Theory of Composite Shells
Dr. Poonam Kumari
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Week - 05

Lecture - 03
Development of Navier solution of finite shell

Dear learners welcome to week 5, lecture 3: Development of Navier solution for a finite
shell.
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First, I will review the last lectures. In week 5, lecture- 1; | presented the state of art for
infinite shell means, the concept of generalized plane strain. In lecture- 2: | described
developing a code in MATLAB and discussed a recent literature article of 2021.

In this lecture, | will develop the state of art for a finite shell, the steps are similar to that
| have presented in lecture 1, but is slightly more detailed.
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Let us consider, a finite shell made of composite materials, which is orthotropic in
nature, and let us say, there are layers 1, 2, 3 and up to L, and they are perfectly bonded.

Sometimes, | may forget to discuss all the solutions or whatever I have discussed, even
the formulation is valid when layers are perfectly bonded and the material is orthotropic.
The solutions | am presenting for cross-ply composites and sandwich plates are is valid
for that.

For this case, the same displacement field is considered, i.e.:
Uy =Uyp +¥1G5 Uy =Uyy +1565 U =W,

Our coordinate system is x, @, and z; where x is the longitudinal direction, @ is the
circumferential direction, and z is the thickness direction. It is a singly curved surface,

radius in one direction is ooand in the second direction itis R, i.e., R, = «o and R, =R.

The lame’s parameters a, =1 and a, = R.
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If we follow these things, we can find the strain components. There are two ways for a
circular cylindrical shell; one way: you can find the strain components which are
generally given in cylindrical coordinate system, most of the theory of elasticity book
that strain displacement relations are given, one can use directly.

| already developed a strain displacement relation in a very general form. That can be
found through a special case, a circular cylinder is a special case. Putting the value of
lame’s parameters and radius we can find the strains.

&y = 1 ai-l'u aa1 ui}

{8(1 a, op R,
a1(1+ 5 j

Here, R, = wandal=1, a1(1+ é] term will not contribute.

I . . ou
Yy =0, the only contribution will be from this term —.

0,u
3 oa

QJ
oo

oa, _
2 OB

Ultimately, &,, will be u,, .

1 ou, U, da, a
Then, &, = [aﬂ o +U3R_2j
(1+J % 2
R2

Here, =+ aa will not contribute, but 6_ and u, & will contribute, a, | 1+ 5 will
a1 oa op ’R, R,



also contribute.

&,y Will be ;[uzﬂ +U, %2} , where a, = R; R and R get cancelled.
a, (1+J

Ultimately, &, will be ®ee) (Upp +Uy).

(R+g

Then &,, = % here, u, is not a function of ¢, therefore, it is going to be 0.
S

Now, we can find out the expression of )3 ;
ou, u,|[a 1 ou

Vs :_2__2(_2j+__3
ds AR A, op

In this expression, all terms will contribute, therefore it will be:

u, 1

" Ree) (Rtg) ™

. ou, u,
In y,, expression: y,; = ———

ﬁ}r 1 ou,
ds A

R) Aoda’

The term | & |= 0 because R, is .
AR

1

Yiz = U F+Ug, .

712=ﬁi(£j+ii[i}
A, Oal A, ) A OF\A

7., Will be:
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Finally, the non-zero strain components for the present case are written below:

gxx = ul,x + gl/jl,x

Epo = (uzo,e TSV +Wo)

&, =0
Yoz :W2+(W0,9_u20_§l/’2)/(R+§)
yxz :l//1+W0,X

Yxo = (ulOﬂ +gl//1ﬂ)/(R + g) Uy T SYW5 &
0 1 0 1
Ex TEx 166 gy =Epy T6Ey

If you remember, for the case of infinite shell: &,, = y,,, =7,,=0.

There are only three non-zero strains, &,, = 7,,, =74,= 0, but for the case of a finite
cylindrical shell only &,, =0, other 5 strains are existing. This is the expression of strain

displacement. If you want to arrange it in that form, let us say, &, = &2 +¢&;, and
Epp = Epp+5Egy -

But, in the present case, because it is very simple, I didn’t do it that way. One who is
formulating only for a cylindrical shell can try in this way, programming will be easy.
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Can we convert the governing equations to the present case? If we talk about the first
governing equation:
1

a8,

[( Ny, ),a —Npa,, +(N21a1) +Npa, } % +0 = ( Ity + |11/71)

Here, (N,,a,) and (NZlal)ﬂ will contribute, derivatives of lame’s parameters are going
to be 0.

The first equation will be: [(NXX.R)’X + ngﬂ}tql = (1ot + 1y, )

We have written the non-zero value of this and the dynamic is also taken. Because later
on, in the 6th week, I am going to explain the free vibration of cylindrical shells or
different shells. So, | have taken these terms, but for the present case, we are studying
only the static part, we are going to put it 0.

In the second equation:

1 y .
(_Nllal,ﬂ+(N22a1)’ﬂ+N21a2,a+(N12a ) )+%+qz (Iou20+ Il‘//z)
a,a, R,

-Nya, ; and Npa,, =0, (Npa) , and (Ny,a,) ~will contribute and Q: will also

2
contribute.

It will be: %[N%’g+(NX9R)] }L%ﬂLq2 (1l + 147, )

In the third equation:



1
8,8,

|:_M22a2,a +(M11a2),a +(M21a1),ﬁ + MlZai,ﬂ:|_Ql :(Ilu.lo + Izl/yl)

-Mya,, and Mja, , = 0, (Mya,) and (M,a,) , will contribute. It will become:

%[(MXX.R)’X +(M9X),9]—Qx :(|1U10+ |21/71)

In the fourth equation:

1 ” ,
a,a |:_Mllal,ﬁ +(|\/|2261)ﬁ +Mya,, +(M12a2 ),a]_Qz :(Iluzo + Isz)
2

-Mya, ; and Mya,, =0, (Mya,) , and (My,a,)  will contribute.

