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Dear learners welcome to week 05, lecture- 2. Till now, | covered the basic definition of
differential geometry required for developing the shell equations. Then, I developed a
partial differential set of governing equations based on first-order shear deformation

theory.

And in the 4th week, | derived the governing equations for the special cases, like,

cylindrical shell, spherical shell, circular plate, and so on.

In the 1st lecture of this week, | gave the basic guidelines to derive the governing
equations for an infinite shell panel and the solution for a simply supported case. In
today’s lecture, first, | will explain to understand the recent research articles with this

background.
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ARTICLE INFO ABSTRACT

Keywords: In this paper, strength and buckling behavior analysis of a ring:stiffened cylindrical shell for the sightseeing
Critical buckling submersible subjected to mechanical and thermal loads are studied. Based on the Donnell’s assumption and
M classical shell theory, the governing equations of strength analysis for the ring-stiffened cylindrical shell are
B sfieied established, and the probl Ived by finite di (FDM) and Newmark  method. Meanhile,
T"’"""“ . the governing equations of buckling behavior for the ring stiffened cylindrical shell are set up in view of the
energy method, which are resolved by the Ritz method. The research shows that the extemal load has the most
significant influence on the strength of ring-stiffened cylindrical shell. Moreover, compared with other factors,
the external load has a great influence on its strength, and the effect of shell thickness on the buckling load of
| < [RTe—— TELEEEEXE 2

This is the recent paper having an article on a semi-analytical analysis of strength and

critical buckling behavior of underwater ring stiffened cylindrical shells.

(Refer Slide Time: 02:11)

v -

504 0 e
1| s O — + @ 7 Ofeme Do | Misodt Lo § 5 B | 3
o Jy established, and the problems are solved by finite difference method (FDM) and Newmark-§ method. Meanwhile,

T”""‘ o, oinkialdel the governing equations of buckling behavior for the ring stiffened cylindrical shell are set up in view of the

energy method, which are resolved by the Ritz method. The research shows that the external load has the most
significant influence on the strength of ring stiffened cylindrical shell. Moreover, compared with other factors,
the external load has a great influence on its strength, and the effect of shell thickness on the buckling load of
1ing stiffened cylindrical shell i brious. Th s work can provide theoretical basisfo the design and
optimizing of underwater equipment such as tourist submarines.
behavior of a cylindrical shell under the action of uniform or non-
uniform temperature distribution. Using a refined beam theory, She
1. Introduction et al. [6] investigated bending and thermal buckling behaviors of
functionally graded material (FGM) tubes. Utilizing the Donnell shell
Stiffened cylindrical shell lly applied tomilitary  theory and Galerkin method, Sofiyev and Kuruoglu (7] investigated the

submarine, underwater pipelincs, rocket compartment and sightsecing
submersible, etc. The ring-stiffened cylindrical shell made of transparent
polymethyl methacrylate is the main load-bearing structure of sight-
seeing submersible. During the service life, this structure is likely suf-
fered from the combined loads including the thermal load and external
force. The sightseeing is a kind of structure for
‘manned, the strength and stability of its structure has gradually become
aresearch hotspot.

Theoretical studies on the cylindrical shells are attractive to many
researchers. Based on a boundary layer theory of shell buckling, Shen
[1] presented a postbuckling analysis for a stiffened, laminated, thin
cylindrical shell of finite length subjected to combined loading of
extemal liquid pressure and axial compression. Using the structural
orthotropic theory, Andrianov et al. [2] proposed an engineering

0 mEm » 2 0

vibration and buckling problem of FGM cylindrical shell subjected to
extemnal pressures. By means of an analytical method, Dai et al. []
obtained the critical buckling load of ring stiffened FGM shells subjected
to uniform pressure and thermal loads. Utilizing the pre-embedded
curved-crease origami patterns method, Lee et al. [9) investigated
buckling problem of a long thin-walled cylindrical shell. The buckling of
a cylindrical shell with arbitrary circumferential thickness variations
under external pressure is studied analytically by Feng etal. [10]. Based

peri b i i Wang and Qiu
[11] proposed an analytical model to analyses the energy absorption
properties and buckling behavior of circular tubes under axial and
oblique compression. Based on Donnell's and Sanders theories of thin
shells, Salahshour and Fallah (12| analyzed potential encrgy and local
clastic buckling of thin cylindrical shell under external pressure. For
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manned, the strength and stability of its structure has gradually become
aresearch hotspot.

“Theoretical studies on the cylindrical shells are altractive (o many
researchers. Based on a boundary layer theory of shell buckling, Shen
(1] presented a postbuckling analysis for a stiffened, laminated, thin
cylindrical shell of finite length subjected to combined loading of
cxternal liquid pressure and axial compression. Using the structural
orthotropic theory, Andrianov et al. [2] proposed an engineering
approach for computation of buckling behavior stringer stiffened cy-
Tindrical shells. Ulilizing the energy method and Galerkin's method, Ma
and Wilcox 3] analyzed the influence of non umiformly temperature on
the buckling behavior of a laminated cylindrical shell. By means of the
perturbation method, Shen [4,5] analyzed thermal post-buckling

* Cortesponding author.
Email address: hldai520@sina.com (H.-L. Dai).
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4 cylindrical shell with arbitrary circumferential thickness variations
under external pressure is studied analytically by Feng et al. [10]. Based
perimental observat jons, Wang and Qiu
111] proposed an analytical model to analyses the cnergy absorption
properties and buckling behavior of circular tubes under axial and
oblique compression. Based on Donnell's and Sanders’ theories of thin
shells, Salahshour and Fallah [12] analyzed polential energy and local
elastic buckling of thin cylindrical shell under extemal pressure. For
FGM cylindrical shells, the dynamic stability of this structure has also
attracted the attention of researchers [13-15].
Moreover, numerical investigations on the strength and buckling
behavior of shells and pl lso abundant. With exp ] tests
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I randomly chose this paper to make to understand whatever | explained to you.
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Like in this paper.

i Enpinseing Setrs 227 (2021 111356
Nomenelature €2,y normal and shear strain component
4,#,1; normal and shear strain components on mid-plane
(x,0,5) cylindrical coordinate system ke kap ks curvaturein x, 0, £ direction
L thickness od length of ylinder chel [m] 2,00,6 nomal and shear stress component [MPa]
hy height of ring-stiffeners [m] ' normal stress component of ring-stiffeners [MPa]
R radius of the middle plane of the cylindrical shell [m] NNy, N4 internal force of the cylindrical chell [kN]
S st TR p—
¢ eccentric distance of ring-stiffeners P, P, denity of ring-stiffened structure, cylindrical shell and
é distance between ring-stiffeners [m] " ring-stiffeners [kg/m’]
4 widhofnguifenenn] I second moment of area of ring-tiffeners [m*]
z elastic modulus of he cylindrical shell [MPa) Q. Q  shear force along x and 0 direction [kN]
L d-znu-durnhnﬂlhl Q radial load subjected to deep water pressure [kN]
#  Poimon's rato of the cylindrical shell g, @24 extermal load along x, 0 and s direction [kN]
e e
71,72 innerand outer temperature n circumferential hydrostatic pressure [kN]
a hn’nlq-eoﬁn-clhqhhdu 1l total stain energy of the ring-stiffened cylindrical chell
& Up, Us  strain energy of the cylindrical shell and ring-stiffeners
@ thermal expansion coeficient of ing-stiffenes [K 4] Us  wworkof the extermal orce
wvw  disgl mp fthe midplane alongx, fands  ; n axial and circumferential halfavaves number
direction [m]
nﬁhpunnm
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A cylindrical shell in which ring stiffeners are used as underwater pressure. We studied

that outside of a tube, there is pressure over there. These are the recent articles.

