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Dear learners welcome to week-06, lecture-02. In this lecture, | will explain the first free
vibration solution for all-around simply supported finite cylindrical shell and state of art
for developing levy type boundary conditions for a finite shell. Previously, I developed a
Navier solution for static bending and an approximate solution for arbitrary supported
shell panels.
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Finite Shell and Infinite Cylindrical Shells

Fiute Sheld
Displacement fred
u.l: l‘lo 't'qul

UZ = qzo-\' q"(z
Uy = W,

The geometry remains the same, a finite shell panel is considered, coordinate in the first
direction is x, in the second direction is @, and z is in radial or thickness direction, the
displacement field is:

U = U, +6¥, Uy =Uy+syp,and Uy =W, .
(Refer Slide Time: 01:39)
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Now, we are directly coming to the governing equations. Following governing equations
we derived in week-05; lecture-02 and lecture-03:



X, X

(Qa + Ne,e)
R

Nex 0 oo . .
Ny +—2= = lotl + L, equation()
+ NX@,X = IOUZO + Illpz equation(Z)

Mex 4 oe . .
M, .+ R —-Q, = I,ti,, + L7, equation(4)

M
o7+ Mo x = Qp = LUy + 1,47, equation(5)

R
Qe,e B Na

Qu«+ ; —q, = 1,W, equation(3)

This time, I included the dynamic terms also. Following are the boundary conditions:

Atx=0anda: N, oru, N,,oru, Q orw, M, ory, M, ory,,these variables

are needed to be specified.

At ¢ isequaltoOand y: N,, oru, N, oru, Q,orw, M,ory M, ory,,

these variables are needed to be specified.
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Just for the sake of completeness, | again have defined stress resultants, moment results,

shear resultants, and the loading:
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Following are the shell constitutive relations, which we have derived in week 5, lecture
03:

+W,
Nxx =£A11 +iju10 X + A12 M—i_(Bll +%jl//1,x + BlZ %

R
B D Uzo,0 +Wo D,, \¥,,
Nae = A12u1o,x +(A22 _%"' R222 j( R ) + 812‘//1,x +(Bzz _%jf

u B By Dgs
llgg"'(pbs"'%}uzo,x"' 66R19 (Bee+ R ]WZX

Dy V.
(Bse - %j% + Beel//z,x

NXH =

B (DS
Nex :(Ase_% R2 j

Here, you can see, they are expressed in terms of primary variables; Uy, , Uy, ¥,




¥, and so on.
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Similarly, the moments and shear resultants will be:

D u o7 W 174
M > ( Bn + ﬁjum,x + BlZ (LRO) + D11‘//1,x + D12 i
D Uso,p +Wo Vs,
My, = Blzulo,x +(Bzz - F\fz j( R ) + D12‘//1,x + Dy, 22

u D
M X0 — BlZ % + ( Bsa + Des ) Uy x T+ dl

u D
Mex :( 66 _%j lFZﬂ + BGGUZO,X +%

+ Dse‘//z,x

+ Dge¥ .«
Qx = [A‘SS +%)(V/1 +W0,x)

— _ﬂ ﬁ (Wo.e _uzo)
Q _(AM R + R j(Wz*‘ R—J

We have 10 shell constitutive relations.
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Now, the inertia matrix: the definition of |, = j p[1+£](1+Ri]dg.

3 U RITR
For the present case, in the first direction radius R, = o, (1+ %] term will not
1

contribute.
Let us say, for a doubly curved, this term may exist. If you further open it, it will be:

v 2
_[p 142+ 5 4 5 dg.
3 U R R RR,

2 Y
But, for the present case, £ and - will not exist, it will contain .[ P (1+ i) de.
Rl R1R2 _/ R2
2
yf ¢ f ¢, ., ¢
And similarly, I, = I, = pg£1+—j( )dg: p(g+ + Jdg
' ' _% R1 Rz h R1 Rz R1R2

% 3 4
(., 8 L& .
A IZZ-L% ( Rij[HR_z]dg:_! p( R R_2+R1Rz)dg'

If it is an isotropic shell, then we can directly integrate and we can write phor p 5

and so on. But, for a composite shell or a laminated shell, each layer may have a



different density and different reduced stiffness coefficients k times.

