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Dear learners welcome to week 5, lecture 3: Development of Navier solution for a finite 

shell.  
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First, I will review the last lectures. In week 5, lecture- 1; I presented the state of art for 

infinite shell means, the concept of generalized plane strain. In lecture- 2: I described 

developing a code in MATLAB and discussed a recent literature article of 2021.  

In this lecture, I will develop the state of art for a finite shell, the steps are similar to that 

I have presented in lecture 1, but is slightly more detailed.  



(Refer Slide Time: 02:17) 

 

Let us consider, a finite shell made of composite materials, which is orthotropic in 

nature, and let us say, there are layers 1, 2, 3 and up to L, and they are perfectly bonded.  

Sometimes, I may forget to discuss all the solutions or whatever I have discussed, even 

the formulation is valid when layers are perfectly bonded and the material is orthotropic. 

The solutions I am presenting for cross-ply composites and sandwich plates are is valid 

for that.  

For this case, the same displacement field is considered, i.e.: 

1 10 1 2 20 2 3 0; ;u u u u u w          

Our coordinate system is x,  , and z; where x is the longitudinal direction,   is the 

circumferential direction, and z is the thickness direction. It is a singly curved surface, 

radius in one direction is and in the second direction it is R, i.e., 1R  =   and 2R  = R. 

The lame’s parameters 1a  = 1 and 2a  = R. 
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If we follow these things, we can find the strain components. There are two ways for a 

circular cylindrical shell; one way: you can find the strain components which are 

generally given in cylindrical coordinate system, most of the theory of elasticity book 

that strain displacement relations are given, one can use directly. 

I already developed a strain displacement relation in a very general form. That can be 

found through a special case, a circular cylinder is a special case. Putting the value of 

lame’s parameters and radius we can find the strains. 
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, where 2a  = R; R and R get cancelled.  
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, here, 3u  is not a function of  , therefore, it is going to be 0. 

Now, we can find out the expression of 23 ;  
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In this expression, all terms will contribute, therefore it will be: 
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In 13  expression: 31 1 1
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Finally, the non-zero strain components for the present case are written below: 
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If you remember, for the case of infinite shell: xx  = xz , = x = 0.  

There are only three non-zero strains, xx  = xz , = x = 0, but for the case of a finite 

cylindrical shell only zz  = 0, other 5 strains are existing. This is the expression of strain 

displacement. If you want to arrange it in that form, let us say, 0 1

xx xx xx     and 

0 1

      . 

But, in the present case, because it is very simple, I didn’t do it that way. One who is 

formulating only for a cylindrical shell can try in this way, programming will be easy.  
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Can we convert the governing equations to the present case? If we talk about the first 

governing equation: 

     1
11 2 22 2, 21 1 12 1, 1 0 10 1 1, ,
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Here,  11 2 ,
N a


 and  21 1 ,

N a


 will contribute, derivatives of lame’s parameters are going 

to be 0.  

The first equation will be:    , 1 0 10 1 1,
.xx xx

N R N q I u I      
 

  

We have written the non-zero value of this and the dynamic is also taken. Because later 

on, in the 6th week, I am going to explain the free vibration of cylindrical shells or 

different shells. So, I have taken these terms, but for the present case, we are studying 

only the static part, we are going to put it 0.  

In the second equation: 
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In the third equation: 
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In the fourth equation: 

     11 1, 22 1 21 2, 12 2 2 1 20 2 2, ,
1 2

1
M a M a M a M a Q I u I

a a
  

       
 

  

11 1,M a   and 21 2,M a   = 0,   22 1 ,
M a


 and  12 2 ,

M a


 will contribute.  
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If we represent in the terms of x,  , and z properly and write in a combined form, then, 

the following will be the final set of 5 partial differential equations for a finite cylindrical 



shell.  

,

,

,

,

,

,

,

,

,

,

0 (1)

0 (2)

0 (3)

0 (4)

0 (5)

x

x x x

x x

x

x x x

x x

x x z

N
N q equation

R

Q N
N q equation

R

M
M Q equation

R

M
M Q equation

R

Q N
Q q equation

R

 

  

 

 

 

 

  

  


  

  

  


  

 

In most of the cases, the review articles or the general articles, the order is slightly 

changed. 5th equation is treated as a 3rd equation, 3rd as 4th equation, and 4th as 5th 

equation.  