LQa), (Qa),
aa,  ay,

g; = IoWo;

In the fifth equation: [—ﬁ_ Nﬂj
R R

. . Qa Q . )

—& =0, —M will contribute, ( - 2)"” and ( 231)”5 will contribute.
R, R, aa, aa,

It will become:

N6€+(QXR)’X+Q6’,6’_
R R R

q, = I,V
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If we represent in the terms of x, @, and z properly and write in a combined form, then,
the following will be the final set of 5 partial differential equations for a finite cylindrical



shell.

X, X

N
Qp+Nyy N,
R

Nx@@ H
N +T'+qX=O equation(l)

ox +0, =0 equation(2)

M
M, + FX;’Q—QX=O equation(3)

X, X

%Jr M, ,—Q, =0 equation(4)
-N
Q4 +%—qZ =0 equation(5)

In most of the cases, the review articles or the general articles, the order is slightly
changed. 5" equation is treated as a 3" equation, 3" as 4" equation, and 4" as 5™
equation.

Now, the associated boundary conditions at edges: this is a finite cylindrical shell,
therefore, for a boundary two faces are there, one isx =0 and x = a.

If we talk about this, x = 0 and over this x = a, and other is § =0andé& = y, over this
edge. | am going to put hash here, the normal direction is x.

In the case of boundary condition: we can say that in-plane stress resultant in case of x is
equal to 0 and x is equal to a will be:

N,, or u,, N,, or uy,, Q or w,, M, ory,,and M,, or y,.

For the second case, @ is equal to 0 and @ is equal to v, in-plane stress resultants will
be:

N,, or u,, N, or u,, Q, or w,, M, or y,,and M,, or y,.

These are the variables, which are needed to be specified. Depending upon the boundary
conditions, we can specify. For example, if you say that these edges are clamped, for that
case our all displacements are going to be 0,

ie, Uy =U,=W, =y, =y,=0,at  equalsto 0 and .
If | say that this is clamped and it may be free, for that case, all stresses need to be 0.

Depending upon the boundary conditions we can specify our variables. I discussed
several times and again | am going to discuss the analytical solution, the closed-form
solutions are valid for simply supported boundary conditions.

If all edges are simply supported, let us say 1, 2, 3, and 4, if all edges are simply



supported then the cylinder is said to be in Navier support boundary conditions.

If any two opposite edges like this are simply supported then we say that cylinder is
subjected to levy support conditions. Analytical and closed-form solution is valid only
for Navier support conditions and levy support conditions. If you are interested to solve a
problem in which one edge is clamped and another is simply supported this edge is free
and this is having some point support then we cannot get the analytical solution or
closed-form solution.

I would like to say that even the approximate solution; which means the solution
obtained through Ritz technique or Galerkin technique, where you can see that all edges
are clamped or two edges are clamped and two edges are free. In that case, boundary
conditions are placed in such a way that we can get some solution.

Other than the all-around simply supported and to oppose it as a simply supported we
can get a solution through approximate techniques, and other techniques such as Ritz
technique, Galerkin technique, and extended Kantorovich techniques.

Recently, you will find a lot of articles in which a cylindrical shell or a complete shell is
studied using the extended Kantorovich method.

If you see, the loading and the boundary conditions are very arbitrary, in that case, the
numerical solutions come into the picture, you call about finite element solution.
Recently, DQM - Differential Quadrature Method and state-space finite element
technique mean; combining of analytical as well as numerical technique are used. If we
do so, we can get the solution for a variety of loading and boundary conditions.
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Now, let us define the stress resultants:

_ - O (1 + ij
XX R

Ogo

zZ Z2 Z2 2
& 8
Il
M":'—.N\:'
N\
&3
7~ N\
[EEN
_|_
[
N—

Here, we can see, for a cylindrical shell N,, = N,, .

Similarly, defining the moments:

- - Oy (1 + ij
XX R

Oo

< << <L
x D
S S
Il
l\)‘é_'—.l\)\j
[TaN
b
x
D)
VR
[WEN
+
[
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Here, M, = M,

Now, defining the shear stresses:

QX} I rxz(1+%j ;
= S .

2 z

And the loading at the top and the bottom is equal to the traction, for example, let us say,

in the case of a plate:

qX g TZX
_ s

q0 - J; (1+ R j Tze

qz 2 Oy

Loading per unit area, it works on the complete area, if you do so, (1+%j factor comes.

Ultimately, the applied traction is equal to the resisting traction or inside the stresses, at

the boundary.
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Now, we have to define the shell constitutive relation so, somebody has done for a plate
constitutive relation. Now, | am saying that it is a shell constitutive relation.

Using the basic constitutive relations:
w = Quén ¥ Q&

Oy = Qo€ T+ Q€py

o, = QuYo
oo = Qes Vo
sz = Q55}/ X

Where, Q;, Q,, Q. Q,, Qs and Qg can be represented in terms of engineering
constants:

El
1- iy g,
Q55 = GBl; and Qee =

E, — E
y Q= ﬂ12 sz —2— Q= 2 ; Q44 :st;

Qu= -
o 1- /’L12:u21 1- thy ity 1— gy 1

For a composite material, you can find them all. Already, I discussed in the second
lecture of week 5, to evaluate through a coding, that first, you give E;, E,, E;, 1,

through a program, then, you have to evaluate Q,, Q,, Q,. And then, later on, | also

gave the formula for a transformation of a Q, and Q, .



| said that the present formulation is valid for a cross-ply cylindrical shell, one can
develop a solution for an angle ply cylindrical shell, but here more generalized. Q,, and

Q, will also come into the picture. For symmetric and anti-symmetric cases, the

analytical solutions are valid, but for an angle ply, finite shell analytical solution is not
valid.

