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Dear learners welcome to week-06, lecture-02. In this lecture, I will explain the first free 

vibration solution for all-around simply supported finite cylindrical shell and state of art 

for developing levy type boundary conditions for a finite shell. Previously, I developed a 

Navier solution for static bending and an approximate solution for arbitrary supported 

shell panels. 
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The geometry remains the same, a finite shell panel is considered, coordinate in the first 

direction is x, in the second direction is  , and z is in radial or thickness direction, the 

displacement field is:  

1 10 1 2 20 2 3 0, ,u u u u and u w       .  
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Now, we are directly coming to the governing equations. Following governing equations 

we derived in week-05; lecture-02 and lecture-03:  
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This time, I included the dynamic terms also. Following are the boundary conditions: 

At x = 0 and a: 10 20 0 1 2xx x x xx xN or u N or u Q or w M or M or   , these variables 

are needed to be specified.  

At   is equal to 0 and  : 10 20 0 1 2x xN oru N or u Q or w M or M or      , 

these variables are needed to be specified. 
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Just for the sake of completeness, I again have defined stress resultants, moment results, 

shear resultants, and the loading: 
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Following are the shell constitutive relations, which we have derived in week 5, lecture 

03: 
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Here, you can see, they are expressed in terms of primary variables; 10,xu , 20,xu , 1,x , 



 

 

2,x , and so on. 
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Similarly, the moments and shear resultants will be: 
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We have 10 shell constitutive relations. 
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Now, the inertia matrix: the definition of 
0I  = 
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If it is an isotropic shell, then we can directly integrate and we can write  h or 
2

2

S
 

and so on. But, for a composite shell or a laminated shell, each layer may have a 



 

 

different density and different reduced stiffness coefficients k times.  

If we talk about a sandwich shell, the core is very light and the face is having stronger 

material and may have more density. And, this core is a light material, we have low 

density. In that case,   is a function of the kth layer which means  1k kz z  , this is the 

first term contribution.  

Similarly, the second term contribution, third term contribution can be found for the case 

of a composite shell. In this way 0I  will be: 
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Similarly, 1I  and 2I  can be found.  
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Now, using the shell constitutive relations, if we substitute into the 5 partial differential 

equations that lead to an equation (p1):   
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      L U I U q     

Where,  L  is a linear operator, U   contains the primary displacement variables 10u , 

20u , 0w , 
1 , and 2 .  

This time you see a dynamic matrix comes into the picture. Let us say a matrix I.  

11I  = 0I , 14I = 1I  and 21I  = 0I . 

These are the components of inertia matrix and time derivative of primary variables, 10u , 

20u , 0w , 
1 , and 2  and load matrix 

3q . It is a column matrix; the array is written like 

this. First, I shall explain the free vibration because I already explained the static 

response of a finite cylindrical shell subjected to all-round simply supported case. 

In this lecture, I shall explain the free vibration of a finite circular cylindrical shell 

subjected to all-round simply supported boundary conditions.  
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For the case of simply supported, a finite shell,  

0 20 20, 0; 0; 0; 0; 0xx xxat x a w u N M       

0 10 10, 0; 0; 0; 0; 0at w u N M         . 

If these variables are specified, then we can assume the solution that along x axis:  
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The blue term cosn  is for the symmetric case when loading is symmetric and sin n  is 

for an anti-symmetric case.  
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of combination, the new thing here is cos t , it is a time derivative. Sometimes people 

used to take  Re e
i t

. 

If you open, it becomes cos t  + sini t . We are taking only this portion, instead of 

writing in this form, we can assume cos t . So, if we take that cos t  is the variation of 

variable 0w  in the time domain and the along the space domain, which satisfies the 

simply supported boundary conditions. 
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If we substitute this Fourier expansion and time expansion into the p1 equation, then it 

reduces to:  

mn mnK U  +   mnM U  = mnq .  