Now, the associated boundary conditions at edges: this is a finite cylindrical shell, 

therefore, for a boundary two faces are there, one is x = 0 and x = a.  

If we talk about this, x = 0 and over this x = a, and other is   = 0 and  =  , over this 

edge. I am going to put hash here, the normal direction is x. 

In the case of boundary condition: we can say that in-plane stress resultant in case of x is 

equal to 0 and x is equal to a will be:  

10xxN or u , 20xN or u , 0xQ or w , 1xxM or , and 2xM or  . 

For the second case,   is equal to 0 and  is equal to  , in-plane stress resultants will 

be:  

10xN or u , 20N or u , 0Q or w , 1xM or  , and 2M or  . 

These are the variables, which are needed to be specified. Depending upon the boundary 

conditions, we can specify. For example, if you say that these edges are clamped, for that 

case our all displacements are going to be 0,  

i.e., 10 20 0 1 2 0u u w       , at   equals to 0 and  .  

If I say that this is clamped and it may be free, for that case, all stresses need to be 0. 

Depending upon the boundary conditions we can specify our variables. I discussed 

several times and again I am going to discuss the analytical solution, the closed-form 

solutions are valid for simply supported boundary conditions.  

If all edges are simply supported, let us say 1, 2, 3, and 4, if all edges are simply 



supported then the cylinder is said to be in Navier support boundary conditions. 

If any two opposite edges like this are simply supported then we say that cylinder is 

subjected to levy support conditions. Analytical and closed-form solution is valid only 

for Navier support conditions and levy support conditions. If you are interested to solve a 

problem in which one edge is clamped and another is simply supported this edge is free 

and this is having some point support then we cannot get the analytical solution or 

closed-form solution.  

I would like to say that even the approximate solution; which means the solution 

obtained through Ritz technique or Galerkin technique, where you can see that all edges 

are clamped or two edges are clamped and two edges are free. In that case, boundary 

conditions are placed in such a way that we can get some solution.  

Other than the all-around simply supported and to oppose it as a simply supported we 

can get a solution through approximate techniques, and other techniques such as Ritz 

technique, Galerkin technique, and extended Kantorovich techniques.  

Recently, you will find a lot of articles in which a cylindrical shell or a complete shell is 

studied using the extended Kantorovich method. 

If you see, the loading and the boundary conditions are very arbitrary, in that case, the 

numerical solutions come into the picture, you call about finite element solution. 

Recently, DQM - Differential Quadrature Method and state-space finite element 

technique mean; combining of analytical as well as numerical technique are used. If we 

do so, we can get the solution for a variety of loading and boundary conditions. 
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Now, let us define the stress resultants: 
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Here, we can see, for a cylindrical shell xN   xN .  

Similarly, defining the moments: 
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Here, xM    xM   

Now, defining the shear stresses:  
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 .  

And the loading at the top and the bottom is equal to the traction, for example, let us say, 

in the case of a plate:  
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Loading per unit area, it works on the complete area, if you do so, 1
R

 
 

 
factor comes. 

Ultimately, the applied traction is equal to the resisting traction or inside the stresses, at 

the boundary. 
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Now, we have to define the shell constitutive relation so, somebody has done for a plate 

constitutive relation. Now, I am saying that it is a shell constitutive relation. 

Using the basic constitutive relations: 

11 12xx xxQ Q      

12 22xxQ Q      

44z zQ    

66x xQ    

55zx zxQ   

Where, 11Q , 12Q , 22Q , 44Q , 66Q  and 55Q  can be represented in terms of engineering 

constants:  

1
11

21 121

E
Q

 



; 12 2

12

12 211

E
Q



 



; 2

22

12 221

E
Q

 



; 2

22

12 211

E
Q

 



; 44 23Q G ; 

55 31Q G ; and 66 12Q G . 

For a composite material, you can find them all. Already, I discussed in the second 

lecture of week 5, to evaluate through a coding, that first, you give 1E , 2E , 3E , 12 , 

through a program, then, you have to evaluate 1Q , 2Q , 3Q . And then, later on, I also 

gave the formula for a transformation of a 1Q  and 2Q .  



