this for imperfect one black one is for the perfect case.  

When we have unsymmetric post-buckling, then the black line is for a perfect cylinder 

and the dotted one is for the imperfect one. Then, we have stable, symmetric, and 

unstable. In this way, the different bifurcation processes are defined for the case of 

isotropic cylinders. 
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When we talk about the orthotropic or a laminated one, then we have to think because 

the composite laminates are brittle in nature, they are not like metal, elastic-plastic zone, 

or a local buckling effect. Before going there during a test of even a very carefully made 

cylinder on an isolated buckling initially appears at average stress considerably below 

the predicted bifurcation value.  

There are many works presented in the literature, it has been done that they have 

developed a very perfect cylinder in the laboratory and tested on the ideal conditions, 

still, the results were far away from the theoretical one. It is not only the imperfections 

but still, there are some parameters which are governing the actual buckling of the shells.  

Buckling of a shell is very important and most of the time very big cylindrical tanks, 

water tanks, LPG storage tanks, nuclear reactor tanks, all are very big tanks if we do not 

study the buckling effect very carefully, even at a very small load they may buckle and 

may cause hazardous effect when it is gasoline or a nuclear reactor, then it is harmful to 

nearby areas also. 
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We can see in one of the graphs, I have taken from the David Bushnell paper the 

classical theory predicted this straight line whereas, the experimental results come here. 

You can see a very low range and then the experimental oblique theoretically is coming 

0.605Eh

a
, where 

a

h
 is the radius to thickness ratio, a is known as a radius. Critical load 

theoretically is predicted like this, it is coming very low.  



In most of the books, if you see in the literature the experimental buckling of shells is 

discussed a lot. From the starting, I think the 1970s or 60s, even after the 1950s a lot of 

work has been done on the experimental buckling of the shells.  
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Now, I am going to discuss the composite laminated cylindrical shells which are made of 

composite materials.  

In the metal or the isotropic materials because they are elastic materials the concept of 

local buckling comes into the picture. An isotropic metal or the shell can take more loads 

through skin buckling or the local buckling effect. It is not going to fail the structure, just 

a small dent appears if this is your cylinder. Because of this may be small wrinkles kind 

of thing may come up.  

These may take more load as compared to the designed one and can even perform their 

functions without fail.  

But as we know that the composite materials are not elastic or ductile, these cannot take 

more loads because the phenomena of local buckling may not happen in that case.  

And then the concept of imperfections of the composite cylinders; in the case of metals, 

we know that types of imperfections may happen, but in the case of composite cylinders 

there may be different types of imperfections may present, due to the variability of 

angles or delamination or the voids or maybe some other effects.  

Due to those, imperfections may come up, that need to be studied and a lot of work has 

been done in that direction. Then, the third concept is the sensitivity of imperfections. I 

have not discussed that for the case of isotropic material the imperfections play a very 



important role and specifically the cylindrical shell is very very sensitive to the 

imperfections a slight imperfection may lead to a critical buckling load.  

In this way, some points need to be addressed, when we study the buckling of cylindrical 

shells. A lot of work has been done.  
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And through the course, it has been found that laminated shells or composite shells are 

less sensitive to imperfections. And there was a graph presented between a winding 

angle which means the fiber angle and the critical load the graph is plotted taking 

different imperfection factors.  

And it is showing that these are less sensitive to geometric imperfection. But the concept 

of delamination between the layers. If there is small delamination that takes place in that 

area that may cause a loss in stiffness and further may be changed in the buckling load. 

From the theoretical model, the way we have developed is similar there is not much 

difference, but experimentally, other factors can be analyzed and can be found. In the 

case of buckling semi-empirical formulas were designed, the designers can use those 

semi-empirical formulas to know the critical buckling loads to design the thickness of the 

shell or to analyze the shell under different loading boundary conditions. 
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I will first discuss a standard formulation, partial differential equations: 
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And in lectures 4 and 5, we studied the bending-free vibration by considering only the 



linear terms. We did not consider non-linear terms we took those 0. But for the case of 

buckling, we are going to consider these non-linear terms. 

In the first equation, we have two terms, in the second equation also we have two terms, 

in the third and fourth we do not have them, but in the fifth equation, 4 terms are there. 

These are the governing equations with non-linear terms. 

If somebody is interested to study a generalized buckling behavior of a doubly curved 

shell then these equations are perfect and one can use that.  

