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Dear learners, welcome to week 6 lecture-01, “Development of Approximate solutions 

for finite shell subjected to arbitrary support conditions”. In the previous lecture, I have 

presented the solution for an infinite shell and finite shell subjected to the simply 

supported boundary conditions. But as you know that these are various simplified forms, 

it is not always possible to have only simply supported boundary conditions.  

Can we get the solutions, if a panel is subjected to clamped, free, or any combination of 

boundary conditions? Yes, we can get the solutions, if it is an analytical solution, comes 

under the approximate solution and there are purely numerical solutions like finite 

element solutions.  
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In these techniques: the Ritz method and Galerkin method are the approximate 



techniques and are very popular if we are interested to develop a solution subjected to 

arbitrary support conditions. And the extended Kantorovich method was first proposed in 

1939 by L. V. Kantorovich and Krlov in a book on higher engineering mathematics 

which was initially published in the Russian language. And in 1968 or 1964 this book 

was published in English. Professor Kantorovich and Krlov try to further improve this 

method. Later on, this method is known as Kantorovich method. They try to improve the 

Ritz method or Galerkin method.  

I would like to briefly explain the limitation of the Ritz or Galerkin method. In Ritz or 

Galerkin method; the function we choose, let us say, if we are going to solve for a plate 

or a shell, we take a variable in the present case, we say that the variable is a function of 

x and  , ( , )w x  .  

We can express this variable:  
1

,
m

ij ij

n

C x 


 .  

Here this function ij  needs to satisfy the essential boundary conditions. Essential means 

the kinematic boundary condition or displacement boundary condition. 

If I say that the shell is simply supported, clamped, or free, then, this ij  should satisfy 

those boundary conditions, then we can substitute those into the weak form and try to 

solve them. Ultimately, Ritz and Galerkin equations lead to an algebraic equation like 

this:  

  R X  =  C  

The very first limitation is that it is very difficult to find a function that satisfies the other 

boundary condition easily, i.e., clamped, free, and so on. 

If you are not able to find the approximate function, then the convergence issue will be 

there the result will not converge. This depends upon the initial choice; if the initial 

choice is very close then we will get the result, If the initial choice is far away then we 

will not get the accurate result.  

To eliminate this dependence, Kantorovich in 1939, proposed a technique to express this:  

Let us say, 1 1( ) ( )X x Y  ;  



X is a function of x and Y is a function of  , in a bivariate system. Initially, it is a single 

term that X is a function of x and Y is a function of  , if we substitute it into a weak 

form, then it reduces to a differential equation. 

If we are assuming a solution along   direction, and interested to solve along x-

direction, A will be some constant,   1A X  = 0. It leads to an ordinary differential 

equation in x-direction, this differential equation is solved exactly and then subjected to 

the boundary condition.  

In this way, the assumptions are along the x-direction and the solution is not dependent 

on x-direction, it is only dependent on one direction. In the previous case, the initial 

guess depends on both x and  .  
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In 1968, A D Keer further extended this Kantorovich method. From 1939 to 1968, it is 

known as Kantorovich method, and is briefly described in most of the books based on 

energy methods, one page is devoted to that only.  

In 1968, A D Keer extended this method and it is known as extended Kantorovich. What 

was the approach in that? We assume first, in the Y direction, and solve for X direction, 

in the next step, we assume for X-direction and solve for Y.  

In the first case, 1( )Y   is assumed, and 1( )X x  is known now as per the actual boundary 



condition. And now 1( )X x  is assumed and 1( )Y   is solved. We can apply the different 

support condition and 1( )Y   is subjected to actual boundary condition which is there. 

In this way, this process is iterated, once one is known we can solve the other. This x and 

  ultimately give the two set of differential equations.  

One is   ,xA X p , and the other is   ,B Y Q   . 

There will be two sets of ordinary differential equations. When 1( )Y   is known this 

equation is used, when 1( )X x  is known, 1( )Y   is solved. By using this iterative process, 

we can find an accurate solution subjected to the various boundary conditions. First, we 

presented for the case of a plate, and then this method has been extended to beam, shell, 

bending, free vibration, buckling, etc.  