I said that the present formulation is valid for a cross-ply cylindrical shell, one can 

develop a solution for an angle ply cylindrical shell, but here more generalized. 16Q  and 

26Q  will also come into the picture. For symmetric and anti-symmetric cases, the 

analytical solutions are valid, but for an angle ply, finite shell analytical solution is not 

valid. 

Then we have to think for an approximate or finite element solution.  

Let us say, 
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 
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 Here, xx  is replaced by 11 12xxQ Q   .  

Now, explicitly writing, substituting the value of xx  and  . xxN will be: 

 
 

2
20, 2, 0

11 10, 1, 12
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  

If you put 1
R

 
 

 
 inside, then xxN  will be: 

2

11 10, 1, 12 20, 2, 0
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1
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Q u Q u w d
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
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
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            

  
  .  
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Here, one can see that we can write the coefficients. The first term gives you the 

definition of 11A , the second term gives you the definition of 11B . 
2  is the definition of 

11D  and  it is the constant, 12Q
20,u   is the definition of 12A  and if you multiply with 

2,  it will be 12B and the coefficient of 0w  will be also 12B .  

Ultimately, xxN can be represented as: 

 20, 0 2,11 11
11 10, 12 11 1, 12xx x x

u wB D
N A u A B B

R R R R

 


   
        
   

  

This I have explained in lecture 1 of week 5 also. The only thing is that now, we have a 

slightly bigger form, the basic idea remains the same, but now it is a slightly bigger form 

because we have more terms.  

In the previous case, we do not have xx , we have only  , now the terms 

corresponding to xx  are slightly increased when we are going to solve for N .  

2

2

h

h

N d  


  . Here, 12 22xxQ Q     . 

12 xxQ   is fine, but when you talk about 22Q  , it contains a term 
1

R

1

1
R

 
 

 

. 

If you take upside over there, then it will be 

1

1
R




 
 

 
.  

In the previous lecture, 

1

1
R




 
 

 
 opened up in infinite series, but we are going to 

consider up to quadratic terms 

1 2

2
1 1

R R R

  


 
    

 
. 

 In most of the literature, the Flugge theory has considered the term up to quadratic. 

This gives a more accurate solution if we take terms up to quadratic. If we take more 

terms in cubic and then there is a less contribution for that. 
2

2
1

R R

 
   term is 

considered. If during the integration, 
3  comes, then we are not going to integrate that.  

 

 



By following those approaches, N  is written like this: 

 20, 0 2,22 22 22
12 10, 22 12 1, 222x x

u wB D D
N A u A B B

R R R R R

 






   
         

   
 . 

I have explained for xxN and N . By following a similar procedure, one can get the 

expression for xN   and xN .  

10, 66 1,66 66
66 66 20, 66 2,x x x

u BB D
N A A u B

R R R R

 






   
        

   
 

10, 1,66 66 66
66 66 20, 66 66 2,2x x x

uB D D
N A A u B B

R R R R R

 






   
         
   

 

When we get an expression like this then this expression is known as shell constitutive 

relations. 
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Similarly, one can get the relations for xxM :  

xxM  = 
2

2

1

h

xx

h

d
R


 



 
 

 
 .  

If you substitute all these things, xxM = 11
11 10,x

D
B u

R

 
 

 
.  



And similarly, one can derive for M , xM  , and xM , it’s very easy, one has to 

substitute the terms and finally, writing the coefficients. 
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Ultimately, , ,ij ij ijA B D    =  
2

2 2

2

1, ,

h

ij ij

h

k Q d  

 ,  

When it is multiplied with 1, it will be known as ijA , when it is multiplied with  ,  it will 

be known as ijB , and when it is multiplied with 
2 , it will be known as ijD . 

Here, the term 
2

ijk  is used, this is saying that this ijk = 1, except for 44k . When we say 

that 66
A , 44

A , 55
A , 

2

55k , the shear correction factor is going to be 1, otherwise it is 

taken 0.91287.  

For a single layer, one can integrate and find the value. But for a composite panel; as I 

have discussed in programming also, we have to take the coordinate system that each 

layer thickness and the cube difference of the cube and divided by 
1

3
. Ultimately, these 

are the discrete layers, we are adding summation of all the layers material property. 