The cylindrical shells are studied mostly and for the present case, for explanation point 

of view, I will also use the cylindrical shell. For the cylindrical shell, these governing 

equations are reduced. 
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For the cylindrical shell, these governing equations are reduced. In the case of cylindrical 

shell lame parameter 1a  = 1, 2a  = R, 1R  =  , and 2R  = R.  

If we follow this, the term 1 10
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Similarly, in the fifth equation 1 10
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procedure, the final governing equations are represented like this: 
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I have done some changes here, in literature in most of the books the equation number 

fifth in the present case is kept at third position. The first equation is corresponding to u, 

the second equation is corresponding to v, the third equation is corresponding to w, the 

fourth is corresponding to 1 , and the fifth equation is corresponding to 2 , rotation 

variables. You can see in the third equation ( )11 0,
,

x
x

N Rw is the whole derivative with 

respect to x.  

If we open it, R will get canceled it is not a function of x then it will be: 

11 0 ,xxN w  + 11,0 , xxw N . 

Mathematically, this term 11,0 , xxw N  will exist, but in most practical applications, we 

take the axial load constant over the circumference or an external uniform pressure. 

These are not a function and can be 0. But if you say that even over the circumference, 

they may follow some variation loading then you have to consider those. It is a very 

generalized case, but in most of the books in which buckling of the shell is studied, only 

the first term is considered because we consider the axial load constant, it is not a 



function of x. 

When it is not a function of x that is 0. Similarly, the second term 20
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I am telling you this term because graduate students or postgraduate students when they 

do it mathematically can open it like this and have these terms, but when we go to a 

general article or a book, we do not find these terms. Therefore, we must know why we 

are putting these as 0.  

Similarly, 12N  and 21N  are same, therefore we have kept it same, and ultimately the 

contribution of 12N  are presented here. xQ  and Q  can be represented in terms of the 

moment. 

In most of the cases; the following 5 equations are converted into 3 equations: 

( ) ( ) ( )

( ) ( ) ( )

( )

,

, 1 0 10 1 1

22 12,

, 0 20 0 2 0 20 1 22

22 22, 12
11 11,0 0 0 20, 0 20 0 20,2 2

12, 12

0 20 0

(1)

, , (2)

, , , , ,

, ,

x

xx x

x x x

xxx x x x

x

x

N
N q I u I equation

R

N Q N N
N w u w q I u I equation

R R R R

N N N
N w w N w u w u w u

R R R

N N
w u w

R R

 

  
 



   







+ + = +

+ + + − + + = +

+ + − + − + −

+ − +
12, ,

0 , 3 0 0

,

, 1 10 2 1

,

, 1 20 2 2

, (3)

(4)

(5)

x x x

x

xx x x

x x

QNN
w Q q I w equation

R R R

M
M Q I u I equation

R

M
M Q I u I equation

R

  


 

 

 





+ − + − =

+ − = +

+ − = +

 

Because, when you have 5 equations then you have to solve 5 equations altogether. We 

know that xQ  and Q  can be expressed like this. Therefore, you can directly substitute it 

there. Then, you will have to solve only 3 equations. In this way, it may reduce to the 

classical shell theory. 

In most of the cases though it was a general application, when we go for buckling xQ  



and Q theta are expressed in terms of xM  and M  and substitute it into equation (3).  

But for the present case; I tried to keep all 5 equations together because when we do so 

the boundary conditions need to be reduced. For that purpose, I kept all 5 equations. For 

us, it does not matter whether we solve 3 equations together or 5 equations together. 
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Following are the final form of governing equations for buckling of cylindrical shell: 
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In week- 05, I gave the concept of infinite shell panel and finite shell panel. After this 

step, these equations may be further reduced to infinite shell panel which means when a 

shell is very long along x-direction finite shell panel. When a shell is having a shell panel 

is of finite length or maybe for the case of buckling complete cylindrical shell complete 

shell is like this.  



For that case, there may be two varieties: short cylinders and long cylinders.  

These equations are valid, we can convert using further approximation. When we talk 

about a complete cylinder when we say that it is axis symmetry, in that case, derivative 

  will also vanish. Equations will be further simplified. 

(Refer Slide Time: 33:42) 

 

In the case of bending, when I did special cases like a cylinder under internal pressure, I 

used only 3 equations. From here, 
,N

R

 
 = zq  and subjecting back to second and third 

we can solve the stress resultants finally. 

But when we are interested in buckling though it may be a cylinder under external 

pressure, still we cannot directly use these in the terms of stress resultant, we have to first 

convert it into a primary displacement form. For that purpose, these 5 equations are 

important. 