Recently, in 2011 or 2012, Professor Kapuria and I developed this method for a three-

dimensional case. And we and our group of students are working on it and recently, we 

developed a solution for a three-dimensional cylindrical shell subjected to arbitrary 

support conditions. In this lecture, I will explain, how to develop a solution using the 

extended Kantorovich method for a cylindrical shell panel. 
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Ritz method: it is a very recent article on non-linear vibration analysis of laminated 

composite angle-ply, cylindrical-conical shells. In this paper, the approach of the Ritz 



method is presented and the results are also presented. Interested learners can go through 

this paper, to know how to apply the Ritz method for the present case. 
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In this slide, the papers related to the shell are compiled. The first paper is about the 

buckling analysis of symmetrically laminated composite plate by extended Kantorovich 

method, so and then the cylindrical panels using the extended Kantorovich. Another is 

bending analysis of symmetrical laminated cylindrical panels using extended 

Kantorovich method, then is bending analysis of thin annular sector plates, different 

pavements, and bending of clamped cylindrical by extended Kantorovich method.  

This is about bending analysis of thick orthotropic sector plates which are having some 

curvature. It is a semi-analytical solution for a thick laminated cylindrical panel with 

various boundary conditions. In the present lecture, I shall explain the state of art 

presented in this paper, so that the learners will have an idea about how to move ahead or 

how to use this method for developing a solution for a cylindrical shell panel using first-

order shear deformation theory. 
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Then is the free vibration analysis of symmetrically laminated cylindrical panels, 

solution for bending of moderately thick doubly curved functionally graded shell panels, 

and then spherical shell panels, and the conical shell panels.  

All kinds of different varieties of shell panels have been studied using the extended 

Kantorovich method. In 2016, a professor from Iran developed a layer-wise theory, 

cylindrical shell panels, I will discuss that paper in detail.  
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First of all, here a finite shell is considered to study, the displacement field in this paper 



is assumed like this: 1 0 2 0 3 0; ;xu u z u v z u w       

Instead of 1  and 2  they are using x  and  , but the concept remains the same x,  , 

and z, and the mean radius R, are the strain components. 
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The major difference is that the name is slightly different and they have made 

components like this:  

0 1

0, ,xx xx xx x x xz u z         
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The terms are same, only their notation is slightly different.  



Instead of a 
1 , they have used x , instead of a 2 , they used  . And the second 

difference is the notation; 1w , 1

xw , 0w , 0

xw  and so on.  

Here, 
0 1

0,x xw v ;  0

0,

1
xw u

R
  ;  

1

,x xw  ; 1

,

1
xw

R
  ;  

0

0,x x xu w   ; and 

0 0
0, 0

1 v
u w

R R
     .  

They have written like this in a short form instead of this, these are the strain 

displacement relations. 
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Following are the 5 sets of governing differential equations: 
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It is the same, but for the present case, there is no in-plane loading along x-direction and 



  direction only transverse loading is explained. Following are the boundary conditions 

at x = 0 and x = a: 

10, 20, 0, 1, .xx x x xx xN or u N or u Q or w M or M or    

Boundary condition for   = 0 and   =   will be: 

10 20 0 1 2x xN or u N or u Q or w M or M or        
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The Stress resultant is defined as we defined in the previous case:  
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Ultimately, the shell constitutive relation is presented like this: 
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They are arranged in a matrix form and these are the coefficients of a matrix and these 

are the strain components. These are the different components they are arranged such 

that we are getting a matrix like this. The various terms here you see that 11G , 66G , 12A , 

66A , etc. are same as we defined 1f , 2f , 3f , etc. 



Here,  
2

2 3 4

2

, , , , 1, , , ,

h

k

ij ij ij ij ij ij

h

A B D E F Q z z z z dz


     .  
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These are same; ijA  = constant times dz  and ijB  = z 
k

ijQ  and so on. These are the 

coefficients:  

ijG  =
1

ij ijA B
R

  
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1
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Now, these are the basic governing equations, for the arbitrary support conditions, first, 

we will define the variables which need to be specified for a particular boundary 

condition. 
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For the clamped case:  

At 0,x a  and 0,  ; 0 0u  , 0 0v  , 0 0w  , 0x  , and 0y  . 

