Theory of Composite Shells
Dr. Poonam Kumari
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Week — 04
Lecture — 03
Workout problems

Dear learners welcome to lecture-03 of week-04. In this lecture, | shall do some more

formulations for the special cases of the shell of revolutions. | have solved the problem
of a cylindrical shell, special cases, spherical shells, or conical shells. But in the initial
lectures, where | said the surface of revolution, several shell geometries can be formed

with the general formulation.

If we can develop the governing equations for the shell of revolution, then those set of
equations or the solutions are valid for all kind of shells which can be generated through
the shell of revolutions. In week-03, we have developed the governing equations in a
general form doubly curved shell. Then in week-04, lecture-01 and lecture-2, | have

derived the special cases like membrane theory of shells.

If you see in the literature, you will find the shell theories, after the initial formulation
can be divided into two categories, one is membrane theory and another is the moment
theory. Some problems can be solved using the concept of membrane theory and some

problems can be solved using the concept of moment shell theory.

In the membrane shell theory, we assume that there is no bending and no shear, only
three equations come, shear force and moments will be 0, and only in-plane stress

resultants like N;;, N,,,and N, plays in the membrane shell theory.

In the moment shell theory, the effect of bending is taken care of, and the moments are
considered, and it is slightly typical. Already, in the week- 04 lectures, | have explained,

when to use the membrane shell theory and the moment shell theory.

In this lecture, 1 shall explain in a slightly more elaborative way, first the membrane shell

theory for a shell of revolution, and one problem will be solved, and later the formulation



for a moment shell theory will be done.
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We will do an analysis of the shell structures by membrane shell theory, moment theory,
and combined shell theory also because in a structure, you will find that there are some
places where membrane shell theory gives accurate results, and some places where we
have joints and a change in curvature or thickness, at those special locations moment

shell theory works.
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Governing equations for membrane theory of shells:



1 .
ai_a[_N“al’ﬂ +(Nay) , + Ny, +(N12a2)ya}+ g, =0 equation(2)
2
Nll N22 H
-—=—-—==1-0,=0 equation(3
( R R, Qs q )

These are the general equations for a doubly curved shell. These are for the case of

membrane theory of shells, but if we are interested to convert these equations for the

shell of revolution, for that case, r is taken as R?sin & . And the change of r with respect

to ¢, g—; =R, cosg. This already we have discussed in previous lectures, a, =R, and
a, ="r.
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And if we substitute all the parameters here, then finally, it becomes an equation like this

N, =N,,=S.

In the membrane theory of shells, we assume that the shell is very thin, N,,and N,, are
considered the same. In most of the book it is represented by S, or we can say shear in-

plane stress resultants or N,, or N,, .

Here, a=¢ and f=6.



If we take into consideration these parameters and substitute it in those governing

equations for the membrane theory of shells, that will lead to these three equations.

oS 0 :
R1£+8—¢(rN1)—N2Rlcos¢+erl=0 equation (1)
N, 10, :
+——(r°S)+r =0 equation (2
AT a¢( J+1Rp, =0 equation (2

KN, +x,N, + p, =0 equation (3)

Nl

In the last equation, x;N, = R
1

1 1
— =k, and —= k,,
RZ

Therefore, (kappa 1) «, and (kappa 2) «, are written here.

One more change here is that initially we were using q,, g,, and g,, whenever | go for a
book of a thin elastic plate and shell they have used, p,, p,, and p, instead of

,, d,, and g,. To keep consistent with the literature or books I use p,, p,, and p,, but

do not get confused as these are the same. Here, we obtained three equations, and
equation (3) is called the Laplace equation. We want to know the solution to this

equation.
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The final expression is written in terms of r, you know that r is equal to R, sing, if you

further substitute those equations, then the final expression will look like this.

&3 N, + M-, cotg+ 1 S,,+p,=0 equation (4.1)
R - R, R,sing

#_Nzﬁis,aj 2COt¢8+p2—0 equation (4.2)
R,sing “ R, R,

N .
—14+—24p,=0 equation (4.3
R R P, q (4.3)

. : : . N .
If we substitute equation (4.3) in equations (4.1) and (4.2), that —% can be written as:

2

N N R
R_zzz_ps_?ll and N, =-R,p,——%N,

We can substitute this < N, here in equation (4.1) and (4.2) in terms of N,. These are the
equations.