When we go for buckling, the non-linear terms in xxN definition and xxM definition are 

not considered. Initially, xxN  =   0

LA

  +   0

LA

  + NLA .  

This term NLA we are not considering. 

But if you want to do a non-linear study like load-deflection curve, bifurcation curves, 

and all these things then we may consider these non-linear terms also. For that purpose, 

we completely open up to non-linear terms and going to solve non-linear bending 

vibration in that way we consider all these things and solve them completely.  

 

 



But for the case of buckling: 
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The definition of ijA
= 

1
2

2

1 1

h

ij

h

Q d
R R 

 


−

−

  
+ +   

  
  

ijB
= 

1
2

2

1 1

h

ij

h

Q d
R R 

 
 

−

−

  
+ +   

  
  

ijD
 = 

1
2

2

2

1 1

h

ij

h

Q d
R R 

 
 

−

−

  
+ +   

  
 .  

For the case of a cylinder   = x,   =  , R  =  , and R =  R. 

We can say: 

21

11A  = 

1
2

11

2 1

2

1 1

h

h

Q d
R R

 


−

−

  
+ +  

  
 .  

1R  =  , 

1

1

1
R


−

 
+ 

 
 will not exist and 

2

1
R

 
+ 

 
 will exist.  

In lecture 05, I explicitly did more terms 11A , 12A , 13A , but in a combined form, we 

expressed in the lecture-04, we can write 
ijA  and finally, evaluate a number and put it 



there or in some expression form. It is a very general expression and a very useful 

expression for making the program. 

We have written all the indexes properly, putting the proper    you can find these 

numbers 21

11B 22

12B , and so on, it will be a complete form. The fewer numbers of unknowns 

will be there in the final governing equation. 
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If you use this concept and substitute it into the above governing equations, before going 

there we must know what are 0

11

L , 11̂ , 0

22

L , 22̂ and so on for the present case.  

0

11

L  = 10 20 0 11

1 2 1

1 u u w aa

a a R 

  
+ + 

  
for a general shell. But for the present case cylindrical 

shell is reduced to 10u



 
 
 

.  

Similarly, 11̂ =  1 2 1

1 2

a

a a

 

 

  
+ 

  
, now it is 1



 
 
 

.  

For the present case: 0

22

L  = 20
0

1 u
w

R 

 
+ 

 
 

22̂  = 21

R





 
 
 

  

011

12  = 20u



 
 
 

 



012

12  = 101 u

R 

  
 
 

  

11

12 −  = 2



 
 
 

 

12

12 −  = 11

R





 
 
 

 

0

13  = 0
1

w

x


 
+ 
 

 

0

23  = 20 0
2

2

1u w

R R




 
− + 

 
.  

If somebody is giving a write-up for a cylindrical shell the first step is to give the strain 

displacement relations for a cylindrical shell. 
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Writing 0

11

L  in terms of these things, that is the most appropriate form for working. If we 

write the shell constitutive relations like this: 
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If we write in terms of 0

11

L , then we have to convert it into a displacement form and use 

that. This is the most convenient form of shell constitutive relations.  
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In the first equation:  

,

, 1 0 10 1 1

x

xx x

N
N q I u I

R

  + + = + , we can write that in terms of 

( )

( )

21 22 21 22 12

11 10, 12 20, 0, 11 1, 12 2, 66 10,2

12

66 1, 1 0 10 1 1

1 1 1

1

xx x x xx xA u A u w B B A u
R R R

B q I u I
R

  



 

 

+ + + + +

+ + = +

  

In this way, the first equation is represented in terms of primary displacement variables. 

Same way in the second equation: 

( ) ( ) ( )
22 12,

, 0 20 0 2 0 20 1 22
, ,x x x

N Q N N
N w u w q I u I

R R R R

  
  + + + − + + = +  

If we substitute using the shell constitutive relations it becomes like this: 

( )
21 21

22 22 21 2112 12
10, 22 20, 0, 1, 22 2, 66 20, 66 2,2 2 2

1 1 1 1
x x xx xx

A B
u A u w B A u B

R R R R R R
      + + + + + +

20 044
2

1u wA

R R R




 
+ − + 

 
+ ( )

22 12

0, 20 0, 22 x

N N
w u w q

R R
 − + + ( )0 20 1 2I u I= + . 