(Refer Slide Time: 02:47)
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2. Basic equations of the problem
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According to the Kirchhoff-Love hypotheses, the thin plate-bending

model with small deflection is applied. All of 2 direction stress re-

sultants should be neglected [34], ie. o: = g = 6 = 0. The consti-
tutive relation is

LA

static pressure and thermal load is investigated (see Fig. 1). Inaddition, o, = Byye, + Bugy — (1 4 p)B,,0lT(2) (92)
e ik B iex with depth of the structare. The
and length of the cylindrical shell are k and L, respectively. The radiusof 9= Bt + But, — (1 4 p)BuadT(c) )
the id-plane of the cylindeical shell e R. The asction area of tiag-
stiffeners, eccentric distance of ring-stiffeners and distance between 00 =Bora (9¢)
sing il e 5, cand d The clindrical oordinate e (s00)s
placed in the middle surface and £ axiz is inward to the shell.

o B, . . E
27, Bact condition equstion o the problen B =B = =B =B = = B =3 ao

s oy e ble the
outer surface temperature of the ring-stiffened cylindrical shell iz lower
than the inner one for the sake of passenger comfort. The temperature of
deep water iz considered as 278 K, but the inner surface temperature of
shell is about 298 K. Assume that the temperature varies only along the
tion is [31]

-(50;2)1'(1)—00 ;le;) m

Comsidering contimsity betieen the cyliadeical shell snd sifloners,
stifferers is wually metal material Por stiffeners’ temperature-
dependent properties, its form be adopted s follows [8,35-57]

E
oo, 0T an

expressed as [38]

~.~/:-M.~/:..mn.¢:om~.-/1m az)

- -

We aim to have the basic governing equations. Initially, they gave the heat conduction
equation which is in polar cylindrical coordinate.
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2 T 2 stiffeners is umally metal material Por stiffeners’ temperature-
outer surface temperature of the ring-stiffened cylindrical shell is lower Tab
han the i ome for the sake of pmenger comfurt The tepperatumm of  4#PES343¢ peopertis i form be adopted as follows [6,35-37]
deep water is considered as 278 K, but the inner surface temperature of R *Efw an
shell s sbout 298 K. Assume that the temperature varies only slong the | 24,
thickness direction, and the one-dimensional steady conduction equa- e x o oy Sor OS] T T s

tion is [31] das [35) o

& 14 [

g -t jes) = Il.-—/:-aﬁ.ll--/:ﬁ!M!MN--/:w az

where

i=R4e ;.“; @ H.rfqt.&.'ur/:h&lehl.-/:u& (12b)
‘The thermal boundary conditions are as follows kare

u=R-3Te) =T =R+ 3T) =T ® -5 B Euiw )
Bq. (1) can be solved 2 i

where I = dk /12 denotes the second moment of area of ring-stiff-

_(L-n)[ & ] K eners.

m"T’:-;T'.,a"'(' je<r 1) € by mems of Bge. (615) 22d (12, s relans of e ring-
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u=R-3T) =T =R+ 3T = ® =250 -5 as
B O cihe b Sl y = /17 demotae e Secom] eoutent of s of Leg e
:-T) [ & h ) enens.
m)"}—.g?'f,‘a"'("i‘“'i) @ By means of B, (6)1(5) and (12), stress resultants of the ring-
iy seiffned cpindica shell can be obtained 2
Teals (HOR ot No= At +Andh + Auky + Ak - N 42
M-TyRez o b N
o :..' l—,'r‘(’i“i) B0 Ny=Antl + (A 1 DY+ Ak + (A + Do)k~ N] s
when 7y and T e th i and over i tomper of e 12~ A0t sk ge
CE T M= Al 4 Andh t Ak + Ak - M a4
B e B e M= + (A + D3)e5 + Ak + (A 4 Do - M s
The deormationof he i sefeed cyindrical el s chacir g A o

ized by the Donnell shell theory [32,33). Considering that the thickness
of cylindrical shell is far less than the radius of its mid-plane The Eq. (14) can be rewrinten 22
(R/r < 0.05), the shallow shell approximations are used. Strain compo-
nents on the mid-surface of cylindrical shell under small deformation

[ < R

I explained to you section 2.2: fundamental equations of problem.
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[30] investigated the strength and stability characteristics of ring-
stiffened circular cylindrical shells.

From the above literature, we can see that the researches on the
strength and buckling behavior of cylindrical shells are based on theo-
perturbation method is usually applied to theoretical investigation on
the buckling behavior of them. In this article, the governing equations of
buckling behavior for the ring-stiffened cylindrical shell under me-
chanical and thermal loads are established by the energy method, which
are resolved by the Ritz method. Besides, the governing equations of
strength analysis for this stracture are set up with the Donnell’s
assumption and classical shell theory, which are solved by the FDM and
Newmuk method.

2. Basie equations of the problem

k| kLR
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Enpineeing Suetons 227 (2021) 111306
assumption are expressed a5
1 1
Seug ™ W) ot ®
where u, v and w are the displacements along x, 0 and £ axes, and sub-
The strain components can be expressed a3
6= b=ttt =0+ 2hy (9}
where

1
b= k= gl ke = e ®

According to the izchhoffLove hypotheses, the thin plate-bending

B3

model with small deflection is applied. All of £ direction stress re-
b i s el indrical shell loads . :;:nwhhughmddﬂ,ua.ﬂ.*a.*ﬂ.m:m
structure of transparent sightseeing submersible subjected to hydro-

static pressure and thermal load is investigated (see Fig. 1). Inaddition, o, = Bye, 4 Bty - (14 )B,,08T(2) (%)
the hydrostatic pressure varies with depth of the structure. The thickness
and lengeh of the cylindical shell are k and L respectively. Theradiusof %= Bace + Bue, — (1 + p)BuadT(o) by

the mid-plane of the cylindrical shell s R. The section area of ring-
< —— il A B

(acy

Here, you can see that the strains &, &,, and &,,. In the previous lecture, | explained

that £, was similarto &, and &,,.

Because it is a complete shell, the derivative with respect to x is taken care. Now, using
the displacement field. There we also use the Donnell shell theory which is a thick shell
theory. Based on that displacement field, they obtained the strains and divide those

strains into two parts. One is the membrane part and the other is the stretching part and

then substituted back to o,, 0,, and0,,. We obtained an in-plain stress case and the

definition of N , M _all we have obtained in this paper.

You are now familiar with these approaches; therefore, you can understand at least in

this paper the meaning of D,, D,, D, and so on. And then you see that N, the
constitutive relation for the stiffened cylindrical shell. A,and A,, is corresponding to

the membrane part then A, and A, is corresponding to the bending part.