 1

1

L
K

ij ij K K

K

A Q Z Z




  ; 

  2 2

1

1

1

2

L
K

ij ij K K

K

B Q Z Z




  ;  



 3 3

1

1

1

3

L
K

ij ij K K

K

D Q Z Z




   

Kth means the Kth layer, it goes from 1 to L, we can add all this, though it is equivalent 

single layer theory which means we are solving a single layer, using the concept of 

summation we can get a solution for a composite layer. If somebody is interested to have 

a very accurate solution like at each layer interface what is the shear stress variation and 

all these things. 

For those cases, layer-wise theories are used, in which each layer has a number of 

variables. In the present case, the variation of u is assumed linear across the thickness 

and w is constant along the thickness, 0w and iu  ( iu = 1u  and 2u ). But if you talk about 

a layer-wise theory, in each layer it is linear, it may have some kinkiness, it can represent 

the local behavior. 

The theory I have discussed here is valid for a thick shell theory, but it may not give a 

very accurate result for inter-laminar shear stresses.  

For that case, either one should try for a 3-dimensional solution or the layer-wise 

theories. But in general, if you are interested in the deflection behavior or in-plane 

bending, bending stresses are pretty good, but the transverse shear stresses are slightly 

away from the three-dimensional solutions  
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Ultimately, we get five differential equations. If we substitute the value of xM  , xN  , 

xq , q , if you substitute all in the main 5 partial differential equations that leads to this 



set of equations that LU = P, where L is a differential operator, it is a 5 by 5 matrix: 

11 12 13 14 15 10 1

12 22 23 24 25 20 2

13 23 33 34 35 0 3

14 24 34 44 45 1

215 25 35 45 55

0

0

L L L L L u

L L L L L u

L L L L L w

L L L L L

L L L L L

p

p

p





     
     
     
     
     
     
         

.  

The important part is that here, ij jiL L , i.e., 12L = 21L , 13L  = 31L  

We need to get the non-zero value of the upper half and then we can say that the lower 

half is the same.    11 1 2, ,xxL f f    

1f  and 2f I have explained in the previous lecture. 

1f  = 22A  + 22B

R
 + 22

2

D

R
 and so on.  

1f  and 2f are nothing but the coefficients of any term, which is having   ,xx , if you are 

talking about particularly  

11L  =  1 10 ,xxf u  +  2 10 ,f u  . 12L  =  3 20 ,xf u  .  

In that way you can find them all: 

           

         

           

     

11 1 2 12 3 14 5 6 13 4 5

15 7 22 8 9 10 23 11 24 12

25 13 14 15 33 16 17 18 34 19 35 20

44 21 22 23 45 24

, , ; , ; , , ; ,

, ; , , ; , ; , ;

, , ; , , ; , ; ,

, , ; ,

xx x xx

x xx x

xx xx x

xx x

L f L f L f L f f

L f L f f L f L f

L f f L f f L f L f

L f f L f

f f

f

f f

f

   

   

  

 

   

   

   

 

  

 

   

     55 25 26 27; , ,xxL f ff   

 14L =    5 0 6 0, ,xxf w f w  , only thing is that the fifth equation is placed here at the 

third position.  

We have obtained 1  and 2 , and these are loading 1p , 2p , and 3p . I have not 

presented all the individual components like 1f  and 2f because I have already given the 

details in lecture 1. One can derive or find the actual component of 1f  and 2f . In this 

lecture, I am just presenting the overall picture to proceed with a solution of a finite 

cylindrical shell. 
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For the solution for a simply supported shell; for the boundaries, x = 0 and x = a, the 

following variables need to be specified;  

0w , transverse deflection = 0  

The longitudinal deflection 20u  = 0, if you talk about a shell like this: over this edge it 

will be 10u , this is 20u , and 0w . 

If you are talking about x = 0; this is the edge where we are going to specify the 

boundary condition and this is the edge where, x = a, 0w  = 0, 20u  = 0. 

xxN = 0 and xxM  = 0.  

1  and 2  are rotations, here instead of xN  , 20u  this longitudinal = 0, 2  = 0, and 

0w  = 0; then only we can assume the solution in a Fourier series, otherwise, we cannot 

get the solution. 

This is the hard simply supported condition. At   = 0, and   =  ; there you have 

simply supported case. Here, 0w = 0, 10u  = 0, 1  = 0, N = 0, and M  = 0.  

If you see that at x = 0 and x =  , 0w  and 2  = 0. 