Then, the third equation will be: 
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22 12 12 12

11 0, 0 20, 0 20, 0 10,2

21
22 2212
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20,44
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, , ,
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1
,

xx x x x x
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R R R
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The fourth equation will be: 
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And the fifth equation will be: 
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22 22
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Now, you see we can write that in a matrix form so that working with these terms will be 

easy and even the coding will be easy.  

We are trying to do it in such a way that arranging the matrix like coefficient of 10u , the 

coefficient of 20u , the coefficient of 0w , the coefficient of 1 , and the coefficient of 2 . 

If we do so, we can arrange in a matrix form. 
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This matrix form is: 

10 1011 12 13 14 15

20 2021 22 23 24 25 22 23

31 32 33 34 35 0 032 33

43 4541 42 44 1 1

51 52 5453 55 2 2

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

B B
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L L LL L

 

 

      
      
      
      +
      
      
           

101 0 1

202 0 1

3 00

1 2 1

1 2 2

0 0 0

0 0 0

0 0 0 0

0 000

00 00

uq I I

uq I I

q wI

I I

I I





    
    
    
    = +
    
    

         

These are the primary variables and these are the terms related to our non-linear 

buckling. For the cylindrical shell case, only the second and third equation contains 

terms related to buckling and these are the loading and this is our inertia matrix. 

We can write:  

LU  + BL U  = q IU+  

This is our general equation where L is a 5 by 5 matrix, U is 5 by 1 matrix, BL  is 5 by 5 

matrix, U is 5 by 1 matrix, q  is 5 by 1 matrix, I  is 5 by 5 matrix, and U  is 5 by 1 

matrix.  
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Now, what is 11L , 22L , and so on? Explicitly, these can be written as: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21 12 22 22 21 12
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21
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, ; , ; , , ;
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x

L L L L

L
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A

R R
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R R R R R
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( ) ( ) ( ) ( ) ( )

22 22 21 12
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21
22 22 44 12
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55 22 66 44 22 232 2 2

32

1 1 1
, ; , , ; , , ;
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ˆ ˆ ˆ1 1
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x x x xx

x x

B B

xx x

B
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R R R
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L

 
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  
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( ) ( ) ( ) ( ) ( )22 12 22 12
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ˆ ˆ ˆ ˆ
ˆ, , ; , , ,B

x xx x

N N N N
L N

R R R R
 = − + = + +

 

Generally, these terms may be symmetric that 12L  = 21L  or 13L  = 31L , but for the present 

case for a cylindrical shell, it may be the same or with some minus sign. That is why we 

have written all the terms so that there will be no confusion that whether it is all 

symmetric or non-symmetric, but for the case of a plate there this matrix is completely 



symmetric there will be no ambiguity. Here the reason behind non-symmetry is that in 

one direction 1R =   and in another direction 2R = R.  

Due to that, there will be some mismatch like we can say that 12N   21N , if these are 

not equal then 21L  12L . This is a very important concept for developers that first find 

out these 11L , 12L , buckling and the inertia matrix where we know that: 

0I  = 

2

1 2

2

1 1

h

h

d
R R

 
 

−

  
+ +  

  
   

1I  is 

2

1 2

2

1 1

h

h

d
R R

 
 

−

  
+ +  

  
  

2I  is 

2
2

1 2

2

1 1

h

h

d
R R

 
 

−

  
+ +  

  
 .  

In this way, we can find all the components and we can put them here. 
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Now, what are the boundary conditions? Previously, when we considered a linear part, 

we neglected all this. Even in the boundary there are some non-linear terms exist you can 

ignore these things because when you go for a linear one then you can say:  



Either 22N  = 0 or 20u = 0;  

Either 21N  = 0 or 10u  = 0;  

Either 22M  = 0 or 2  = 0; 

Either 21M  = 0 or 1  = 0;  

Either 2Q  = 0 or 0w  = 0.  

But for the case of nonlinear terms, whenever we are going to satisfy the free condition 

of a shell then it will not just Q or xQ  = 0, we need to satisfy some more terms also. For 

that case, an edge where   is constant, if you say that these are   and  . The edge   

is increasing.  

The lines 1 2 3, ,    are corresponding to   constant. The edge where   is constant 

following variables need to be specified: 
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21 1 22 1 10
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=

=
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=

   
+ −  + −  =   

   

 

And for the present case the corresponding terms that 22N  and 11N  need to be 

considered. 

The most important part is in most of the buckling cases, when we say that the 

cylindrical shell is subjected to the axial load that is corresponding to xxN  only, there 

will be no N   and no circumferential loading. In that case, these terms may not come 

into the picture.  