Similarly, we have B, and D,, . Depending upon the displacement field some more

terms may come up. N, and N, , terms are coming.
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24 N, Aw A 0 Ay A O “ :,"

A o= FEM 4] No| |Aw AwiD 0 Ax Auiby 0| [%f | M

r ——FITM[40) Nl |0 0 A0 0 A)dl )0

1= ! —&— This paper M, Ay Ay 0 Ay Ay 0|y, M

189 i M, Ay ApiDy 0 Ay ApiDy, 0 ke "

\ M) L0 0 A0 0 A d

\ u [0

10 .
'E‘. a1
where

E £ 1fE
6 : / A.,n/:i eh | ,,dupz/:“'&
L A

o T LA 4 f"') P o) ok -
0 T —— T = Bl 2
000 028 050 038 10 LA R R B

va

=
=

. o : o where Agfi = 1,2, 3;j = 0, 1, 2), N7 and MZ(m = x,0) denote co-

Fig. 2. Contrasts of non-dimensional radial displacement of the cylindrical . t, 2), N, and M O

shall pancls calculated by the cument numerical mathod, FEM mathod and  Slicients of membrane, covpling and flexural stiffness, temperature

FIT mathed (40, stress on the ring-stiffened cylindrical shell. Por isotropic cylindrical
shells, Ay —0.

235, Strength analysis of the ringstiffened eylindrical shell under radial
load

[« [—

And finally, the matrix of N, and N, is represented like this. You can see the definition

of Aj. It is an isotropic shell, only E, young's modulus and ., Poisson ratio is used to

find.
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Pig. 4. Displacement under differeat hydrostatic pressure, whare & ~ 15m, d = 1m and ¢ = 005m, (a) axial displacement at T; 298 Kand T; = 276K, (b)
radial displacement at Ty =298 K and T3 = 278 K, (c) axial displacement at T; = 298 K and T3 = 293 K, (d) radial displacement at T; =298 Kand T3 = 293K

o, 1N, fu dependent the time.
a'ha N 08 Gbesiruting By, (14) into Bq (19), yiekds
N, | Fi En [ Fu
s ash ol A e
| v B L Baew
%'i% %""_"F s 7 ,:)"—"-) i p’l‘( vlpll,)".‘ IOQON:
M, o
] 0.-0 18d) e
%- ;%' -0 (18e)  where & s the porition of the siffeners, wnd it can be defined as
“_{I dilleners an
where p, ~ [} pd § .4 the Q. and Q are the chear force of x xnd 0 0 otbers
respectively. g1, g2 and g3 are loads of the direction x, 0 and 5, ) )
i 1.;,‘-&“1”' e HOMES 24 Buckling behevior ofthe risgatifinad cytadrical shell mnder el
Fox axieymmetry of geometry and loads foe the ring tiffened cylie- %
premww 0 mE ™ » 2@ u !

You can see here, the 5 governing equations. It is a first-order shear deformation type



theory and you can see that the governing equations are similar. And these are the
dynamic terms M, ,M,,, M,, Q, and Q,. Whatever, | explained during the lectures.

Now, | feel that anybody who is attending these lectures can understand the research

articles.

The very important thing to work in any research area is first, to understand the existing
literature, that what is given, and further moving with that. First, we have to understand

the existing one and later on, we can apply our ideas.
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&, 14, where & is the position of the stffeners, 2nd it can be defined

S -0 (18e) iz the position of jeners, can »
Fye | ifleners an

where p, - [, pde + p4 the Q. 20d Q are the shear force of xand 0 0 others

§
axes, respectively. g1, g2 and g3 are loads of the direction x, #and z, 5 X L L .
e e ;wmghwwmmmﬂ

Por axisymmetry of geometry and loads for the ring-stiffened cylin-

N N e~ The riag ciffonad cylindrical shell structase s bjactnd v suialload

&, du 98 in still water, 50 it is necessary to analyze the buckling behavior of the

& "W seructure under axial load. The axial critical buckling load can be ob-
tained 22

@, N"Q- I 19k In order to avoid using the relationship between load and deforma-

o Rl tion directly for complex integal calculation, keep the calcslation form

™ simple and unified, and make it easy to program, the energy method is

Ko ko0 (19)  2pplied to the buckling analysis of ring-siffened cylindrical chells

Using the energy method, the strain energy of the system is

where Q is radial load subjected to deep water pressure, and Q is

<

We derived the five governing equations as shown in the article. They have now
specialized axisymmetric geometry when the € load is independent of 8. The five
governing equations reduce into 3 equations and then they are solved for the buckling

case.
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i)
where Ug is strain energy of the ring-stiffened cylindrical shell The ringeti the cylindrical shell b
Accunling & the limsar bypothetis of cylinkical shall s ke nhw‘“"’"‘”". .,“‘::'_q ‘-“"‘*‘w’)“‘ik "’"""‘**"'h
6oty =ty =0 29) . .
kA 2 kI
Sobstieuting Bq. (9) into Bg, (22), yelds (W), 2[(4)‘”' z[w an
1B 1
Uy= 7164 Juey 4 o (1 - el Riedly (24) wherel =k 8¢
2=y it 2( # The total strain energy Us of the ring-stiffeners is
Substituting Bq. (7) into Bq. (24), one obtains =Y, o
D &
=5 ;-2
JI(L.H‘) Rl 1 this case, oaly the axial external force is considered, 5o the work
| [t 52y ofthe extemalfoce By can be writen s
'wall 3 ()R ,
: u.-'z'[[(:)m @
1 B ) )
Uy 20 O e coryy [ of el il
shell is
U= Uy + Uy (25¢)

[ =004 U4 U, Us (30)

[« [r—

The purpose of explaining this is just to tell you that these are the recent research articles
in the field of shell and one can understand that these are expressed like this. And you
can see that the internal work done is expressed in the same way. We developed a very
generalized form and it is the special case; cylindrical shell case.
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Subeteuting Bq. (9) into Bg. (22),yields @) 1[‘4)“' 2[“ 2
1B 1
U= 2164 et 5 (1 g Rz @9 vheel=hisé
1F |t L The total serain enesgy Us of the ring-stiffeners is
s::ﬁum!@mmuv,:u,mm =340, o
i = E -
lﬂm"”" Ll L A o sy 1ot cae, nly e il el e consdee, e woek
1 T(:) Us of the external force P; can be written a2
W‘I‘ (e + coRdde
] ’ 1
u.AI'[[Qm @
il 1+ &) - 20 - w)ed @M (258,
e Gt ) mmhmmwu.{uwwu
is
_UI
Ahad il | ERTRT 0
where
25, Buckling behavior of the ring-seffened eylindrical shel under radial
load
The equilibrium equations of the ring-stiffened cylindrical shell
Ay under hydrostatic pressure are 23 follows
N, N
AAA ;o-‘; 0 (31a)
E N
% Ny M, |
[« e

Now, you can see that with the background of a doubly curved shell, you can understand
the paper on the cylindrical shell, spherical shell, hyperbolic shell, conical shell, or any
other shell. You can understand the state of art based on first-order shear deformation



theory and higher-order, the basic terms used, and to develop the governing equations.
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O5NP —Y
eod 8 (DD oL ’“"‘ 4  The edges of he ringselfened cylindrical shell ave defined as the
hm:u» der the cyclic load
b) 26 1=0:u=00,-0,-0 (32a)
4
H H ' H N H H x=L:u=00,~04-0 (32b)
- () Bowndary conditions of the critical buckling problem under axial
S
z 1=0:w=v=0N=M=0 (333)
g x=L:w=y=0N,-M, =0 (33b)
:go,l (III) Boundary conditions of the critical buckling problem under
3 radial load
= v x=0:N,=v=w=¥,~0 (34)
00 sy | —rdi i =ik Sl
Tk |- romd —rahx x=L:N,=v=w=M,=0 (34b)
03 - - - -
0 ] 0 o » 100
Time 145)

Fig. 5. Time history of displacement under different temperatures, with & =
15md-1mande 005 m, (a) axial displacement, (b) radial displacement.