Then we have to think for an approximate or finite element solution.

Letussay, N, = Gxx[l—l_%jdg

m‘é_'—,m\j

Here, o,, is replaced by Q,,&,, +Q,&,, -

Now, explicitly writing, substituting the value of &,, and &,,. N, will be:

(uzo,o TSWa0 +W0) S
[Qn I:ulo,x +gl//1,x:|+Q12{ (1+Ejd§

Nxx =

N | T

(R+g)

=>

~|

If you put [1+%) inside, then N will be:

Kl+%)Q11 [Ulo,x + §‘//1,x} + %le [uzo,e tSYa0 +W0ﬂdg :

N‘é_'—.l\)\j
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Here, one can see that we can write the coefficients. The first term gives you the
definition of A, the second term gives you the definition of B,. ¢* is the definition of

D,, and itis the constant, Q,, u,,, is the definition of A, and if you multiply with

s, , itwill be B,,and the coefficient of w, will be also B,,.

Ultimately, N, can be represented as:

B Uso,p +Wo D YV,
Nxx =('A&1+%jum,x +A12 %4‘(8114‘?11}//1“ + Bn%

This I have explained in lecture 1 of week 5 also. The only thing is that now, we have a
slightly bigger form, the basic idea remains the same, but now it is a slightly bigger form
because we have more terms.

In the previous case, we do not have &,,, we have only &,,, now the terms

XX !

corresponding to &,, are slightly increased when we are going to solve for N, .

h
2
Ny = I 0,05 . Here, O = Q& + Q-
“h
2

I . : 1 1
Q€. is fine, but when you talk about Q,,&,, , it contains a term —

5]

-1
If you take upside over there, then it will be (1+%) .

-1
In the previous lecture, (1+%] opened up in infinite series, but we are going to

2

-1
consider up to quadratic terms (1+%j =1—%+%.

In most of the literature, the Flugge theory has considered the term up to quadratic.

This gives a more accurate solution if we take terms up to quadratic. If we take more
2

terms in cubic and then there is a less contribution for that. l—%+% term is

considered. If during the integration, ¢® comes, then we are not going to integrate that.



By following those approaches, N,, is written like this:

B D Uy g + W D,, V..
Naezp&zulo,x"'(Azz_%"' Rzzz)( R )+Blzl//1,x+(822_%j$ :

| have explained for N,, and N,,. By following a similar procedure, one can get the

expression for N,, and N, .

Nx0 = Aee

u B Bee D
lFof +£A&36 +%J Uy« t GGR = +[Bse "'%j Vo x

B D.\u D
Ny, = [Ase _%"'R_Gzﬁ) g,e + AggUy +(BGG _ﬁ)? 66% 2,x

When we get an expression like this then this expression is known as shell constitutive
relations.

(Refer Slide Time: 26:00)
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Similarly, one can get the relations for M, :

If you substitute all these things, M, = (Bn +ﬁ) Uy -



And similarly, one can derive for M,,, M,,,and M, it’s very easy, one has to
substitute the terms and finally, writing the coefficients.
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Ultimately, [ A;, B;,D; | = Iki,?Qi,- (1, S gz)dg,
h

When it is multiplied with 1, it will be known as A;, when it is multiplied with ¢, it will

be known as B. , and when it is multiplied with ¢, it will be known as D; -

ij !
Here, the term kif is used, this is saying that this k; = 1, except for K,, . When we say

that Ay, AL, As, k525 , the shear correction factor is going to be 1, otherwise it is
taken 0.91287.

For a single layer, one can integrate and find the value. But for a composite panel; as |
have discussed in programming also, we have to take the coordinate system that each

layer thickness and the cube difference of the cube and divided by % . Ultimately, these
are the discrete layers, we are adding summation of all the layers material property.

AJ ZQJ( K+l ) ;

K=1

B, =~y Q" (ze.-2%);

2 K=1



1L
Dij :_ZQi;( (Ziu _Zi)
3k

Kth means the Kth layer, it goes from 1 to L, we can add all this, though it is equivalent
single layer theory which means we are solving a single layer, using the concept of
summation we can get a solution for a composite layer. If somebody is interested to have
a very accurate solution like at each layer interface what is the shear stress variation and
all these things.

For those cases, layer-wise theories are used, in which each layer has a number of
variables. In the present case, the variation of u is assumed linear across the thickness

and w is constant along the thickness, Wyand U; (U; =U; and U,). But if you talk about

a layer-wise theory, in each layer it is linear, it may have some kinkiness, it can represent
the local behavior.

The theory I have discussed here is valid for a thick shell theory, but it may not give a
very accurate result for inter-laminar shear stresses.