If a panel is subjected to simply supported boundary conditions: 

It is very important to understand that there will be a difference;  

At the edge 0,x a : 0 00; 0; 0; 0; 0xx xxN v w M and      . At 0,  : 

00; 0; 0; 0xN w N and       

If it is free:   

At the edge 0,x a : 0; 0; 0; 0; 0xx x x xx xN N Q M and M       and  

At 0,  : 0; 0; 0; 0; 0x xN N Q M and M           

Here, it is a cylindrical shell, therefore, x xN N   and x xM M  . For the clamped 

case: all essential variables are 0, which means the kinematic boundary conditions, all 

displacement, and rotations are 0.  



If we are interested to develop a Ritz solution, then the clamped solution can be 

developed very easily because we can find a function in which all variables are 0. But if 

a panel is subjected to simply supported conditions, then it will have mixed boundaries.  

You have to specify xxN , 0v , 0w , etc. There are different types of formulations, even for 

the case of free all stress resultant needs to be specified because the boundaries are 

mixed.  
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At some edge we may specify the displacement, at some edge, we may specify the stress 

resultants or moment resultants. For such cases, the formulation can be done in two 

different ways.  

First: we have all 5 partial differential equations or governing equations for a shell, if we 

substituting the use of shell constitutive relations, we can express in terms of 

displacements variables and their derivatives in the case of simply supported. 

These will be expressed only in these 5 variables. If you say that xxM  = 0, or M = 0, or 

N = 0, in that case, the for getting the boundary condition, we have to first convert it 

into that form by using the shell constitutive relations. 

Let us say, 11 ,xA u + 12 ,A v   = 0, we are going to satisfy the boundary condition because 

N  is not our variable at that time. And these governing equations may be 4th order, 



higher-order, 8 order, and so on. 

Second: using the shell constitutive relations and 5 partial differential equations, we 

make setup in such a way that we are assuming stress resultant as a variable also, like 

xxN , N  are our variables. Then, we can directly specify the boundary because that is 

our variable, but we have to use the shell constitutive equations in the governing part. 
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In this paper, the second approach is used, where, 0u , 0v , 0w , x , y , xxN , xN  , 

N , xN xxM , M , xM  , xM , xQ , and Q , these 15 unknown variables are used. 

Previously, if it goes for displacement, we had only 5 unknown variables, now we 

assumed that stress resultants are also unknowns. Therefore, we need 15 governing 

equations. We have 5 partial differential equations, which we are using every time, and 

10 of your shell constitutive relations. 

In this way, we will get 15 governing equations. Now, you check the boundary 

conditions: at an edge, we can provide 5 variables, if we solve in one direction and in the 

second direction at another edge, we can have 10 variables. In one direction, the 

maximum we can solve is 10 variables, whether you talk about along x-axis or along   

axis. 

Out of these 15 variables, we have to select in such a way that the variables for a 



particular set, along those boundary conditions will be the primary variables. And rest of 

the 5 variables will be expressed in terms of these 10 primary variables. Similarly, if we 

solve along   direction, then we assume the reverse way, i.e., the variables which come 

along   direction are considered as primary variables and other variables can be 

expressed in terms of primary variables. 

In this way, these 5 variables are fixed, and out of these 10 variables, we have to take 

another 5 variables. For example, if somebody asked me to choose, then I will choose 

these 5 variables along x = 0 and a, I am going to solve these, I will take these as primary 

variables. Similarly, along   direction, I will take these 5 variables. 

How do we proceed with the case of Kantorovich method? Let us say, I have given one 

variable  iX , this X is a state variable and I means 1, 2, 3, 4, 5, up to 15. It can be 

expressed as:  

     i i iX x   .  

i  variable is only a function of x-direction and i  is another variable that is only a 

function of   direction. 

If you remember that in a double Fourier series, we said that sin sinmx n , where 

sin m  is solely a function of x and sinn  is solely a function of y, but this type of 

combination is possible only for the simply supported case. Now, we have taken a 

general function, it may be sin sin or it may be something else. 

In this paper, we have chosen the variable like this 15x  and 15 . Now, substituting these 

variables into 15 governing equations and applying the Galerkin technique, because all 

these are in the form of PDE or ODE, so we have to find in terms of a weak form. 

Applying the concept of Galerkin, ultimately, it reduces to let us say,   S T   loading 

vector, algebraic differential equation along   direction. 