[ [

Boundary conditions are also shown here. You can see the boundary conditions in the
cyclic and buckling case and. We have N, because only along the x-direction they can

specify, along the & direction the shell is closed. But when we talk about a finite shell

panel then we have the boundary along the @ direction as well as x-direction.
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I would like to further go through this paper.

o s
A.-H('L‘)’o(l w
4.1. Solution of strength problom of the ringstiffened cylindried! shell
e et o= (1 )
Because of the simple form of equations and convenient calculation, .“—H!)
the FDM method ané Newmarkfl method are applied in salving the 3
governing equations of strength problem. ‘ﬂ‘(“'H.L‘)
To solve the governing equations Bqs. (20), the PDM method is
SRESEIUS I cveathg
reference (5. P
4.2. Solution of buckling problom of the ring stiffened cylindrical shell oy =~ H‘:)
under axicl load oan
To obain the axialcitcal buckling load, pre-bucklin force cam be .,-5(.1(%','..: |,'.;.""('_")(; I
solved from the equilibrium equation. Under the action of 2 uniformly
distributed axial compressive load, Py is the axial critical buckling load, zl_r”',(!!),'lul )
el he axal compresiv Load auld b les han coal bucke B Rk
ling load. The initial deformation it and di g D F e e i i
camad by puc backleg foc i e by the ringscflened cylindrical shell occurs buckling.
NE e (52 Defa] =0 )
¥, = Vppsindizcoml (36b) By solving the above equation, the buckling load of the ring-stiffened
cylindrical shell is obtained, and it can be observed that the least
W = Wpptiniusinnd (37)  buckling load is critical load.
ﬂﬁ'mvz\»m
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Uy = Uggrosicsinnd (352)
W = Vysindcomd (36b)
W, = W, sindusined (37¢)
where § =, m and n denote the number of axial and circumferential
balfwaves, respectively.

In view of the simple structure of displacement function, the
convenient calculation, and some errors in the calculated stress within
the acceptable range, the Ritz method iz used to solve the total strain
energy equations of ring-stiffened cylindrical shell.

Applying Ritz method, the Bq. (30) can be solved 2s follows

L | YL | |

e o“_ °~_ 0 (38)
From Bq. (35), one gets

ay ag ay| [

ay oy 'o"'-}‘o (%9)
ay oy ay | we

wehere aij ~ 1,2,3) are marix calculation parameters a2 follows

[« F—
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il
the ring-stiffened cylindrical shell occurs buckling.
Det] =0 )
By solving the above equation, the buckling load of the ring-stiffened
cylindrical shell is obained, and it can be observed that the least
buckling load is critcal load.

4.3, Solusion of he buckling problem of the ring stiffened eylindrical hell
wnder rodial loed

To get the radial crtical buching loads, the energy method ia med,
Dy is the radial critical buckling load. To ensure structure’s safety, the
hydrostatic load should be less than the radial critical buckling load Pz,

The initial deformation is axi ic and the displ caused
by pre-buckling force is given 2s

- A.m?nhl 422)
= Biny scomd wzb)
-.-c.,i.;_u (420)

where m and n denote the mumber of axial and circumferential half-
waves, respectively.
Substituting Bqs. (42) into Bqs. (31), yields

The same way we represented the displacement field either in sin& or cosé. So, Finally,

substituting into the equation; A, and A,, are coming as a function of M.

The techniques may be different. Because it is a free vibration case there is no transverse

loading. In that case, the right-hand side = 0. The eigenvalue problem is solved and

frequencies are obtained for the first case and when you talk about buckling then the

compressive load is applied.
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Applying Ritz method, the Bq. (30) can be solved as follows
Al _o Al _o 4l _
a0 o=
From Bq. (38), one gets
ay ay ay || ke
ay ap ay[{ ve p=0 (39)
W

O Og Gy

wehere gt = 1,2,3) are masrix calculation parameters as follows
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Py is the radial critical buckling load. To ensure structure’s safety, the
hydrostatic load should be less than the radial critical buckling load P2,

8|3

The inicial deformation is axi and the caused
by pre-buckling force is given as

n'-ﬁ-ﬂ?dd (423)
= Buiny scomd wzb)
s = Contins xsinnd 42)

where m and n denote thel number of axial and circumferential half-
waves, respectively.
Substituting Bqs. (42) into Eqs. (31), yields

B -

€ fn €y
o n o
n fn Oy

where cg(i,j = 1,2,3) is matrix calculation parameter a3 follows




The techniques of solution are also given in the paper. Once, you understand the
formulation you can understand the complete paper and you can proceed in your

research.
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Transformation material properties

(B dunsczom
-format long e /

ifile=input('Give the input file name: ','s');

i=findstr(ifile,");
file=ifile(L:i);
inpextn='in’; |~

v utext1="txt'’;

utext2="ctl’; 7
ifile=strcat(file,inpextn);
’JLoﬁlel=strcal(ﬁle,outext1);/ LP""&

\& / ofile2=strcat(file,outext2);
finp=fopen(ifile,'r'); %opens input file
fout1=fopen(ofile1,'wt'); %opens result file v/
fout2=fopen(ofile2,'wt'); %opens result file ./
n1=_fs_ca’nf(finp,'%d',1];\/ o
[r;;fscanf(ﬁnp,’%d',l); s

efining length and width of plate

In this lecture, I briefly explained that how to understand a paper.

Now you may or may not be aware of developing a programme. What are the basic steps
to write a code on a cylindrical shell? First, I will explain the basic steps then the

transformation of material property which is very important.

Sometimes, we use these material properties modeling in CI software like abacus or any

numerical software.

We need material properties in our hands or sometimes we do some experimentation or
even we write our code. Inside that code, we include the subroutine that can we get the

transformation of material property.

First, 1 will explain with the help of a MATLAB file. | have copy-pasted all MATLAB
commands in these PPT slides. The very first command is clc which means clear the

screen. Some of you may be master's students, early Ph.D. students, or research scholars.

So, you may have a background of coding you may not have the background of coding,
but 1 would like to feel that for the sake of completeness when | explain the theory. So, I

will briefly explain that how do we write a code and what are the basic steps.



You may or may not have a background in coding. But for the sake of completeness, |
will briefly explain the basic steps to write a code. In structural engineering, specifically,

when we do continuum mechanics, the command cls is used before writing any code.

Specifically in MATLAB, if we do not clear the screen, the other variables may be

messed up.