But if you say that this N may also be there, then N , xN   are also combined, then you 

have to consider these terms. When you see the buckling papers or books you do not find 

these non-linear terms because they have assumed that shell or cylindrical shell is 

subjected to only the initial axial stress.  

 xxN  can be 0N , but N   and xN   = 0. Due to that reason these terms are not 

contributing. But in actual when you say that there may be some circumferential stress, if 

you talk about a cylinder under external pressure or internal pressure in that case N   

may act.  



For that case, there may be loading due to the external pressure or internal pressure, then 

the circumferential stress may exist, and ultimately, this N   causes the bending into the 

shell.  

Though the shell is subjected to external pressure, that external pressure is causing a N   

and due to that buckling may take place. Similarly, at an edge where   is constant, some 

more terms may come up: 
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If we consider our present case, this term 

( ) ( )11 121 2 0, 0, 20 1 2 0xQ a N R w N w u Q a or w+ + − = will exist.  

Along that edge x = 0 and x = a or  , these terms need to be satisfied + whatever initial 

stress you have. In this way, we have to see clearly that what we are going to be satisfied.  

Boundary conditions need to be modified and need to consider the non-linear terms when 

we are going to study a buckling. Even the concept of buckling is done by the linearized 

buckling and non-linear buckling. For the present case, we are considering non-linear 

terms and Von Karman non-linearity is considered and the buckling effect is studied.  
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Now, the very general solution, if we talk about a finite cylindrical shell, when it is a 

closed boundary then only one edge x = 0 or x = L maybe there or there will be no edge, 

for that case, the solution is written. But when we talk about a finite shell panel when we 

have both edges free: 

0 20 2

0 10 1

0, :

0; 0; 0; 0; 0

0, :

0; 0; 0; 0; 0

xx xx

at x a

w u N M

at

w u N M 



 



=

= = = = =

=

= = = = =

  

If that is the case the cylindrical finite shell panel is subjected to all simply supported 

boundary conditions and for that case, the deflection is expressed into double Fourier sin 

series and in-plane displacement in cosine and sine series and 20u is sine and cosine 

series. In this way these are expressed:  
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Again, we have already taken the concept of time derivative. We can say that cos t will 

also be there, the time will vary along cos t . If you substitute this expression into the 

previous equations 11L , 12L , 13L , these become a new constant and these constants are 

known as 11K , 12K , 13K . 
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These may contain mn . m  is m  by a and n  is n  by  . Now, this K is a constant 

matrix and expressed like this: 

2 21 2 12 22 22 2 21 2 12

11 11 66 12 12 13 12 14 11 662

21
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2 21 2 12 22
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(Refer Slide Time: 52:46) 

 

We can finally write the set of equations like this: 

        G mnmn mnmn
K U K U q M U+ = +  and this is a complete governing equation. 

It contains mechanical loading, inertia terms, buckling loading. For the case of static, 

buckling and inertia terms are neglected.  

Therefore, this equation reduces to    mnmn
K U q=  and  

mn
U  = ( )

1
K q

−
.  

If we want to study a free vibration case of a shell then buckling will be 0, q = 0, and K 

U = M U. And M = 2I− .  

If we put this side, we can say that  
mn

U   0, so this      2

mn
K I U −   = 0.  

  is unknown to you, you do not know the natural frequency. 
2

K

I
 can be found or if it 

is a single one 
K

I
 otherwise you write 1KI − . Five frequencies will be known for a 

simply supported cylindrical panel. 
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Now, for the case of buckling: q is equal to 0, and inertia terms are also considered 0. 

terms are considered 0. Now, our equation is reduced to      G mnmn
K U K U+ , where 

GK  contains 11N̂ , 22N̂ , 
12N , we have 3 terms.  

If you put so,  g mn
K K U +   = 0, then the trivial solution  

mn
U  = 0, and the non-

trivial solution 
gK K+  = 0.  

When we put this determinant as 0, it contains 11N̂ , 22N̂ , depending upon the case, we 

solve one case at a time. Let us say we consider a cylindrical shell is subjected to axial 

loading only, for that case 11N̂  = 0N  and all 22N̂ , and 
12N = 0. Ultimately, a 

characteristic equation comes up and from there we can find N critical loading for the 

present case.  

In the next lecture, I shall discuss buckling of shells for different cases under axial load, 

external pressure, thermal load, and under combined effect. 

Thank you very much. 

 