For that case, either one should try for a 3-dimensional solution or the layer-wise
theories. But in general, if you are interested in the deflection behavior or in-plane
bending, bending stresses are pretty good, but the transverse shear stresses are slightly

away from the three-dimensional solutions

(Refer Slide Time: 30:04)

h=f
v T
PL
= Ps
o
L‘Li L.?.H ,‘/ °
Lis Las 2 0

\ L'\'J = LJL
&_‘lf) l_ :§ Ll\/‘+ []799 L = 5—3( "xgl Liy= :ESL]7))(+§(U_78_9
U= I ) il
[; = $1 (o 2= o ( Oy + 3(9( hee + 3("’; La3= fullg

L2y - fb(’ww; Leg = F13 Ul iy (go t fis

L-% > JCI(( )m +3€l¢( sz {'D(WJ qu . 5')4( ”"1 LBS - %zo( ))9
L‘N :{z\( )lam‘l"g'“—( ),e0 +‘S:\_) ) /\'45;{)"‘[ hxo l L;} . 41'5( }”"(-{2(( )]w{.%ﬁ

Ultimately, we get five differential equations. If we substitute the value of M,,, N,,,

d,, d, ., if you substitute all in the main 5 partial differential equations that leads to this



set of equations that LU = P, where L is a differential operator, it is a 5 by 5 matrix:

Ly by Lg Ly Ls [ug] [P
Lp Ly Lys Ly L Uzo P,
Lz Lis Les Lay Lgs Wo |[=| Ps .
Ly L Ly Ly Ls ||na 0

[Ls L Lis Lis Lss Jlwo | L[O

The important part is that here, L, =L, ie, L, =Ly , Ly =Ly

We need to get the non-zero value of the upper half and then we can say that the lower
half is the same. L= f,( ).+, ()

f, and f, I have explained in the previous lecture.

B D,,
f, = + —2 + =22 and so on.
1= A, R R?

f, and f, are nothing but the coefficients of any term, which is having (). if youare
talking about particularly

L11 = f ( )’xx fz (ulo)’ea- L12 = f3(u20)’x9-

In that way you can find them all:

Li=f( )t o ( )ooos Lo=T( )oos Le=Ts( )ooct s ( )oans Lis=fa )osot+Ts
Lis=T( )oxor Lo=To( )t To ( )ogo+i0i Lis= T ( )oos Loa= o ()i

Los = fia( )oe+ Fia ( )ooo +is5 Lia=fis ( o+ 17 ( )van+iss Loa=Tio( )oxs Las= foo ( )g
Lua = For ( )i+ T2 ( )ooo + 250 Las = Foa ( )oxos Les= fos ( )one ¥ Fos () oap + 0

L, = fg,(Wo),XXJrf6 (Wo),gg,onlything is that the fifth equation is placed here at the
third position.

We have obtained ¥, and ¥,, and these are loading p,, p,, and p;. | have not

presented all the individual components like f, and f, because | have already given the

details in lecture 1. One can derive or find the actual component of f; and f, . In this

lecture, 1 am just presenting the overall picture to proceed with a solution of a finite
cylindrical shell.



(Refer Slide Time: 32:29)

Scludion
Vi S < v

0{;}:2[/3\" '/Ulo:0 ‘{)2:0; Nax :0) Mxx= O
(JJ.’@:ON". 7“[0_ ) (-V[ 2 Nao o MM 0

)

% SKaw Symmefnc Loack
Ef QA) Yny, Stnmx \“nB Mg | A?
M"En ] C&dhé

Sfmmlfhc !loao(!n? M= 0

A 4
Z S (U, ) mmx S\nhB
h=y 309

A R
= & ( 2, ‘}’)MV\ Sy G20 (y)n%/
a

=== Smnﬁ

) a ¥
Ny

For the solution for a simply supported shell; for the boundaries, x = 0 and x = a, the
following variables need to be specified;

W, , transverse deflection =0

The longitudinal deflection U,y =0, if you talk about a shell like this: over this edge it
will be Uy, thisis Uy, and W .

If you are talking about x = 0; this is the edge where we are going to specify the

boundary condition and this is the edge where, x =a, Wy =0, U,y =0.
N,=0andM, =

¥, and ¥, are rotations, here instead of N,,, U,y this longitudinal =0, ¥, =0, and

Wy = 0; then only we can assume the solution in a Fourier series, otherwise, we cannot

get the solution.
This is the hard simply supported condition. At =0, and & = y ; there you have

simply supported case. Here, Wy =0, Ug =0, ¥; =0, N,,=0,and M, =0.

If you see thatatx =0and x =6, Wy and ¥, =0.

Straightforward we can assume: W, = »_ > (w,) _sinmx

m=ms n=1

© ] {sin ne



direction is sin series, if you put x = 0, then sin = 0;
If you put x = a, then sin = 0;

If you put 8 =0, then sin = 0;

If you put @ = y, then again sin = 0.

In this way, the expression satisfies the boundary condition exactly that is why

sometimes it is called is the exact solution. And then the variable U,y =0, where x =0
and a.

© @ cos ﬁﬁ} nr mrz

(U t2)= D Z(UZO’Wz)mnSinmX{ . Aol Me—t

m=ms n=1 sinnég 4 a

Along the x-axis, U,q is assumed as sin series, but along @ direction, it can be assumed
cos series. And the same way U,y = 0along @ direction. Uyq is assumed sin series along

@direction and cosine along x direction, and ¥; and ¥, follow the similar procedure.

(tho 1) = i i(um,%)mﬂ cos mx{sm ﬁ‘g}

m=ms n=1 Cos ﬁ@

When a cylinder is subjected to skew-symmetric loading, then the solution is expressed
like this and ms = 1 here, if the cylinder is having symmetric loading which means that
around the @, the loading is symmetric, then the solution will be assumed in sin and cos.
This is the most important part.