The next command is format or format long e. Generally, for structural analysis, we use

the format long e command. The purpose is that sometimes in the calculation we want
the convergence checking, let us say, 10~°, if it is not in long e format, then we cannot
work with this type of convergence analysis. 10~ and 10~*is fine, but when you talk

about more than 10°%, then it is required. Depending upon the issues.

Generally, when you write a code for a plate or a shell, for any kind of analysis whether
it is a static analysis or free vibration analysis, we should use the format long e

command, because it is not just a simple calculation.

Sometimes, we have to express the exponential of something and it comes in very long
numbers. Then, is input command: the ideal way; we can give input through many ways.
When | give a programme to write to our master students at II'T Guwahati or to the
research scholars, they generally write in a very hard form, they give the input just like e
and mu and fix and then write a coding of this.

That is the one way that in the programme itself you give the material property and then
process it. But that is not the soft form because every time you have to change in the
code itself and if you do, there will be chance that some error may come.

We should write a programme in such a way that we should have minimum interference

with outside information.

We should not work every time inside the programme, we should give the input through
a file that is the ideal way of working in this field. Input data means the geometric

parameters which mean the material properties in the layer-wise stacking sequence.

We should try to give through an input. This option is available in all kinds of languages
whether you talk about MATLAB, Fortran, or C++. Whenever you do programming,
please give input through a file. The idea behind that is as the information of your input

data is given by you therefore, you can see any error.



We have to give the file extension, file name, and all these things. These are the standard
formats that input file extension should be in ‘in’, whatever the file name. Let us say, we
want to give a file name ‘shell a’, I will give a file name of a shella.in. Its extension will

be “.in’. The other point is that if we give a “.in’, “.dat’ or “.txt’, all these files can be

worked on in a word pad or on a notepad.

You can open it in ms word these will be in a zigzag format, which | have experienced.
If you open in a notepad or in a WordPad, then you can work with those files easily.
These formats are supported by both notepad and word pad ‘.in’, “.txt’, “.ctl’, you can

open in these.

Input extension (inpextn) and output extension (outext) and even you can change these

also. ifile=strcat(file,inpextn);
ofilel=strcat(file,outextl);
ofile2=strcat(file,outext2);.

Here, ifile means input file, ofilel means output file number 1, and ofile2 means output

file number 2.
Finp=fopen(ifile,’r’); %opens input file, this command is used to open an input file.

The program will ask to give the input file name, you have to give the input file name,

and then it will open that file.

Foutl=fopen(ofilel,’wt’); %opens result file, Fout2=fopen(ofile2,’wt’); %opens result
file, it opens the blank file of outputs. In the input file there may be some numbers that
nlor n2

nl=fsanf(finp,’%d’,1); and n2=fsanf(finp,’%d’,2);

In MATLAB the command fscanf is used to read, but if you work in a Fortran, it will

read or maybe write if you want to print.
I would like to say that these commands are very much important to write any code.

You are giving data through the input file, you are getting data through the output file,
and you are providing the extensions properly. So that you can open it in the basic
notepad and word pad, this is supported for all kinds of operating systems. The next step

is in that file, from here it has started, and up to reading the file, how much data is



required.
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[SAB]=fscanf(finp, %IE',[n1]); o G G
P — TR S

i%:SAB(l)/ R
A, gk
mu13=Mat1(8,1); ;i/1=1/E1 V4

[Matl, count]=fscanf(finp,'%IE',[n1]);
0
mu23=Mat1(9,1); e2)Z 1/Et-/ K-

Vi =1/} o
s44=1/G
$55=
$66=1
s12=-mu12/E1.
s13=-mu13/E1

523=-mu23/E2

PN

D
\m\

@

In the next file, it is reading a matrix called:
[SAB]=fscanf(finp,’%IE’,[n1]);

fscanf means it is reading that matrix and giving the data,
a=SABI[1], b=SABJ[1], and S=SAB[1].

a is written for a plate, but here for the arc length of like this what is the a and what is the
b.

For the case of a shell, you can say that you are interested in terms of R, span angle, and
thickness for a circular cylindrical shell panel. You may be interested in terms of a mean

radius You can say that the very first element of this will be the mean radius.

Then, we are interested in the angle y = 60°, 120°, or any value, you can read through

that. S :B.
h

i .. R . ... h . L. a
In some literature, it is W and in some, it is R and in the case of the plate, it is H

(length upon the thickness of the shell). In the last lecture, | said that this is the radius to

thickness parameter and it is required for non-dimensionalization, so we should do it.



Now, the material property; let us say, next is a matrix
[Mat1,count]=fscanf(finp,’%IE’,[n1]);

nl components are there and this is the counting. The first element of that matrix will be:
El=Mat1(1,1);

The second element of that matrix will be:
E2=Mat1(2,1);

The third element will be:
E3=Mat1(3,1);

And others are:

G23=Mat1(4,1);

G12=Mat1(5,1);

G13=Mat1(6,1);

mul2=Matl1(7,1);

mul3=Mat1(8,1); and
mu23=Mat1(9,1), this is the assignment.

You must know that whenever you are giving data in an input file you should arrange it
in such a manner that the first value should be E1 second value should be E2 third value
should be E3 and so on. If you interchange these values, then the program will read
something else. This is very much important to write some comments in the input file

that what should be the first value and the other.

Once we read all the nine data for an orthotropic material then our purpose is to find the

compliance matrix. The component of compliance matrix are:
s11=1/E1,
s22=1/E2,
s33=1/E3,

s44=1/G23,



s55=1/G13,
$66=1/G12,
s12=mul/E1l,
s13=mul3/E1l, and
s23=mu23/E2.

When you put a semicolon at the end of the command, it will not pop up in the work

window, but when you do not put a semicolon, it will come outside.

You can see the output window, the reason behind that is whatever you are writing you
must check it. Sometimes, during writing a program instead of E2, you write again E1

here just by copying this may give you an error.

When you are checking for output of that, then you can say that ok this is wrong.
Whenever, you write 2 lines, 3 lines, or 10 lines programme, you must check it with the
help of a calculator or with the help of an excel file, do not assume that whatever you

have written will be correct.

Sometimes, when there is an error in the program it looks ok, but once you are going to

check it, you must check the input as well as output of the programme.
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= g (6)
S=[s11512513000;
s12522523000; el _
$13523533000; = (hl‘) =
00054400; e _
00005550; / els'?.__ S (,M) =
00000566 L 1-;_29 /
a2 yaz= 0% »
v CEinv(S); s1=1
c11=C(1,1) _e|lse o
c2=C(1,2) / g—;ﬂ/lsol‘ !
c13=C(1,3) _;=c_.t_>s(a*_1)
€22=C(2,2) o 1=sin(a*j)
€23=C(2,3) end
33=C33) end Cno
c44=Cl84) / _
¢55=C(5,5) /’CZ=cl'c1 4 Ci=
66=C(6,6) s2=s1*s1, ne S Sv
3=c2*c Y
'$3=52*s1 Sw'Q

cd=c2*c2
sd=52*s2

We have obtained the compliances of the matrix, then we can arrange them inan S



matrix.

These are the components.

S=[s11512513000;
s12 522 s2300 0;
s13s523s33 000;
000s4400;
0000 s55 0
00000 566;]

Because, in MATLAB you can arrange that in that 0, 0 and all these things say complete
matrix form like this and you can write a subroutine also that you can arrange that s11.
You first say that S is a matrix: S(6,6) then you can assign the elements over there like
this S(1,1), S(1,2), S(1,3), and so on.