The non-zero component of a matrix M will be: 

11 14 22 25 33

41 44 52 55

2 2 2 2 2

0 1 0 1 0

2 2 2 2

1 2 1 2

; ; ; ; ;

; ; ;

M I M I M I M I M I

M I M I M I M I

    

   

         

       
 



 

 

And, the stiffness matrix non-zero components will be: 

2 2 2 2

11 1 2 12 3 13 31 5 6 15 51 7

2 2

22 8 9 10 23 32 11 24 42 12

2 2 2 2

25 52 13 14 15 33 16 17 18 34 43 19

2 2

35 53 20 44 21 22

; ; ; ;

; ; ;

; ; ;

;

K m f n f K mnf K K m f n f K K mnf

K m f n f f K K nf K K mnf

K K m f n f f K m f n f f K K mnf

K K nf K m f n f f

            

         

           

       2 2

23 45 54 24 55 25 26 27;K K mnf K m f n f f     

 For the case of free vibration, there will be no loading, therefore,  

0mn mn mnK U MU   . 
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Ultimately, M = 2I .  

mK - 2I = 0, this is an eigenvalue problem where mnU  is the mode shape. 

From here, 2

mnw  =    
1

mK I


 , it is just a single equation like in the case of a beam. If it 

is just a single equation, then we can say that 2  = 
K

I
, for the case of a beam or a 

spring. But here, mK  is a 5 by 5 matrix, and I is also a 5 by 5 matrix, therefore, we can 

say that 2I  = - mK , minus and minus get canceled, if we multiply with 1I  , then  

1 2I I  =  1I K
. 

It becomes an identity and, in this way, 5 different values of   can be obtained at a 

time. For a particular combination of m and n, these are Fourier numbers that may vary 

from 1, 2, 3, and so on.  



 

 

Let us say, for m is equal to 1, and n is equal to 1, we will get 5 frequencies at a time.  
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For a particular combination of m is equal to 1, we will get frequencies in bending 

stretching and shear modes. If we increase that, we will get an infinite set of frequencies. 

When a cylindrical shell is subjected to all-round simply supported, the calculation of 

frequency is very easy like a case of a plate, but if we talk about a levy type support 

condition, then it is slightly difficult. 
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For the levy type boundary condition, the very first condition is that two opposite edges 

are simply supported. When we say that any structure is subjected to levy type support 

condition, in that case, we are saying that any two opposite edges either x = 0 to a or   = 

0 to   is to be simply supported. If that is the case, then we can develop a levy solution. 

In the case of a cylindrical shell generally along   direction,   = 0 and , is considered 

simply supported. Another axis; which is x = 0 and x = a, can have any combination of 

the boundary conditions. For the present case, if we assume that   = 0 and  , then the 

following variables are needed to be 0:  

0 10 20 1 2 0w u u        
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If this is the case, we can assume the primary variables in terms of a single series or sin 

series. The first case is due to the symmetric loading. In the case of free vibration, 

loading is not, but boundary conditions may be symmetric and if it is a static case, then 

loading may be symmetric or antisymmetric.  

So, we can assume the solution like this: 
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cos t  is the variation of time. Now, substituting this expression into again p1 equation 

will give this big expression.  



 

 

(Refer Slide Time: 17:39) 

 

  
 

2 2

1 10, 2 10 3 20, 4 0, 5 1, 6 1

2

7 2, 0 1

2

3 10, 8 20, 9 20 10 20 11 20 12 1, 13 2,

2 2 2

14 15 2 0 20 1 2

4 10, 11 20 16 0,

0 1

0 2

xx x x xx

x

x xx x xx

x xx

f u n f u nf u f w f n f

f n I equation

f nu f u n f u f u f nu nf f

f n f I u I equation

f u f u n f w n

 

  

 

   

     

  

       

    

     

   

 

2

17 18 0 19 1,

2

20 2 0 0

2 2

5 10, 10 6 12 20 19 0, 21 1, 22 23 1

2 2

21 2, 1 10 1 1

2

7 10, 13 20, 14 15 20 20 0 24 1, 25 2,

2

2

0 3

0 4

x

z

xx x xx

x xx x xx

f f w f

nf I w q equation

f u n u f nf u f w f n f f

nf I u I equation

f nu f u n f f u f nw nf f

n f





 

 

   

 

  

   

        

   

       

  2 2

6 27 2 1 20 1 2 0 5f I u I equation       

 

Here one can see that the variation along   direction vanishes and 2n comes into the 

picture.  

And, in 10u ; there is no derivative, but derivative along x-axis remains. If, I go to the 

previous slide: Here, 10u , 20u , 0w , 1  all are a function of x. In the previous case: 

when all-round simply supported condition, 10mnu , 20mnu , 0mnw , 1mn , 2mn , all were 

constant. 