If we talk about a sandwich shell, the core is very light and the face is having stronger
material and may have more density. And, this core is a light material, we have low

density. In that case, p is a function of the kth layer which means (Zk+l -

first term contribution.

Z, ), this is the

Similarly, the second term contribution, third term contribution can be found for the case

of a composite shell. In this way |, will be:
L

1(z2,-22 72.,-177 1
Zpk|:(zk+1_zk)+5[ k+1R1 <+ k+]|-Q2 kj+3R1R2(ZS+1_ZS):|'

K=1

Similarly, 1, and I, can be found.
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Now, using the shell constitutive relations, if we substitute into the 5 partial differential

equations that lead to an equation (p1l):

L11 L12 L13 L14 L15 Uyg -1 0 0 0 - |1 0 l.“I.lo 0
L21 L22 L23 L24 L25 Uz 0 - 0 0 0 - |1 Uy 0
Ly, Ly Lg Ly Les|w [+ O 0 I, 0 W, | =10,
Ly L L Lu Ls||w L0 0 I, 0 1y 0
_L51 L, Ls L L55__‘//2_ L 0 I, 0 O I, __‘/72 _O

equation— pl



+[1 ][U] =
Where, [L] is a linear operator, [U] contains the primary displacement variables U, ,
Uy, Wo, vy, and w,.
This time you see a dynamic matrix comes into the picture. Let us say a matrix |.

l,, =—1,, 1,= =1, and I,, = —1,.

These are the components of inertia matrix and time derivative of primary variables, U,

U, , W,, ¥,,and , and load matrix g,. It is a column matrix; the array is written like

this. First, I shall explain the free vibration because | already explained the static
response of a finite cylindrical shell subjected to all-round simply supported case.

In this lecture, I shall explain the free vibration of a finite circular cylindrical shell

subjected to all-round simply supported boundary conditions.
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For the case of simply supported, a finite shell,
atx=0,a w,=0;u,,=0;%,=0;N,=0;, M, =0
atd=0,a w,=0;u,,=0; »;, =0;N,,=0; M, =0.

If these variables are specified, then we can assume the solution that along x axis:



cosn a

W, = i i(wo)mnsin rﬁx{sm n_i}cosa)t,where m:m.

The blue term cosné is for the symmetric case when loading is symmetric and sinné is
for an anti-symmetric case.

o » _ [sinn@
Similarly, (Ug, )= D > (Up:¥;),, COSTX  tcoset and
m=ms n=1 cosné

© @ . _ |cosn@ .
(Uprv72) = D_ D (Upg ), SIN X sinmg [ Already, we are aware of this type
m=ms n=1

of combination, the new thing here is cost , it is a time derivative. Sometimes people
used to take Re[e]i“’t.

If you open, it becomes coswt + isinat. We are taking only this portion, instead of
writing in this form, we can assume cos wt . So, if we take that cos wt is the variation of
variable w, in the time domain and the along the space domain, which satisfies the
simply supported boundary conditions.
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If we substitute this Fourier expansion and time expansion into the p1 equation, then it
reduces to:

Kanmn + [M]Umn = qmn'

The non-zero component of a matrix M will be:
2. 2. 2. 2. 2.
Mu:_loa) J M14 :_Ilw ’ Mzz =_IOa) ’ Mzs =_Ila) ’ M33=—|OCO J
2. 2. 2. 2
M, =-lLo"; M, =-Lo"; M, =l M, =-l,0



And, the stiffness matrix non-zero components will be:

K, =-m’f —-n*f,; K,=-mnf,; K,=-K, =-m*f,—n*f,; K=K, =-mnf;

71
K,,=-m’f,—n’f,+ f,; K, =K,, =-nf,; K,, =K, =—mnf,;
Kzs = K52 =-m f13 -n f14 + f15; K33 = —m’ flG —n’ f17 + f18; K34 = K43 = _mﬁflg;

Kas = Ky = nf201 =-m’ f21 —n’ f22 + f23 Kis =Ksy = mﬁf24; Kss = —m’ f25 —n* fze + f27
For the case of free V|bration, there will be no loading, therefore,

KoY, +MU_ =0.

mn™= mn
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Ultimately, M = —1o°.