Writing a code has many ideas you can use in many ways because in MATLAB this is

possible.

If sometimes these kinds of things are not possible, then we have to write in Fortran, in
an anivental way like this. You assigned a 0s matrix of 6 by 6, there will be a 6 by 6

matrix which is having all 0s, and then you can assign, the nonzero elements of that.
The next is to find the stiffness C=inv(S) and assigning that
c11=C(1,1)

c12=C(1,2)

c13=C(1,3)

c22=C(2,2)

c23=C(2,3)

c33=C(3,3)

c44=C(4,4)

c55=C(5,5)

c66=C(6,6).

Now, we have to find the transformation required because when we go for fibre angle, it



is different, it is not O, if it is 90, then we need to transform it.

At any angle, we have to transform this stiffness and compliances matrix, for that

purpose this is the for loop.

In MATLAB for loop means:

forj =90, if j =0, then, c1=1 and s1=0.
Else if j =90, then c1=0 and s1=1.

Here, | have done for j=90, this can be inputted through the input file, in a hard way. But
if 1 do it for 30, 60, it will go to this loop:
a=pi/180, c1=cos(a*j), sl=sin(a*j).

J for the present case | have written 90, but you can give 30, 60. So, it is in hard form.
This value j=90, we can assign as 6. So, € we can read through the input file, the angle,
or inside the fiber. We can put 8 = 30°. So, here theta = 30°, c1 and s1 basically cos and

sin is evaluated.

(Refer Slide Time: 25:07)

L

{e{{=’c4/*c11+2*cz*s2*(c12+2*c66)+s/4'c22
A

bc12 = CZ*STHCTTHc22-4*c66)+(sd+c4)*c1
bc16 = c3*s1*(c11-c12-2*c66)+c1*s3*(c12-c22+2*c66)
bc26 = c3*s1*(c12-c22+2*c66)+c1*s3*(c11-c12-2*366)
bbb = c2*s2*(c11-2%c124c22)+(c2-52)*(2) *c66
bcl3 = c2*c13+s2%¢23

bc23 = s2*c13+c2*c23

bc36 = c1*s1*(c13-¢23)

bc33=c33

bedd = c2*c44+52*¢55

bed5 = c1*s1*(c55-c4d)

bS5 = s2*cdd+c2*c55

-[bcll bc12 bel3 00 bels;
bc12 be22 be23 0.0 be26;

be13 be23 be33 00 be3s;

0 0.0 beadbet50;

0-0 0 beA5hes50;

bc16bc26 bc36 0 0 bebb;)

T G Cy O Cig
o&aw

&

Now, for the transformation we need at least up to cos* @ and sin*@. So, cos® @, sin® 6,

cos® @, sin®@, cos* @, and sin*@.



This is the nomenclature:

c2=cl*cl,

§2=s1*s1,

c3=c2*cl,

§3=s2*s1,

c4=c2*c2,

S4=52*s2.

Instead of writing cos and sin, we have written c1 and s1.

cl=cosd and sl =sind.
Then the transformation; here, bc11 = C,,. So, we have written bc11.

bcll=c4*cl1+2*c2*s2(c12+2*c66) +s4*c22,
The transformation of this formula, if | write in explicit form is

C,,=co0s" 6C,, +2c0s’ @sin® G(C,, + 2XCy) +5in* 6C,,.

These formulas are given in any theory of a plate book or mechanics of composites.
There you can find the transformation formula and you have now written it in a code

form.
Similarly, bc22 = C,, .
Here, bc22=s4*c11+2*c2*s2(c12+2*c66)+ca*c22.

Instead of a cos, there will be sin and instead of a sin there will be cos, here the

placement of sin and cos is changed now.

The other elements will be evaluated:
bcl2=c2*s2(cl1+c22-4*c66)+(s4+c4)*cl2;
bcl16=c3*s1(cll-c12-2*c66)+cl*s3(cl2-c22+2*c66);
bc26=c3*s1(c12-c22+2*c66)+c1*s3*(cl1l-c12-2*s66);

bc66=c2*s2*(c11-2*c12+c22)+(c2-52)"(2)*c66;



bcl3=c2*c13+s2*c23;

bc23=s2*c13+c2*c23,;

bc36=cl*s1(c13+c23);

bc33=c33,;

bcdd=c2*c44+s2*c55; bcd5=c1*s1(c55-c44);

bc55=s2*c44+c2*c55.

A generalized orthotropic material after the transformation is obtained.

In MATLAB, whatever elements are 0, | have put directly 0 here and developed a matrix
BC1. C, is now a matrix which is written like this, having 6 components and then

compiled.

BC1=[bcl1bcl2 bel3 0 0 bcl6;
bcl2 bc22 be23 0 0 be26;
0 0 O bc33 00 bc36;
0 O O bc4d bcd5 0
0 O O bc45 bcb5 0;
bcl6 bc26 be36 0 0 be6b; |

If it is not in MATLAB, you write in C or Fortran, then you cannot use this kind of
function, you have to first define a matrix and its size and then its nonzero components,

otherwise, you can say that all are zero.
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BS=inv(BC1) “
bEt=1/8s(1,1)V
bE2=1/85(2,2)
bE3=1/85(3,3) /
bG23=1/85(4,4) /"
bG13=1/8S(5,5) /'
bG12=1/85(6,6)
bmulZ:-bEl"BS(l,Z)//
bmul3=-bE1*BS(1,3)
bmu23=-bE2*B5(2,3) 7

b *

And then BS = S ; BS=inv(BC1).

w\

C1111=bctl
C1122-bc12
n1=cun

C1133=bc13
(3311=C1133

C1112=bc16
C1211=C1112
€2222=bc22

(2233=bc23
(3322-C2233

€2212=bc26
C1222=C2212

(3333=hc33
(3312=bc36
C1233=(3312

C1212=hc66
C1313=bc55

C2323=bcdd

(3232=C2323

C1332=bcd5
(3213=C1332

If somebody is interested in bEL. Instead of that E bar sometimes we are interested in the

transformed engineering constant then directly you can use from there

bE1=1/BS(1,1),
bE2=1/BS(2,2),
bE3=1/BS(3,3),
bG23=1/BS(4,4),
bG13=1/BS(5,5),
bG12=1/BS(6,6),
bmul12=bE1*BS(L,2),
bmu13=bE1*BS(L,3),

bmu23=bE2*BS(L,3),

Ultimately, we can assign, c11, c1 2, and so on. The reason behind that is if you want to

develop a model in abacus or Ansys. if you write an orthotropic material, they want data

in a form like this.

C1111=bc11



C1122=hc12
C2211=C1122, and so on.

From this program, you can get all the material property and directly you can feed there
0° material property, 90° material property, or 30° material property. Definitely, in that
software there are the options that first give a value means 0° material property.

And then they have an angle transformation. This is a very simple program you can use

for directly using the material property.
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BC=[C1111C1133C1122 0 (1112 0 ;
(3311(3333(3322 0 (3312 0 ;
C2211C2233C€2222 0 (2212 0 ;
00 0 CI3130 (1332
C1211C1233C1222 0 C1212 O ;
00 0 (32130 (3232

end
fprintf(foutl,\n %12.8e %12.8¢ %12.8¢ %128¢ %12.8¢
%12.8¢'BC')

felose(finp);
felose(fout1);

Finally, C or BC is written here and this is the output having 6 values in a line.