If only two opposite edges are simply supported, then these are the function of the 

remaining variable along the x-axis. If we substitute in that partial differential equation 

that gives us an ordinary differential equation in the x coordinate.  



 

 

It is a second-order highest degree in all the equations, you will find that the second 

derivative of x and the first derivative of x of all the variables exist in equations 1 to 5. 

The solution of this equation can be done in different ways.  

One way is that we can directly solve, using some techniques, the second-order ordinary 

differential equations, or we can convert it into the most suitable form. This solution 

technique is presented by Khadir et al, in that paper, these equations were converted into 

a first-order form.  

For the first-order differential form ordinary differential equation, the solution is 

straightforward. 

We are trying to convert these 5 equations into a first-order differential equation.  
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We are defining another set of variables, let us add a variable 1mZ  = 10u , 2mZ = 10xu , 

first derivative is assumed as a variable 2mZ . Then, 

3 20 4 20, 5 0 6 0,;m m x m m xZ u Z u Z w Z w      

7 1 8 1, 9 2 10 2,;m m x m m xZ Z Z Z       . 

In this way we have defined 10 variables. We have 5 equations from this: 

1, 2 3, 4 5, 6 7, 8 9, 10; ; ; ;m x m m x m m x m m x m m x mZ Z Z Z Z Z Z Z Z Z      

In equation (1):  
2 2 2

1 10, 2 10 3 20, 4 0, 5 1, 6 1 7 2, 0 1 0xx x x xx xf u n f u nf u f w f n f f n I             



 

 

10,xxu = 2,m xZ , 
10u  = 

2mZ , 20,xu = 
4mZ , 0,xw = 

6mZ , 1,xx = 8,m xZ , 
1  = 

7mZ , 2,x  = 
10mZ , 

1 =
7mZ . 

We can see that the first equation using the concept of another variable Z, is converted to 

a first-order differential equation, where the highest derivative is along x-direction. 

2 2 2

1 2, 2 1 3 4 4 6 5 8, 6 7 7 10 0 7 0m x m m m m x m m mf Z n f Z nf Z f Z f Z n f Z f nZ I Z         

From this, the first equation can be rewritten like this:  2,m xZ A Zm    , x is kept inside 

and the rest of the variables are kept outside because these are having no derivative. 

Similarly, the second equation will be expressed. 

After mathematically simplification or rearranging, we will get: 

 
,x

Z  =   A Z q .  

TZ contains 10 variables plus the load vector. Again, here the concept of 2

0I   is taken 

inside the matrix A.  

This is the first-order ordinary differential equation with non-homogeneous and where A 

is the constant matrix, the solution of this equation is easy. This is a 10 by 10 matrix. 
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The standard solution can be written as  Z  =   xC e
, where  , I will explain later on. 

If you substitute this complementary solution for the equation  
1

Z =   A Z , if you 

substitute it here it becomes xCe  = xACe .  



 

 

Ultimately,   xI A Ce   = 0, this is an eigenvalue problem, here, C is eigenvector of 

matrix A, and   is the eigenvalue of matrix A. 

For the solution, we must know only the matrix A and we can get the eigenvector and 

eigenvalue of that matrix. Then, we can write the solution. Let us say, all eigenvalues are 

real and different, there will be 3 cases.   

1st case: All eigenvalues are real and different.  

2nd case: eigenvalues are real but identical  

3rd case: eigenvalues are conjugate complex 

For each case, the complementary solution will be different and this has been already 

explained in the book of mathematics or in the paper on 3-dimensional solutions where 

the first-order differential equation is solved. For the present case, I will write, 

eigenvalues are real and different.  

In that case, we can write the solution:  

3 101 2 4

1 11 2 12 3 13 4 14 10 10........
x xx x x

cZ S C e S C e S C e S C e S C e
   

      .  

From 1  to 10 , we have 10 eigenvalues and corresponding eigenvectors.  

Ultimately, the complementary solution can be written as xACe , where C is having a 10 

by 10 matrix and xe  is a diagonal matrix of 10 by 10. In this way, a complementary 

solution can be found.  
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Now, the concept of a particular solution depends upon the type of loading. 