Generally, in most of the skew-symmetric cases, the problem is solved in the literature.
For the symmetric case, it becomes further special, it independent of @ and then an
axisymmetric case can be done, and the problem will be simpler. The most general
problem is the skew-symmetric loading where loading is expressed like this.
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Now, we are interested to represent (N,,, N,,,M,,M,,) over (N,,,N,, M, M, );

they will be sin cosine function or cos and cos function. For getting this so, first, based
on the boundary conditions, we can only express these 5 variables displacement fields;

Ujg, Uyo, Wy, ¥, ,and ,. After that, if you are sure that displacement field would be

such that, then using the constitutive relations, one can find o,,, o,,,and 7,y

Oy Q11 le 0 Exx Ex ulo,x TSWix sinmxsinné@
=1Q, Qp 0 (&g Ep | = (uzo,X +cw,, +W0)/(R +¢) |=| sinmxsinno
T 0 0 Qull7w] [l |Upy,+Up,+swi, COs Mix cos NG

We can see that N,, is just an integration in the thickness direction, it is not changing
along in-plane direction.

N, . Ny, M, ,and M, can be expressed in terms of sin series as Wy is expressed:

© & sinnéd
N,,N, M, .M, N,.,N, M. .M, inm
( XX 00 XX ) n;g;( XX 06 XX )nSInmX{COSﬁQ}

Now, we talk about N,,; 7,, gave you the expression of cosmxcosné So, therefore,
N,,, N, M, ,and M, will be represented as cos cos series:

cos ﬁ@}

N, N,.M,,, M, N, N, ,M_ M m
(N Ngyo My, My, ) = ZZ( X011 Tox1 Txe! )ncosmx{cosﬁﬁ



Some of you may ask why are you worrying about stresses when ultimately, we are
going to solve only displacement. Yes, we will solve the displacement, but at the end of
the day, we are interested to find the variation of stress resultants or the stresses also.
This will give you the actual variation, there will be some magnitude, but they will
follow this path, mode of type.

Then,

T |_[Qu O [r] [ra]_|¥a+(Woo—tn=cv2)/(R+c)|_[sinmxcosne],
Tox 0 Qs [7a] [7al |Ww+W, cosmxsin e

: mz _ . nz
m isequal to — and n isequal to — .
a 7

here,

Similarly,

0 0

Q=D D.(Q,) _ sinmxcosno

m=ms n=1

o0

Q.= >.(Q,),, cosmxsinng

m=ms n=1
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The loading that g, or g, : if you find the Fourier series for the case of infinite, it will be:

2 : 2
q, =—|q,(8)sinnfAdsc = — | q, smn@a( )de
l//I ) & l//l ©)

0

qy
Then, q = ”q X, 0 smnesmme(HRJdXdH most of the time for the 2-
l//a 00



dimensional theory q, is presented at the reference plane where, % =0.
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If you substitute all the sin expressions into I, that gives you a matrix [K]{U }n =P. From
here, U =[K]_1P .

The solution for a simply supported finite shell can be obtained, where only terms is R, R
is the mean radius at any location. (R+¢), if you put there the value of ¢, then you can

obtain the strain and stresses at any point.
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The post-processing techniques; the stresses, if you talk about that 0, , or 7, »yor

Tx.z, all are transverse stresses, we are interested to find 0, , 7,,, and 7,, . Already
we are using the shear correction factor that is fine, but still, there is some inaccuracy.

If we do the post-processing technique following are the general 3-dimensional equation
for equilibrium:

If we convert to our system for the present case, then those equations will be:
O_zz,z + FTZQ,Q + sz,x + F(O-xx - 0-9:9) =0
1 27
it = O+ oy +—2=0
R ’ r

1 o
% _
sz,z + FO-GX,B + O-xx,x + r =0
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Ultimately, the second equation for a static case is going to be 0:

06,0
s 20

R+¢ R+¢

T

20,z + Tex,x = 0 '



TZH(R+g)2 =— j [(aggyg)(R+g)+rngx(R+g)2]dg+ f,
%

And the same way 7, and o, can be obtained:

(R+¢)7, =—I I:Tex,9+(R+G)O-xx,x:|dg+ f,
7

(Rtg)o, =- _[ [0'99_O':a,a_(R"'g)o':x,x:Idg"' fs
B

We put star because they are different as we have obtained these through constitutive
relations. They are slightly different, so we put star here. We have obtained these through
post-processing techniques.
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STATIC ANALYSIS OF MODERATELY-THICK
FINITE ANTISYMMETRIC ANGLE-PLY
CYLINDRICAL PANELS AND SHELLS

Reaz A. CHAUDHURI and KaMAL R. ABU-ARIAT
Department of Civil Engineering, University of Utah, 3220 Merrill Engineering Building,
Salt Lake City, UT 84112, USA.

(Received 28 December 1989; in revised form | August 1990)

Abstract—The analytical (exact in the limit) or strong (or differential) form of solutions to the bench-
mark problems of (i) axisymmetric angle-ply circular cylindrical panels of rectangular planform and
(if) circumferentially complete circular cylindrical shells, subjected to transverse load and with SS2-
type simply-supported boundary conditions prescribed at the edges, are presented. The problems
investigated, which were hitherto thought to be incapable of admitting analytical solutions, have

been solved, utilizing a recently developed novel boundary i double Fourier series
approach, for three kinematic relations, which are extensions of those due to Sanders, Love and
Donnell to the first-order shear deformation theory (FSDT). Numerical results presented for two-

layer square antisymmetric angle-ply panels, which demonstrate good convergence, and show the
effects of fiber orientation and thickness on the static response of these panels, should serve as
baseline solutions (in the context of FSDT) for future comparison with various approximate weak
forms of solutions with either local (e.g. finite element methods) or global supports (e.g. Raleigh-
Ritz, Galerkin).