BC =[C1111 C1133 C1122 0 C1112 O;

C3311 C3333 C3322 0 C3312 0;
C2211 C2233 C2222 0 C2212 0,
0 0 0 C1313 0 C1332
C1211 C1233 C1222 0 C1212 O;
0 0 0 C3213 0 C323%]

I would like to share one output file with you. So, you see the stiffness of 30.
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| am sharing the file. If you have provided the 30° angle then minus 30° and 90°. You can
get all the stiffness coefficients and it is written in long e format you can see that this is

very much required.

You can directly use these material properties for your experimental purpose. For
revaluing any property, these types of small codes are required, and even for developing

a code, we require all these properties and the input file you can see that stiff.in. | am



also sharing the input file.
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gt ~ -8 x
e G6 Fomit Y P

93
1818 19,53 10,38 2878 7,173 1,178 .28 .28 .33

[+

You can see that it is telling that we have to give first 9 constant and 181, each material
properties are given that graphite-epoxy composes it 181el, 181e2, 181e3 and so on.
These properties will be used to transform 30°, -30°, 90°, whatever you want to do.
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n1=fscanf(finp,'%d',1)
n2=fscanf(finp,'%d',1)
% defining length and width of
[SAB]=fscanf{finp,'%IE",[n1]);
JR7SAB(1); % lenght of plate

R
(B=5AB(2); % width of plate
S=SAB(3); % thickness to lenth ratid
/
N=SAB(4); % number of layer.””
_VQ=SAB(5); % non dimension factor

- n3=fscanf(finp,'%d",1);

A
[Mat1, count]=fscanf(finp, %IE',[n3]); 1 9 - | (o
E:Matl(l,l)/YO;V @ 5 o 3)‘ (o \D) 7(|D
E2=Mat1(2,1/7¥0; &

E3=Mat1(3,1)/Y0; g <
623=Mat1(4,1)/Y0; |8

G12=Mat1(5,1)/Y0

613=Mat1(6,1)/Y0;

mu12=Mat1(7,1)/Y0;

mu13=Mat1(8,1)/Y0;

mu23=Mat1(9,1)/Y0;

(N

Now, let us know, how to write a code for the shell case. First, I will explain up to the
shell constitutive relations. 1 will explain the basic terms. Later on, you can make bigger

code and more complex ones.
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lc

format long e

ifile=input('Give the input file name:','s’);
i=findstr(ifile,".");

file=ifile(1:1);

inpextn='in";

outextl="txt';

outext2="ctl’;

ifile=streat{file,inpextn);
ofilel=strcat(file,outext1);
ofile2=streatfile, outext2);
finp=fopen(ifile,'r'); %opens input file
fout1=fopen(ofile1,'wt'); %opens result file
fout2=fopen(ofile2,'wt"); %opens result fil

Following first 10 lines we will copy from the previous code as it is.
clc

format long e

ifile=input(‘give the input file name’,’s’);
i=findstr(ifile,’.”);

file=ifile(1:i);

inpextn="in’;

outext]="txt’;

outext2="ctl’;

ifile=strcat(file,inpextn);
ofilel=strcat(file,outextl);
ofile2=strcat(file,outext2);
finp=fopen(ifile,’r’);%opens input file
foutl=fopen(ofilel,’wt’);%opens result file

fout2=fopen(ofile2,’wt’);%opens result file



Then, we can start writing. Now, | have written the comment over here that is very much

important.

Whenever you write a code, if you do not write a comment even for yourself, after one or
two years, you will not understand your code. You can have two copies in one you can
write the comments so that you can understand the code later on. For confidentiality or
some other point of view, you can delete those comments before giving to somebody.

We should write the comments unless it is very confidential if you do not want to give

your data to someone. but if you are writing a general program then you should write a
comment, it will be helpful for you and for others also. So that anybody can understand
that code.

In this slide, the very first comment is % defining the length and width of the plate.
Instead of a plate, we write %defining the length and width of a shell. a will be the length
of the plate, b will be the width of the plate. Instead of *a’ let us say, R instead of ‘b’ let

us say 6. Instead of

a=SAB(1);%length of a plate

b=SAB(2);%width of a plate

We can say,

R=SAB(1);%mean angle of a shell

0=SAB(2);%span angle of a shell

You can write these comments. R/h is the thickness of the length ratio.
S=SAB(3); %thickness to length ratio

N=SAB(4);%number of layers, we want to give that how many layers are in that shell 1,

2,4, 6, 10, then the most important command is Y0= SAB(5);%non dimension factor.
In the previous lecture, | have explained that non dimensionalisation constant.

We have to find non dimensionalisation factor, then n3=fscanf{(finp,’%d’1); some other

parameter for this reading a matrix
[Matl,count]=fscanf(finp,”%IE’,[n3]); it is having 9 components.

E1=Mat(1,1)/YO0;



E2=Mat(2,1)/YO0;
E3=Mat(3,1)/YO0;
G23=Mat(4,1)/Y0;
G12=Mat(5,1)/Y0;
G13=Mat(6,1)/Y0;
mul2=Mat(7,1)/YO0;
mul3=Mat(8,1)/YO0;
mu23=Mat(9,1)/YO0;.

Now, it is just becoming a number and its order is within or less than 100. It may be 20,
30 not more than that and then it may be 1 or 0.1. It will be easy to work with these
things, instead of working with that 10°x10°. If we divide it by, let us say 10°x10°, it
becomes 1 and if it is 180, it becomes 18. We can work with these numbers easily. This
is the very important concept of non dimensionalisation, but you have to do it very

carefully.

| would like to say that if you do not do other commands at least do the non
dimensionalisation of material properties which is causing the main factor and once you
get the results, what will be the factors coming up there? You have to multiply with that

then only you can match with your results.

In the C software, abacus or Ansys, let us say, displacement is coming 2.2169 X 107,

but in your program displacement may be coming that 5.246 X 107°.

If you do the non dimensionalisation then you have to multiply with that and then only
you can match with this. So, the factor with which you divide it you have to multiply it

there to get the final solution.

Sometimes students say that their results are not matching. I find that they have non
dimensionalised like this, but comparing the results with that. This abacus or Ansys has
written by a very good programmer, these are very generalized ones. Whatever we write

in our code we have to convert it back or you have to divide it by this.

So that we can match our results in that subroutine, to know what is going on inside the



code. But in our program, we know that we have divided this, so we have to take care.

Through the governing equation, you can check out how it is moving ahead.