Similarly, we will get another set of the equation:   V W  , for loading vector it is 

W, this is also an algebraic differential equation and that can be solved. This is one of the 

ways that we can convert into a weak form and then using the concept of Kantorovich, 



we will get two sets of differential equations, one which is solely a function of x and 

another is the function of   . 
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Here the S is the most important part, it is nothing but it contains all the components. Let 

us say,  16S , there it shows 16I d , where ij i jI d





   , if we convert it into a weak form. 

Initially, we knew j  along   direction, so we have chosen any function and converted 

using the concept of weighted residual method. 

Through that our concept of let us say,     N A  , that can be converted into a weak 

form, integrated form  Ndx A dx  .  

From there along the   direction   is known to us, so we can take it as a constant and 

the variables which are having derivatives along   will be considered in that governing 

equation. 

In the same way, when the variable along the x-direction is known, then we can find 

along the   direction derivatives. This method has been applied and is found that the 

initial choice of a function does not matter. This means if you say that the initial choice 

may or may not satisfy the boundary condition but that solution will converge fast.  

It is not like Ritz that is mandatory satisfy, because through the iterative processor we 



can satisfy the boundary conditions, and ultimately, we get the final result. These 

techniques are developed and recently, have applied for buckling of a shell or a non-

linear vibration of a shell or the carbon nanotubes composites, and so on. This is a very 

efficient method; one can try and can go for the solutions. 

It needs to be developed further for special cases and this method has recently even been 

tried for skew plates and plates having some cut-outs and so on. Later on, this method 

has been developed. Now, the concept of pure numerical techniques is there like the 

finite element solutions. 

These days, you will find that in literature, if you go for a cylindrical shell, then you will 

find a lot of research articles, around 22000 articles are shown in the Scopus.  

And there you can see that number of works have been published using the finite element 

techniques, Ritz technique, and other techniques. Even for very general cases or general 

loading conditions pure numerical techniques can be applied, methods have been 

developed. 

But if you are interested in approximate or analytical solutions, the advantage of 

analytical solutions over the numerical technique is that the boundary effects can be 

accurately predicted by the analytical solutions. And the parametric studies can be done 

easily by the analytical techniques. And these are somewhat closed-form formulas, so 

one can easily do parametric studies, optimization, and so on. 

But if you go for pure numerical techniques the boundary effects cannot be captured.  

The boundary effects mean, when it is simply supported then there is no effect of the 

boundaries, but when it is clamped or free, I would like to explain with the help of a 

cantilever beam; if a cantilever beam is subjected to such kind of loading; at the free 

edge, over this edge, xxN needs to be 0, because this is free and moment needs to be 0. 

If you want to see the variation, then it may be having some moment near the boundary it 

is just dipping making some effect, it is not smoothly going there, in the case of a 

composite plate because it is more prone.  

In an isotropic, it is not, but when you are talking about the layered composite plate or a 

composite shell, because at each layer the material property is different and they cause a 



sharp variation of stresses, shooting variations either they are increasing or decreasing 

very sharply, due to the delamination occurs. And in the composites, this is the most 

prominent problem that we are trying to overcome or we have to understand that how 

much and what level of stresses are shooting in this area. If this edge is free, then at 

every edge stress needs to be 0, but just near the edge, it is very high. We are interested 

to find which causes the delamination in the composite shells. 

For that kind of accuracy, we need analytical solutions. These days a special purpose 

finite element is developed or the concept of numerical techniques plus analytical 

techniques are combined that is known as a very famous technique SS DQM, which 

means state space and differential quadrature matter.  

These days another method DQM (differential quadrature method) is most popular. If 

you go through a recent research article, you can find that in the case of shells. I think a 

lot of papers are presented using the DQM approach, and two books specifically from 

Italy have been published using this differential quadrature method. 

Differentiation means the derivative is presented in a form of a series, like we want to 

solve ,u  , here, u is our variable. Can we express this variable in terms of a linear series, 

in some functions?  

Solving a differential equation in the first order and fourth-order is typical. But if you 

can convert it into an algebraic form, then it becomes easy. With the help of DQM, these 

derivatives are converted in terms of some algebraic form, so that we can get the 

solution. With this, I end this lecture.  

Thank you very much. 

 