- [p—




The very first paper in this field “static bending of cylindrical shells or the composite
shells” was published in 1964. There is another paper “static analysis of moderately-
thick finite antisymmetric angle-ply cylindrical panels and shells, had published in 1989,
1991.
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1. INTRODUCTION

Analysis of laminated circular (circumferentially) complete cylindrical shells (e.g. rocket
motor cases, submersibles, nuclear reactors, pressure vessels, pipes, tubes, etc.) and circular
cylindrical panels (open shallow shells used in aircraft fuselages, wings, ships, roofs, etc.) is
of current interest because of their increasing use in aerospace, hydrospace, energy, chemi-
cal and other industrial applications. It is a common practice to analyze these laminated
shell structures by using such popular numerical techniques as the finite element meth-
ods (FEM), because of their inherent complexities introduced by the bending-stretching
and other coupling effects (Seide and Chaudhuri, 1987). Confidence in these approxi-
mate numerical techniques is dependent upon the closeness of agreement of the numerically
predicted displacements and stresses of certain bench-mark problems with their analytical
counterparts. Thin or moderately thick cross-ply and antisymmetric angle-ply circular
cylindrical shells and panels, with certain types of simply-supported boundary conditions,
are two excellent examples of such bench-mark problems, which have attracted considerable
attention in recent years.

Closed-form solutions have been obtained for the case of circular cylindrical shells
subjected to axisymmetric internal pressure with/without temperature changes by Zukas
and Vinson (1971), Reuter (1972), Chaudhuri et al. (1986), and Abu-Arja and Chaudhuri
(1989) and for axisymmetric buckling of such shells by Hirano (1979). Analytical (e.g.
double Fourier series, which are either exact or exact in the limit) solutions have been

< ERE
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attention in recent years.

Closed-form solutions have been obtained for the case of circular cylindrical shells
subjected to axisymmetric internal pressure with/without temperature changes by Zukas
and Vinson (1971), Reuter (1972),H1 al. (1986), and Abu-Arja and Chaudhuri
(1989) and for axisymmetric buckling of such shells by Hirano (1979). Analytical (e.g.
double Fourier series, which are either exact or exact in the limit) solutions have been
presented by Stavsky and Lowey (1971), Dong and Tso (1972), Jones and Morgan (1975),
Sinha and Rath (1976), Greenberg and Stavsky (1980), Hsu et al. (1981), Soldatos and
Tzivanidis (1982), Bert and Kumar (1982) and Reddy (1984), for non-axisymmetric defor-
mation, buckling and vibration of cross-ply circular (circumferentially) complete cylindrical
shells and panels, with SS3-type [under the classification of Hoff and Rehfield (1965) and
Chaudhuri et al. (1986)] simply-supported boundary conditions prescribed at the edges.
Soldatos (1984) has used a Flugge-type theory and Galerkin's approach in solving the free
vibration problem of non-circular cross-ply cylindrical shells.

1 Present address : LCC Siporex, P.O. Box 6230, Riyadh 11442, Saudi Arabia.
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In this paper a cylindrical shell is studied, simply supported boundary conditions
prescribed at the edges. it is clearly written here that they have used Flugge-type shell
theory and Galerkin’s approach.
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2 R. A Cuavonum and K. R. Asv-Aria

With regard to the problems of antisymmetric angle-ply cylindrical panels, Soldatos
(1983a,b) and Whitney (1984) have resorted to Galerkin's method. Soldatos (1983b) attri-
butes the non-existence of an exact solution for an angle-ply cylindrical panel to the com-
plexity of the geometry of a shell (as compared to a flat plate) besides the material properties,
by concluding, “thus, for equations of motion of antisymmetric angle-ply laminated circular
cylindrical panels and shells whose geometry is more complicated an exact closed-form
solution seems to be impossible”. While this statement does not attribute impossibility of
obtaining other types of exact (i.c. in the limit) or analytical solutions, no such solutions
have been attempted by either Soldatos or any other researcher, thus leaving a critical
analytical vacuum. Reddy (1984) has succeeded in obtaining Navier's solution in the form
of double Fourier series to the problems of cross-ply laminated shells, and has concluded
that “Closed-form solutions for deflections and natural frequencies of simply supported,
cross-ply laminated . .. shells are derived ... . Unlike plates, antisymmetric angle-ply lami-
nated shells with simply-supported boundary conditions do not admit exact solutions. The
exact solutions presented herein for cylindrical and spherical cross-ply shells
under sinusoidal, uniformly distributed, and point loads should serve as benchmark results
for approximate methods, such as finite element and finite difference methods”. It may be

- d
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under sinusaidal, uniformly distributed, and point loads should serve as benchmark results
for approximate methods, such as finite element and finite difference methods™. It may be
pointed out here that there appears o be some confusion or controversy with regard Lo the
definition of “exact solution” in the literature. While expressions for eigenvalues, eg.
natural frequencies, obtained by both Reddy (1984) and Soldatos and Tzivanidis (1982)
for cross-ply shells are in closed form, the solutions for deflection presented by the former
arc definitely not in closed form. Reddy's (1984) solutions for deflection of cross-ply shells
can only be regarded as solutions of strong (or differenual) form, or solutions exact in the
limit or exact in the sense of Chia (1980, p. 38) and Szlard (1974, p. 43). Chia (1980) has
staled, “The solution is said to be exact in the sense that an infinite sct of ... algebraic
oquations can be truncated to obtain any desired degree of accuracy. Exact solutions will
be obtained by double Fourier series, generalized double Fourier series and a combination
of these series ...". According to Szilard (1974), “In general, there are four types of
mathematically ‘exact’ solutions ... - 1. Closed-form solution. 2.... 3. Double trigonometric
series solution. 4. Single senes solution™.