K, - lo’=0, this is an eigenvalue problem where U__ is the mode shape.

mn

From here, w2, = [K,]~[1]", itis just a single equation like in the case of a beam. If it

.. . . K
is just a single equation, then we can say that o” = T for the case of a beam or a
spring. But here, K is a5 by 5 matrix, and | is also a 5 by 5 matrix, therefore, we can
say that 1o® =-K_ , minus and minus get canceled, if we multiply with 17, then

I 10® = 17[K].

It becomes an identity and, in this way, 5 different values of @ can be obtained at a
time. For a particular combination of m and n, these are Fourier numbers that may vary
from 1, 2, 3, and so on.



Let us say, for m is equal to 1, and n is equal to 1, we will get 5 frequencies at a time.

u,, = stretching
u,, = stretching
w, = bending

w, = shear couples
v, = shear couples

For a particular combination of m is equal to 1, we will get frequencies in bending
stretching and shear modes. If we increase that, we will get an infinite set of frequencies.
When a cylindrical shell is subjected to all-round simply supported, the calculation of
frequency is very easy like a case of a plate, but if we talk about a levy type support
condition, then it is slightly difficult.

(Refer Slide Time: 15:34)
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For the levy type boundary condition, the very first condition is that two opposite edges
are simply supported. When we say that any structure is subjected to levy type support
condition, in that case, we are saying that any two opposite edges either x =0toaor 8 =
0to « isto be simply supported. If that is the case, then we can develop a levy solution.

In the case of a cylindrical shell generally along & direction, # =0 and &, is considered
simply supported. Another axis; which is x =0 and x = a, can have any combination of
the boundary conditions. For the present case, if we assume that # =0 and « , then the
following variables are needed to be 0:

Wy =Uyy =Uyy =t =1, =0
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If this is the case, we can assume the primary variables in terms of a single series or sin
series. The first case is due to the symmetric loading. In the case of free vibration,
loading is not, but boundary conditions may be symmetric and if it is a static case, then
loading may be symmetric or antisymmetric.

So, we can assume the solution like this:

lon (X) {C‘.’S ﬁ_‘g}

sinnéd
W] [0 ]
0 S cosno _
Wo |= n; Woq (X) {sin ﬁe} coswt equation— p2
" cosné
e Vin(X) { sin ﬁ@}

) sinné
_%” cosnd| |

coswt is the variation of time. Now, substituting this expression into again pl equation
will give this big expression.
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—2 — =2
flulo,xx +N f2U10 + nf3u20,x + fAWO,x + fSV/l,xx —n fGWl +
f,Ay,, — 1,0y, =0 equation—1
— =2 — —,
= 30Uy, + foUog o + 17 Folyg + figUng + fiyU — Ay, + fayr, o +
( f, (ﬁ2 ) + fls)% —l,0°U,, — l,w*y, =0 equation—2
=2
falio x + fiiUy (+n)+ Fi6Wo 1 +( nef, + le)WO + fopi, +
nf,aw, — l,0’w,—q, =0 equation—3
=2 = =2
fsulo,xx + (_n )u1o fs + nf12u20 + f19W0,x + f21l7yl,xx +(_n fzz + fzs)W1 +
Af,,, — Lo’u, — Loy, =0 equation—4
— —2 — —
foRUy  + figlpg o + (_n fi+ flS)UZO + FooMWo + 150+ Foul o +
(M + 57 ), — L,’Uyy — L,0"y, =0 equation—5
Here one can see that the variation along @ direction vanishes and > comes into the
picture.
And, in Uy, ; there is no derivative, but derivative along x-axis remains. If, | go to the
previous slide: Here, Uy, U,,, W,, ¥, all are a function of x. In the previous case:

when all-round simply supported condition, U,y Yoomn s Womn s Wi » Womn» all were
constant.
If only two opposite edges are simply supported, then these are the function of the

remaining variable along the x-axis. If we substitute in that partial differential equation
that gives us an ordinary differential equation in the x coordinate.