(Refer Slide Time: 36:01)

/ v % Calculation of reduced stiffness layerwise
/IAng]=fscanf{finp,'%IE',[N]);% information of layers

_Athl=fscanf(finp, %IE',[N]); ngjg

/P=fscanf(finp, %d.1) ¢ 7 R 0
Jth(1)=05" A S/

S AV tr
s - $55-1/G13;
o kq{N v $66=1/G12;

‘/m)ﬂh(r)*fl % calcuating the layerwise thickness .

i’ Mﬁ(k}mh(kn y s12=-mul2/EL; S 7.
nd SN s13=-mul3/EL; lz-M
o $23=-mu23/E2; C=inv(S);
z’th‘rC #*h % now calculation of z coordinates ¥ V4 c11=C(1,1);

S=[s11512513000; ¢12=C(1,2);
512522523000 a3=C(13);
s13523533000; €22=C(2,2);
000s4400; €23=C(2,3);
0000s550; 33=C(3,3);
00000566 c44=C(4,4);

¢55=C(5,5);
x (Z/ﬂ WA ce6=Cl66)

Y
2w

The next is the fiber angle: the angle fibers are making with respect to &. For each layer
there will be one angle. So, this information is read through here:

[Ang]=fscanf(finp,”%IE’,[N]);%information of number of layers.
The @ is also read through here:
[th]=fscanf(finp,”%IE’,[N]);

Then the loading information will be P=fscanf(finp,’%d’,1);.

Zth(1)=0.5, then thickness can be find just like S = % .

Therefore, from here h = g

We may provide the total thickness or inside that we may provide the thickness of each
layer.

Zth(k+1)=th(k)+zth(Kk), here the thickness of the each layer is calculated.

Therefore, thickness of the each layer for k=1:1:N and

Lth(k)=th(k)*h%calculating the layer wise thickness.



You have given the thickness of the N X h. It tells you the layer wise thickness and then
the coordinate of that. - 0.52 + the layer thickness, ZK , ZK + 1 and so on, it is arranged

in a vector form

The thickness of z coordinates is calculated like here:
zthf=zth*h%now calculation of z coordinates. zth is a column row vector.
In this way, we can calculate the compliances like this:
s11=1/E1;

§22=1/E2;

$33=1/E3;

s44=1/G23;

s55=1/G13;

$66=1/G12;

s12=mul2/E1,

s13=mul2/E1,;

s23=mul2/E2;

S matrix and C matrix. Sometimes, we require formulation of C and sometimes

formulation of S
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% new materix Qm is defined which stored the data layerwise
Qmb(1,1,i)=Q(1,1)*ca+2*(Q(1,2)+2*Q(3,3))*c2*s2+Q[2,2) *s4;
Qmb(L,2,=(Q(T,1}+Q(2,21-4*0(3,3])*s2*c2+Ql,2)cd+sd); @H
Qmb(2,2,i)=Q(1,1)*s4+2%(Q(1,2)+2*Q(3,3))*c2*s2+Q(2,2)*c4; Cﬁb
Qmb(1,3,i)=(Q(1,1)-0(1,2)-2*Q(3,3))*s1*c3+(Q(1,2)- v
Q[2,2)+2*Q(3,3))*s3%c1;

Qmb(2,3,i}=(Q(1,1)-Q(1,2)-2*Qf3,3)) *s3*c1+Qf1,2)-

Q(2,2)+2*Q(3,3))*s1%¢3;

Qmb(3,3,i)=(Q(1,1}+Q(2,2)-2*Q(1,2)-

2*Q(3,3))*s2*c2+Q(3,3)*(s4+c4);

end

Qmb

% plate stiffness matrix

Then, we have reduced stiffness,

% new matrix Qm is defined which store the data layer wise

Qmb(L,1, i)=Q(1,1)*ca+2*(Q(1,2)+2*Q(3,3))*c2*s2+Q(2,2)*s4;
Qmb(L,2,i)=(Q(L,1)+ Q(2,2)-4*Q(3,3))*s2*c2+Q(L,2)*(c4+s4);
QMb(2,2,i)=Q(1,1)*s4+2*(Q(1,2)+2*Q(3,3))*c2*s2+Q(2,2)*c4;
Qmb(1,3,1)=(Q(1,1)-Q(1,2)-2*Q(3,3))*s1*c3+(Q(1,2)- Q(2,2)+2* Q(3,3))*s3*c1;
Qmb(2,3,)=(Q(1,1)-Q(1,2)-2*Q(3,3))*s3*c1+(Q(1,2)- Q(2,2)+2* Q(3,3))*s1*c3;

Qmb(3,3,i)=(Q(1,1)+ Q(2,2)-2* Q(1,2)-2* Q(3,3)*s2*c2+ Q(3,3)* (s4+c4);
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9AIJ(1,1)=Qmb(1,1,1)*0.001
All =zeros(3)
DI = zeros(3)
/on =1:1:3 /
for j=1:1: 3

DIJ(i, ]):61]“+(me(| JK)*fac)/3;
nd e —
end
g
All
Dl

Ek=1 N
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First, we have to define what is Q1, Q2, and Q3 and then the transformation of those

matrices.

Now, you have to find the matrix AlJ, BIJ, and DI1J. This is the subroutine:

%A1J(1,1)=Qmb(1,1,1)*0.001,
AlJ=zeros(3),

DlJ=zeros(3)

For i=1:1:3,

for j=1:1:3,

for k= 1:1:N,

I have written this for a plate, Al, A2, A3, and so on.

Here, A; can be written in three layers.

Aj = Qij (Zz - Zl) + Qij (Zs - Zz) + Qij (Z4 - Zs)

First layer is Q;(Z,-Z,),

Q;(Z;—2,) is the second layer, and



Q;(Z, —Z,) is the third layer.

First, if you calculate then you have to add it. Next time when it comes in a loop, we add

this factor:

Qmb(1,j,k)*(zthf(k+1)-zthf(k)),

Therefore, A(i,j)=AlJ(1,j)+Qmb(l,j,k)*(zthf(k+1)-zthf(k));.
Then a factor for this will be:

fac=zthf(k+1)"3-zthf(k)"3.

Then, DIJ(1,j)=D13(1,j)+(Qmb(l,j,k)*fac)/3

In this way, we can write the A;, By,

and D;.
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5'| = @22 - Bt 9‘21)/’22; 3. :'(AW“EWTB‘N YR?
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¥ -
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If we know A;, B, and D,

ij? ij?

(Azz o I§22 + [_)22)
R2

then you can define the f matrix f,, f,, f,, and so on. You

cansay f, =




you can define these constants, once layer-wise is over. This will be a number, all

constants you can define.
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~yrd Equakion
M@,o _&9 = 0
= 2
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Ultimately, after obtaining the value of f,, f,, f,, we have to come to matrix K. Based on

the simply supported boundary condition, you have to multiply with this and define now

another matrix K 11:

2
Ky=-nN"fi+1,, Kp,=-K,=

>
=4
w

You can write that K matrix K (1,1), K (1,2) like that. You can say that K,,, K,
ultimately, make a big matrix wherever like this and finally, K inverse P will give you

the displacement field U =[K] " P

In this way, one can do the coding. The coding requires expertise, but I have just given a
brief idea that how we can move ahead with the basic steps, and later on, you can write a
big code. There may be after finding, there are many more steps to find the

displacements at every z coordinate or at every theta value. One can find it.

With this, I end this lecture. In the next lecture, | will explain the finite shell formulation,

developing a governing equation for a finite shell and the solution.

In the infinite shell, the solution, I gave is in sin and cos, but for the finite case, there will
be three-four cases: the axisymmetric case, antisymmetric case, the journal bending case,

etc. 1 will explain those things in the coming lectures.

Thank you very much.