Recently, Chaudhuri (1989) has presented a novel method for obtaining an analytical
[exact in the limil or exact in the sense of Chia (1980) and Szilard (1974)] or strong form
of salution, in the form of boundary-discontinuous double Fourier series, to the problem
of a system of completely coupled linear partial differential equations with constant

- =
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funcuons, depending on the coefficients of the system of governing partial differential
equations, (ii) guides in making decisions with regard to the discontinuities cither in the
assumed solution functions or their first derivatives, depending on the coefficients of the
boundary condition equations, (iii) ensures unigueness of the solution, and finally, (iv)
leads to a highly efficient computational scheme in spite of the complexity of the completely
(or highly) coupled PDEs. Chaudhuri (1987, 1989) has also applied this method to inves-
tigate the general nature of these exact double Fourier series solutions in the case of
moderately-thick doubly-curved laminated anisotropic shells of rectangular planform. Ana-
Iytical solutions to the problems of antisymmetric angle-ply cylindrical panels and cir-
cumferentially complete cylindrical shells have, however, not been investigated in detail and

their numerical results are still non-existent.

The primary objective of the present study is to apply the aforementioned technique
in obtaining & unique solution to the five highly coupled second-order PDEs subjected (o
highly coupled boundary conditions. This study will present (i) analytical (double Fourier
series, which are exact in the limit) or strong (or differential) forms of solutions lo the
aforementioned bench-mark problems for three kinematic relations (shell theories), which
are extensions, by Bert and Kumar (1982), of those duc to Donnell, Love and Sanders to
the case of first-order shear deformation theory (FSDT) and (if) some useful numerical
results for antisymmetric angle-ply cylindrical panels limited to Sanders' kinematic relations
alone, as a first step. Although the problem of doubly-curved angle-ply panels was solved

nfme-mm LI 70 2 L]

And literature survey is presented.
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Static analysis of cylindrical panels and shells 3

umummu.mmm 1987) of the
boundary-discontinuous double Fourier approach due to Chaudhuri (1989), the criteria
determining when the boundary Fourier scries are needed or not needed were neither fully
understood, in the mathematical sense, by the authors at that time, nor were ever fully
wuumﬁmumm 1937), Green (1944), Green
and Hearmon (1945), Whitney (1970, 1971) and Whitney and Leissa (1970). This issue has
now been completely investigated, in the mathematical sense, by Chaudhuri (1989). The

uumw«um-ummmu
presented here arc expected to serve as bench-mark solutions (in the context of FSDT) for
future comparison with various approximate weak (or integral) forms of solutions with
cither local (¢.g. finite element methods) or global supports (Raleigh-Ritz, Galerkin).
Definitions of strong and weak forms are available in Hughes (1987). The scope of the
present study will be limited to the type of prescribed boundary conditions (i.c. 2)
considered by Soldatos (1983b) and Reddy (1984) for antisymmetric angle-ply panels,
“bﬂwmﬁuuhhﬂﬂmdm
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4 R. A Cravorurs and K. R. Asu-Aria
N+ Nos=EMo[R=0; Ny +EMe R+ Ny sy +6,0:/R=0;
NoR=Q11=022-9=0; My +M;-Qi=0; M +M;-0,=0 (3)

in which ¢ is the transverse or radial distributed load. Surface-parallel stress resultants, N,
stress couples (moment resultants), M,, and transverse shear stress resultants, (,, are related
to the mid-surface strains, ¢, and changes of curvature and twist, x;, by

No=Agl+Bx (ij=126); M =Bu+Dx (ij=126);
Q= Austit Asgel; Q= Ayl Ayt O]

Here 4, B, D, are extensional, coupling, and bending rigidities, respectively, and A,
(i, j = 4,5) represents transverse shear rigidities. For an antisymmetric angle-ply laminate,

A=Ay =Aiu=B,=B,=By=By=D=Dy =0 (5)
HPYwemwmrm 0 mAm= » 20 a1 g

One can see that the strains are expressed: & &, &3 &, &5 & and e =0; and in terms

of the displacement field, they are represented like this. k;,k,, €, 0f 1, €5, of 1 and so

on., Itis FSDT type theory, these are the governing equations obtained.
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A=Ay =Ais=B) =B =By =Bss=Dys =Dy =0. )

Substitution of eqns (2), (4), (5) into eqns (3) will yield five coupled partial differential
equations with constant coefficients in the following form:

Py +auy 1 +auy o+ duy + a0+ auy  + 0w 0+ 80y 0+ s,
+afyus o tafigr+aiidr+aliorn+ a0 +alidr +alkn
+afidrntalidon=0; i=1,245 (6a)
afuyy +auy 2 +0Piy 460y 0+ 03 +0us 1+ 00 o+ 63
+09,,1+ai91 2 +all 0y +alldy, =g (6b)

where the superscripts of the coefficients, i, denote the equation number. 4 (i=1,...,5;
j=1,...,18) are as defined in Appendix B. The five boundary conditions at an edge are
selected to be one member from each pair olghe following:

(1 N2) = (4, N,) = (u3,05) = (80, My) = (9, M,) = 0 atan edgex, =0. U]

Hﬁwev«w:mxm 0 Bdm » 20 1 8

Here you can see that for an antisymmetric angle-ply; | said that one can develop for an
angle ply case, but we have to be very particular, sometimes anti-symmetric or
symmetric is such that some coefficients can be going to be 0. If you are interested in a
general angle ply, then it is very difficult to develop an analytical solution. These are the



governing equations expressed.