It is a second-order highest degree in all the equations, you will find that the second
derivative of x and the first derivative of x of all the variables exist in equations 1 to 5.
The solution of this equation can be done in different ways.

One way is that we can directly solve, using some techniques, the second-order ordinary
differential equations, or we can convert it into the most suitable form. This solution

technique is presented by Khadir et al, in that paper, these equations were converted into
a first-order form.

For the first-order differential form ordinary differential equation, the solution is
straightforward.

We are trying to convert these 5 equations into a first-order differential equation.

(Refer Slide Time: 20:13)
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We are defining another set of variables, let us add a variable Z , = Uy, Z_,= Uy,
first derivative is assumed as a variable Z_,. Then,

st =Uy Z, = Uz x 5 st =W Z 6 = Wox

2o =W, Zog =W Lo =Wy Lo =V

In this way we have defined 10 variables. We have 5 equations from this:

Zoix =Zuzs Luax =Zmas Lusx =Zmer Lmrx =Lngy £ =Z

m10

In equation (1):

=2 — =2 = 2
flulo,xx +N° U, + nfsuzo,x + fAWO,x + f5W1,xx —n fop + f7m//2,x —ly'y, =0



maor Yo = Loy Usg = Zias Wo = Zies Wi = Zingor Wi = Zozs Wax = Zigos

We can see that the first equation using the concept of another variable Z, is converted to
a first-order differential equation, where the highest derivative is along x-direction.

2, +0 8,2 +0f,Z +f,Z o+ 2o, —NfZ,+ 02 —1,0°Z,,=0

From this, the first equation can be rewritten like this: [ Z,, |=[A]Zm), x is kept inside

and the rest of the variables are kept outside because these are having no derivative.
Similarly, the second equation will be expressed.

After mathematically simplification or rearranging, we will get:
2], = [AlZ}+q

TZ contains 10 variables plus the load vector. Again, here the concept of —1,»* is taken
inside the matrix A.

This is the first-order ordinary differential equation with non-homogeneous and where A
is the constant matrix, the solution of this equation is easy. This is a 10 by 10 matrix.
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The standard solution can be written as [Z] = [C]e™, where A, I will explain later on.

If you substitute this complementary solution for the equation [2]1: [A][Z] , if you

substitute it here it becomes ACe™ = ACe™ .



Ultimately, [I/l— A]CelX =0, this is an eigenvalue problem, here, C is eigenvector of

matrix A, and A is the eigenvalue of matrix A.

For the solution, we must know only the matrix A and we can get the eigenvector and
eigenvalue of that matrix. Then, we can write the solution. Let us say, all eigenvalues are
real and different, there will be 3 cases.

1% case: All eigenvalues are real and different.
24 case: eigenvalues are real but identical
3" case: eigenvalues are conjugate complex

For each case, the complementary solution will be different and this has been already
explained in the book of mathematics or in the paper on 3-dimensional solutions where
the first-order differential equation is solved. For the present case, | will write,
eigenvalues are real and different.

In that case, we can write the solution:

Z =S, e"*+S,Ce"”+S,Ce"+5,C " +.... +8,,C 8™,

From 4 to 4,, we have 10 eigenvalues and corresponding eigenvectors.

Ultimately, the complementary solution can be written as ACe™ , where C is having a 10

by 10 matrix and e** is a diagonal matrix of 10 by 10. In this way, a complementary

solution can be found.

(Refer Slide Time: 29:07)




Now, the concept of a particular solution depends upon the type of loading.

| would like to explain with the help of a simple example, %4— py =q, how do we
X

assume a particular solution, if it is a constant or it is a function of x or it is a function of
sin or exponential, the same way we assume a particular solution of that thing, let us say,
Yy, =dx+d,x.