I would like to explain with the help of a simple example, 
dy

py q
dx

  , how do we 

assume a particular solution, if it is a constant or it is a function of x or it is a function of 

sin or exponential, the same way we assume a particular solution of that thing, let us say, 

1 2py d x d x  .  

In the same way, if the loading is uniform, for that case:   
1

pZ A q


  , but if the load is 

something else, then, we have to evaluate the particular solution.  

Now, we can say that the total solution will be:  

    .
x

pZ C e S Z


  , where, pZ  is the arbitrary constant. 

These are the constant that comes into the picture when we write a solution. These 

constants S can be found by implementing the boundary conditions. If I say that along x 

= 0 and x = a, x = 0: for the clamped case; the variables 10 20 0 1 2 0u u w        

We can make a solution matrix, let us say, it will come up 10Z , 20Z , 30Z  all are 0 and 

putting x = 0, we will get these 5 variables. And, when you put x is equal to a, maybe at 

some other boundary condition or clamped case there will be 5 variables again.  

This will be a 5 by 5 matrix; a new combination comes up there. From here, this 11S , 

10S can be solved. Arbitrary constants can be found by subjecting the boundary 

conditions in this equation. 

Once we know the boundary conditions, we can sort them out and the final solution can 

be written like this. In this way, the problem is solved for the case of levy, when it is 

having a transverse load. For the case of a free vibration, there will be no load. 
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In that case,  
,x

Z  =  A Z ,there will be no loading, it will be only a homogeneous 

solution. 

Again, we can assume a solution, Z  = xCe , and it becomes   xI A Ce   = 0. Finally, 

we can write a solution of Z =   1 0xC e S    . 

If we subject all these boundary conditions; let us say  M = 0, in this M we have   

term, 2  is there. We do not know the natural frequency of the system, we have a system 

like this   1M S  = 0, a homogeneous equation. The non-trivial solution is that  1S = 0. 

If all constants are 0, then what is the fun of doing these things?  1S  cannot be 0, we are 

trying to say that, the non-trivial solution is possible only when the determinant of M = 

0. In this matrix, there is  , if you put a determinant of M = 0, it leads to an equation 

that is known as the characteristic equation.  

We solve that equation through an iterative process or you can directly solve because 

these days some algorithms are available in MATLAB. If you give this characteristic 

equation, they will give you the roots and you can write the code. If it is 2  inside the 

equation, and we do not know the  , we will try to solve it by substituting the initial 

guess. 
10 2 9 8

1 0eC       . 

If   is the solution of this equation, then it will satisfy the equation. Otherwise, it will 

not satisfy this equation. Let us say, w = 0, 1, 2, and 3, then through iterative processor, 

we find it. There are some algorithms in which we can find the solutions by processing 

i.e., moving from initial guess to final.  



 

 

Generally, for these cases, we try to guess the simply supported condition. A simply 

supported shell will have a higher natural frequency compared to a clamped case. We 

have to reduce the guess to get the frequencies. This is the technique where the boundary 

conditions are to be satisfied in the displacement form.  

If we say that the cylindrical shell is free, in that case: 
xxN , xxM  need to be specified.  

For the present case: we do not have variables of 
xxN , xxM . We need to satisfy in an 

average sense, which means using the concept of constitutive relations we satisfy.  

In lecture-1, week 6, I said that in an extended Kantorovich method a mixed form is 

used. Similarly, for the case of a levy solution, the mixed formulation can be used. In 

that case, we assume that xxN , xxM  are our variables. 

And then using the 5 equations from the shell constitutive relations, 5 equations from the 

partial differential equation, or maybe some more variables, these form a first-order 

differential equation, then we can solve the problem.  

The only advantage of using a mixed formulation is that those boundary conditions are 

satisfied. But, in the present displacement case: xxN , xxM are not our variables, using the 

shell constitutive relations they are satisfied.  

From an accuracy point of view, there is no difference, the only difference comes up near 

the support at the very edge. If you plot a circumferential variation along that very 

clamped edge or at a very free edge, then some boundary effect may appear. To 

accurately predict that behavior the mixed formulation is preferred mostly.  

Today, I explained to develop a Levy solution for a circular cylindrical shell for static 

bending case and free vibration case. 

Thank you very much. 

 