If you remember that N;, M;, the coefficients are expressed as A;, B;. These are the
standard way of representing the coefficients.
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where the superscripts of the coefficients, 7, denote the equation number. ¢’ (i=1,...,5;
Jj=1,...,18) are as defined in Appendix B. The five boundary conditions at an edge are
selected to be one member from each pair of the following:

(s N2) = (w4, Ny) = (w3, Q) = (90, M,) = (6, M) =0 atanedgex, =0. (1)

The boundary conditions considered here are the same as those considered by Soldatos
(1983b) and Reddy (1984), which are termed SS2-type under the classification of Hoff and
Rehfield (1965) and Chaudhuri et al. (1986). They are prescribed as follows :

(0, x5) = Ng(0,x) = u3(0,x,) = M, (0,%,) = 6,(0,x,) = 0 at the edge x, = 0. (8)

3. SOLUTION FOR CYLINDRICAL PANELS

It has been shown by Chaudhuri (1989) that selection of the assumed boundary-
discontinuous double Fourier series solution functions will depend on the governing partial
differential equations and not the boundary conditions. At stake here is the well-posedness
of the Fourier analysis, to be achieved through selection of the unknown coefficients of the
assumed double Fourier series solution functions and introduction of certain boundary-
discontinuous coefficients, so that the number of final algebraic equations become equal to

tha nnmbaz o

[« -

How to represent these coefficients Ay, A.. . so on and if we substitute all these things
into the partial equation and the boundary conditions that either this is u, or N, either

u, or N, atx =0 and then so on.
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(0,x2) = Ng(0,x5) = u3(0,x,) = M, (0, x;) = 6,(0,x) = 0 at the edge x, = 0. (8)

3. SOLUTION FOR CYLINDRICAL PANELS

It has been shown by Chaudhuri (1989) that selection of the assumed boundary-
discontinuous double Fourier series solution functions will depend on the governing partial
differential equations and not the boundary conditions. At stake here is the well-posedness
of the Fourier analysis, to be achieved through selection of the unknown coefficients of the
assumed double Fourier series solution functions and introduction of certain boundary-
discontinuous coefficients, so that the number of final algebraic equations become equal to
the number of unknowns to furnish a unique complete solution. The details are available
in Chaudhuri (1989) and will, in the interest of brevity, be excluded here. The solution to
the system of five coupled partial differential equations, given by eqns (6) in conjunction
with the $52-type simply-supported boundary conditions, represented by eqns (8), will then
be assumed in the form:

w=tul; w=h+d; uy=td; 6 =4i+0Y; g =d+4! ()

[« [—
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Static analysis of cylindrical panels and shells §

where

(il 860 = T T (U Vi X YL sit (05 08 (o)

@l #) = T T (U Vi X, ) 080, s (B2

U= )E L Wiasin (ax,) sin (B,%2);

=T T Whoos(au)cos (B (10)

in which

[« -

They have solved this term. My aim is to tell you that we have done the same way they
did.

U, , deflection is assumed in sin and sin, U, is assumed in cos and sin, and U, is

assumed as sin and cos. In this way, the solutions are presented. The students or the
learners can go through these papers and can understand. | would like to discuss some

results here.
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Table 1. Convergence of u$ (at the center), uf (at x, = a/2, x, =0), ¢, (at x, =0, x, = b/2), and
M? (at the center) for various aspect ratios, a/h, and fiber orientation angle,
] (i3 05
ah m=n 4 6 8 4 6 8
] 10 2708 2738 279 3505 3547 3548
2 1896 1923 194 2441 2484 249
W 10 0 0 0 1725 174 1782
2 0 0 0 1299 1357 1367
4 10 1912 192 1932 2979 3000 3019
20 1375 1398 139 1905 1944 1957
M} 10 133 152 149 7963 8178 8123
20 100 1123 1120 6225 6459 6430
@, M% are similar to those of u%, ¢, and M, respectively, and hence these are not shown
here. The convergences for the displacements and rotations of two moderately-thick cyl-
indrical panels shown in Table 1 are reasonably rapid and may be regarded monotonic.
HPermmwm i 0 mE ™ 9 2@ n .

You can see that the results are presented: for a by h, m is equal to n, then taking the

terms, M, and m,,, then we get the convergence. The number of terms is required and

thisis 6°, 0° and 22.5°. And U, U;, ¢, and m, are compared.
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Static analysis of cylindrical pancls and shells 1
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Fig. 3. Variation of bending moments along the center line, x, = b2, of a cylindrical panel.
Hpv,.,.mm

X
Here one can see that moments are compared, plotted along — and they are calculated at
a

b
2
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Fig. 5. Variation of bending moments with the fiber orientation angle, /.
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Fig. 5. Variation of bending moments with the fiber orientation angle,

x; = a2, while the surface-parallel displacements and rotations are antisymmetric with
respect to the same. Similarity of these plots to their independently computed spherical [see
Figs 2-5, Chaudhuri and Abu-Arja (1988)] counterparts testifies to the accuracy of both
the sets of results. Currently unavailable numerical results, on (i) comparison with other
shell theories (e.g. Donnell and Love), (if) comparison of free vibration results with those
of Soldatos (1987) and Kabir and Chaudhuri (1991), and (iii) circumferentially complete
cylindrical shells, will be published in forthcoming papers.

[« pr—

The same way, along the @, different moments are calculated. Those days in the 90s,
80s, or 70s when the computer was just started. The very preliminary results were
presented like, the bending moments or the deflection. But after 95; when the use of
computers has increased, we can find more detailed results and various parametric
solutions.

Even these days, you can directly use C packages like; anysys or nastran or any
structural analysis software, to directly get the deflection stress resultants. The aim is to
tell you the basics behind these different software’s.

Behind that, there are simple theories, for research, these days if some people are
working on a shell made of carbon nanotube or on a shell made of graphene sheets, what
will be the deflection? For this, some different material model is required, but the basic
will remain same. The functionally graded shell is currently studied with the basic
models we can go for a complex one.

With this, 1 would like to end this lecture.

Thank you very much.