In the same way, if the loading is uniform, for that case: Z = —[A]_1 q, but if the load is

something else, then, we have to evaluate the particular solution.

Now, we can say that the total solution will be:
AX . .
Z =[C][e]" .[S]+Z,, where, Z  is the arbitrary constant.

These are the constant that comes into the picture when we write a solution. These
constants S can be found by implementing the boundary conditions. If | say that along x
=0and x =a, x = 0: for the clamped case; the variables u, =u,, =w, =y, =y, =0

We can make a solution matrix, let us say, it will come up Z,,, Z,,, Z,, all are 0 and

putting x = 0, we will get these 5 variables. And, when you put X is equal to a, maybe at
some other boundary condition or clamped case there will be 5 variables again.

This will be a 5 by 5 matrix; a new combination comes up there. From here, this S,
S,, can be solved. Arbitrary constants can be found by subjecting the boundary
conditions in this equation.

Once we know the boundary conditions, we can sort them out and the final solution can

be written like this. In this way, the problem is solved for the case of levy, when it is
having a transverse load. For the case of a free vibration, there will be no load.
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In that case, {Z} =A{Z} there will be no loading, it will be only a homogeneous

solution.

Again, we can assume a solution, Z = Ce*, and it becomes [4] — A]|Ce™ = 0. Finally,

we can write a solution of Z = [C][e™ ]S, +0.

If we subject all these boundary conditions; let us say [M ]: 0, in this M we have o

term, @’ is there. We do not know the natural frequency of the system, we have a system
like this [M ][S,] = 0, a homogeneous equation. The non-trivial solution is that [S,]=0.

If all constants are 0, then what is the fun of doing these things? [S,] cannot be 0, we are

trying to say that, the non-trivial solution is possible only when the determinant of M =
0. In this matrix, there is o, if you put a determinant of M = 0, it leads to an equation
that is known as the characteristic equation.

We solve that equation through an iterative process or you can directly solve because
these days some algorithms are available in MATLAB. If you give this characteristic
equation, they will give you the roots and you can write the code. If it is »” inside the
equation, and we do not know the @, we will try to solve it by substituting the initial
guess. 4°w+w’A’-CA2 =0,

If @ is the solution of this equation, then it will satisfy the equation. Otherwise, it will

not satisfy this equation. Let us say, w =0, 1, 2, and 3, then through iterative processor,
we find it. There are some algorithms in which we can find the solutions by processing
i.e., moving from initial guess to final.



Generally, for these cases, we try to guess the simply supported condition. A simply
supported shell will have a higher natural frequency compared to a clamped case. We
have to reduce the guess to get the frequencies. This is the technique where the boundary
conditions are to be satisfied in the displacement form.

If we say that the cylindrical shell is free, in that case: N, M, need to be specified.

XX !

For the present case: we do not have variables of N, , M,,. We need to satisfy in an

XX !

average sense, which means using the concept of constitutive relations we satisfy.

In lecture-1, week 6, | said that in an extended Kantorovich method a mixed form is
used. Similarly, for the case of a levy solution, the mixed formulation can be used. In
that case, we assume that N, , M are our variables.

XX !

And then using the 5 equations from the shell constitutive relations, 5 equations from the
partial differential equation, or maybe some more variables, these form a first-order
differential equation, then we can solve the problem.

The only advantage of using a mixed formulation is that those boundary conditions are
satisfied. But, in the present displacement case: N,,, M, are not our variables, using the

XX !

shell constitutive relations they are satisfied.

From an accuracy point of view, there is no difference, the only difference comes up near
the support at the very edge. If you plot a circumferential variation along that very
clamped edge or at a very free edge, then some boundary effect may appear. To
accurately predict that behavior the mixed formulation is preferred mostly.

Today, | explained to develop a Levy solution for a circular cylindrical shell for static
bending case and free vibration case.

Thank you very much.