Straightforward we can assume:  0 0

1

sin
sin

cosmn
m ms n

n
w w mx

n





 

 

 
  

 
 ; 0w  in x and   



direction is sin series, if you put x = 0, then sin = 0;  

If you put x = a, then sin = 0;  

If you put   = 0, then sin = 0;  

If you put   =  , then again sin = 0.  

In this way, the expression satisfies the boundary condition exactly that is why 

sometimes it is called is the exact solution. And then the variable 20u  = 0, where x = 0 

and a. 

   20 2 20 2

1

cos
, , sin

sinmn
m ms n

n
n n m

u u mx m
n a

  
 

 

 

 

 
 

  
 

   

Along the x-axis, 20u  is assumed as sin series, but along   direction, it can be assumed 

cos series. And the same way 10u  = 0 along   direction. 10u  is assumed sin series along 

 direction and cosine along x direction, and 1  and 2 , follow the similar procedure. 

   10 1 10 1

1

sin
, , cos

cosmn
m ms n

n
u u mx

n


 



 

 

 
  

 
   

When a cylinder is subjected to skew-symmetric loading, then the solution is expressed 

like this and ms = 1 here, if the cylinder is having symmetric loading which means that 

around the  , the loading is symmetric, then the solution will be assumed in sin and cos. 

This is the most important part.  

Generally, in most of the skew-symmetric cases, the problem is solved in the literature. 

For the symmetric case, it becomes further special, it independent of   and then an 

axisymmetric case can be done, and the problem will be simpler. The most general 

problem is the skew-symmetric loading where loading is expressed like this. 
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Now, we are interested to represent  , , ,xx xxN N M M   over  , , ,x x x xN N M M    ; 

they will be sin cosine function or cos and cos function. For getting this so, first, based 

on the boundary conditions, we can only express these 5 variables displacement fields; 

10u , 20u , 0w , 1  , and  2 . After that, if you are sure that displacement field would be 

such that, then using the constitutive relations, one can find xx ,  , and x .  

   

10, 1.
11 12

12 22 20, 2. 0

66 20, 10, 1.

0 sin sin

0 / sin sin

0 0 cos cos

x xxx xx xx

x

x x x x

uQ Q mx n

Q Q u w R mx n

Q mx nu u

   

    

   

     

   

         
         

              
                    

We can see that xxN  is just an integration in the thickness direction, it is not changing 

along in-plane direction.  

xxN , N , xxM , and M  can be expressed in terms of sin series as 0w is expressed: 

   
1

sin
, , , , , , sin

cos
xx xx xx xx mn

m ms n

n
N N M M N N M M mx

n
   





 

 

 
  

 
  

Now, we talk about xN  ;  x  gave you the expression of cos cosmx n So, therefore, 

, , ,x x x xN N M and M     will be represented as cos cos series: 

   
1

cos
, , , , , , cos

cos
x x x x x x x x mn

m ms n

n
N N M M N N M M mx

n
       





 

 

 
  

 
  



Some of you may ask why are you worrying about stresses when ultimately, we are 

going to solve only displacement. Yes, we will solve the displacement, but at the end of 

the day, we are interested to find the variation of stress resultants or the stresses also. 

This will give you the actual variation, there will be some magnitude, but they will 

follow this path, mode of type. 

Then, 

   2 0, 20 244

55 0,

/0 sin cos

0 cos sin

z z z

zx zx zx x

w u RQ mx n

Q mx nw

  
     

   

            
           

            

W

here, m  is equal to 
m

a


 and n  is equal to 

n


 .  

Similarly,  

 

 

1

1

sin cos

cos sin

mn
m ms n

x z mn
m ms n

Q Q mx n

Q Q mx n

  



 

 

 

 








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The loading that zq  or q : if you find the Fourier series for the case of infinite, it will be: 

   2 2

0 0

2 2
sin sin . 1z z zq q n A d q n a d

R

 


     
 

 
   

 
  .  

Then,  ,zq   =  
0 0

4
, sin sin 1

q

a

q x n mxR dxd
R




  


 
 

 
  , most of the time for the 2- 



dimensional theory zq  is presented at the reference plane where, 
R


 = 0. 
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If you substitute all the sin expressions into l, that gives you a matrix   
n

K U = P. From 

here,  
1

U K P


 .  