1 1 1 .
—N,;,+N,| —+— |cotg+ S,,=—p,— p,cot equation (4.4
R M 1(& RZJ O Raing S0 = TP PsCOlg equation (4.4
—#_ N, , +i8,¢ 2COWS _ 1 +p;y— P, equation (4.5)
R,sing ™ R, R, sing '
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Now, we can define new variables. why are we doing these things? We want to convert
all these three equations either into two variables or a single variable so that we can get
the solution easily. We can solve these equations no problem, but we need to find some
technique that is well-explained in the book “Thin Elastic Plate and Shells” by Theodor.

Already, | have given all these things in the references. We can assume:
N, = Lz S= %

R, sin® ¢ R,”sin“ ¢
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If we use this expression and substitute it into this, ultimately, these three equations can

be converted into two equations like this.

R?_ Sin ¢U iy +V 9= —( p3 COS¢+ pl sin ¢) R; SinZ ¢ equation (47)
s|F:|2¢U oV g (pg,,g + p, sin ¢) F21R22 sing  equation (4.8)

Finally, we get these equations (4.7) and (4.8) having variables U and V, then we take
differentiation with respect to @ in equation (4.7) and in (4.8) equation with respect to

¢ . And subtracting the second equation from the first equation will give you this single

equation.

1 R?sin ¢ 1 B _
RR, sin¢( R U’¢j¢+ Rlsinz ¢U'ea— F(6,9) equation (4.9)



We can further deduce it in terms of a single variable, U,, and U, ,,, variable V can be

eliminated from those equations. Then, this equation can be solved using the standard
techniques. And once we know variable U, we can find the variable V by substituting it
in equation (4.7) or (4.8). And then we can find the normal stresses and shear stresses. In

this way, we can solve the problems.
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Where F(6,¢) is a loading function and that can be represented as:

1 S . L
F(9’¢):W(stm ¢(pscos¢+plS|n¢))’¢+R2(p2ﬂsm¢ ps,a@)-

This is the way the shell of revolution problem is solved. If you substitute the real values
of R, R,,and ¢, then you can get the solution of all kinds of shells which are developed

using the shell of revolution.
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Now, there is another case, for the symmetrically loaded shell of revolution which means
the shells are generated through the revolution. They are symmetric around the 4, and if
we assume that loading is also symmetric, for that case it is not dependent on

6, p,=0. Further, shear components N, =N,, =0.

If this is the situation, then from that equation, (N,rsin ¢)’¢ can be represented as:
—rR,(p,sing+ p,cosg).

If you integrate with respect to ¢, then,

(N,rsin ¢)ZJ = —IrRl( p,sing + p, 0055)d¢7

And ultimately, N,rsing will be:

—I rR,(p,sing + p,cosg Jdg + NSbsing, some integrating constant.

From here, we can find out N, for an axially symmetrically loaded shell, where N, is

the applied in-plane stress at the boundary.
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Ultimately, N, can be represented like this.

1

~ N/R7 sin® ¢, _
R,sin® ¢

[}
IRiRZ (p,sing + p,cosg )singdg + R,sin? ¢

%

For an open kind of shell, when r, =band b = R} sing, , where then R} is the principal

radius of curvature at ¢ = ¢, . For the closed case, some of the terms are going to be 0.
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Let us solve a problem, a cylindrical tank with a bottom in the form of an ellipsoid of



revolution- axisymmetric loading. You can see, here, the bottom part is ellipsoidal in
shape and the upper part is a cylindrical tank. It consists of two shells - one is cylindrical,
another is an ellipsoidal shell. The membrane solution will be valid up to these lines
because at the junctions there will be a drastic change in curvature and the solution will

not be valid.

We assume that it is filled with water or some liquid and the height of the ellipsoidal

cylinder is b, the length of the cylindrical cylinder is L, and the vapor pressure is p°, and

that distance is denoted as x°. And the origin is here. The cylindrical tank is filled, the

specific weight of a liquid is y, .

We can say that the total load or a total pressure is acting at any point can be represented

p [p*+7/,(L—x*)]R.

First, we will discuss, the cylindrical shell and then the ellipsoidal shell. When L =2x",

then p“=0, only vapor pressure is there, but after (L — x*) , pressure will follow this

rule.
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In the cylindrical portion of the tank R, =0 and R, = R. The very first equation is:



&+&+ p, =0

Rl RZ

N, .
Here, R, =0, this ?1 will not participate.
1

Therefore, &4— p, =0, itis valid for when x> x".