The solution for a simply supported finite shell can be obtained, where only terms is R, R 

is the mean radius at any location.  R  , if you put there the value of  , then you can 

obtain the strain and stresses at any point. 
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The post-processing techniques; the stresses, if you talk about that ,zz z or ,zz  or 

,zx z , all are transverse stresses, we are interested to find zz , z , and zx . Already 

we are using the shear correction factor that is fine, but still, there is some inaccuracy.  

If we do the post-processing technique following are the general 3-dimensional equation 

for equilibrium: 

 , , ,

, , ,

, , ,

1 1
0

21
0

1
0

rr r r rz z rr

r
r r z z

rz
rz r z zz z

r r

r r

r r

  


   

 

    


  


  

    

   

   

 

If we convert to our system for the present case, then those equations will be: 

 , , ,

, , ,

, , ,

1 1
0

21
0

1
0

zz z z zx x xx

z
z z x x

zx
zx z x xx x

r r

r r

r r

  


   

 

    


  


  

    

   

   
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Ultimately, the second equation for a static case is going to be 0: 

,

, ,

2
0z

z z x x
R R

  
 

 
 

 
   

 
.  



      
2 2*

, , 1

2

z

z x x

h

R R R d f         


       
   

And the same way 
*

zx  and 
*

z can be obtained: 

   

   

*

, , 2

2

* * *

, , 3

2

z

zx x xx x

h

z

z z zx x

h

R R d f

R R d f

 

  

     

      





       

        





 

We put star because they are different as we have obtained these through constitutive 

relations. They are slightly different, so we put star here. We have obtained these through 

post-processing techniques. 
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The very first paper in this field “static bending of cylindrical shells or the composite 

shells” was published in 1964. There is another paper “static analysis of moderately-

thick finite antisymmetric angle-ply cylindrical panels and shells, had published in 1989, 

1991.  
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In this paper a cylindrical shell is studied, simply supported boundary conditions 

prescribed at the edges. it is clearly written here that they have used Flugge-type shell 

theory and Galerkin’s approach.  
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And literature survey is presented.  
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One can see that the strains are expressed: 1, 2, 3, 4, 5, 6       0and   ;  and in terms 

of the displacement field, they are represented like this. 1 2,k k , 11 of 1, 22  of 1 and so 

on., It is FSDT type theory, these are the governing equations obtained.  
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Here you can see that for an antisymmetric angle-ply; I said that one can develop for an 

angle ply case, but we have to be very particular, sometimes anti-symmetric or 

symmetric is such that some coefficients can be going to be 0. If you are interested in a 

general angle ply, then it is very difficult to develop an analytical solution. These are the 



governing equations expressed.  

If you remember that iN , iM , the coefficients are expressed as ijA , ijB . These are the 

standard way of representing the coefficients.  
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How to represent these coefficients 44A , 55A , so on and if we substitute all these things 

into the partial equation and the boundary conditions that either this is nu  or nN , either 

tu  or tN  at x = 0 and then so on.  
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They have solved this term. My aim is to tell you that we have done the same way they 

did. 

3u , deflection is assumed in sin and sin, 2u  is assumed in cos and sin, and 1u  is 

assumed as sin and cos. In this way, the solutions are presented. The students or the 

learners can go through these papers and can understand. I would like to discuss some 

results here. 
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You can see that the results are presented: for a by h, m is equal to n, then taking the 

terms, 10m  and 20m , then we get the convergence. The number of terms is required and 

this is  , 0  and 22.5 . And 1u , 3u , 1 , and 1m  are compared.  
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Here one can see that moments are compared, plotted along 
x

a
 and they are calculated at 

2

b
.  
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The same way, along the  , different moments are calculated. Those days in the 90s, 

80s, or 70s when the computer was just started. The very preliminary results were 

presented like, the bending moments or the deflection. But after 95; when the use of 

computers has increased, we can find more detailed results and various parametric 

solutions.  

Even these days, you can directly use C packages like; anysys or nastran or any 

structural analysis software, to directly get the deflection stress resultants. The aim is to 

tell you the basics behind these different software’s.  

Behind that, there are simple theories, for research, these days if some people are 

working on a shell made of carbon nanotube or on a shell made of graphene sheets, what 

will be the deflection? For this, some different material model is required, but the basic 

will remain same. The functionally graded shell is currently studied with the basic 

models we can go for a complex one.  

With this, I would like to end this lecture. 

Thank you very much. 

 