The distribution of N, for the cylindrical portion can be represented like this.

N, = R[p*ﬂ/l (x—x*)]
In the previous figure, the distribution of N, is varying linearly as L is increasing up to

here, but it is constant over the cylindrical portion where hydrostatic pressure acts after

the force. And N, varies linearly till the bottom of the tank.
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Now, we want to find the value of N,, in the second equation, N,, =0, we are

substituting the value of N, ,, I will go back to slide at 6:10, equation (4.1), S = 0.

2cot¢5S 0.

For axisymmetric, this portion L Syt————
Rl RZ

N,, +p, =0, it will identically satisfy, so we will directly go to the first equation. N,



can be found by solving this equation (4.1).

| am directly writing that N,, can be represented as:

* G
Nll — p_R+_z
2 2rr

Where, Gy contains two parts G, and G,
G, is the self-weight of the tank per unit length. In the cases, where self-weight is
neglected, there we will not consider G, .

L
If the self-weight is considered, then G, = Iqtdx

Here, g, is the self-weight per unit length. We can find these things. Then, G, is the self-

weight of the liquid filling the cylinder. If the tank is supported at the junction with the
lower bottom, then N 1 can be represented as:

(Refer Slide Time: 15:00)
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If g, is constant, then finally integration can be solved. | would like to say that

circumferential stress N,; will be:



PR gX
2 2zr

If the tank is filled by gas only, then the circumferential force N, is always greater than

the meridional force. If we neglect the self-weight, then,

9% =0 and N, =2N;.
2nr
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Now we are talking about the stresses in the ellipsoidal portion, for that, first, we have to

find the total load acting in the third direction. p, is:

¢
P +7, [L+ I R, sin ¢d¢J equation (4.83), length multiplied by y, will give you the total
%

pressure acting on that tank.

The principal radius of curvature for a shell of revolution is given in terms:
R = Ryl+y 4 R Ryl+y
_—% a 5 =—.
(1+ysin2¢) 1+ysin’ ¢

2

Where 7=%—1,



b is the length of a semi-axis, and R is the radius of the cylinder. In this way, the radius

of curvature is known to us.
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And then we can find the value of N, by substituting in the first equation.

m+&+ p,=0. R, and R, are known to us, we can find N, :

R R

N, =—R| p 47, | L— bcosg _Nle’
J1+ysin® ¢ R,

And ultimately, p, can be represented as:

bcos¢ ]

Py | Ll-——s
«/1+;/sm ¢
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If we substitute this expression using those governing equations, we have already found

these things. In the present case, some more terms come up as per the loading conditions

and the final expression of N, will be:

n *n0 0 @ain?2
pRz J'RR COS¢S|n¢[L—M]d¢T+(Nf—pszstm ¢0_

2 Rsm /1+ysin2¢ 2 ) R,sin*¢

R(p*+7L'-)+ W

Ny is 2 27R’

R) =R; ¢, :%; and V (volume of the ellipsoid) = %nsz.

N,and N, are also obtained for the ellipsoidal case. Substituting the actual value of

R, 7., we can find the stresses in the cylindrical tank.
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The final expression will be:

N = Rz(p*+7LL)+ 7R 1+cos’g
' 2 3R, sin’ ¢ (1+v Sin2¢)%

When the cylinder part is transitioned, into the ellipsoidal part, then, the meridional
curvature changes abruptly. This zone is called the edge effect zone. When the
cylindrical portion is connected to an elliptical, this zone is called the end zone. In this
case, membrane shell theory does not give accurate results which means the membrane

shell theory is valid slightly away from that zone.

If you see, in this zone, we are not able to find the solution. And some high stresses or
bending moments present in this zone. And we should know for designing of this kind of
special case, it may crack from these joints. We have to find the moments and couples at

this joint, the moment theory of shells works in this field.

(Refer Slide Time: 18:56)
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It is observed that membrane theory alone cannot accommodate all the loads, support
conditions, and geometries in the actual shells. In general, the shell of revolutions
experiences both stretching and bending to resist an applied loading which distinguishes

significantly the bending of shells from the elemental behaviour of the plate.

If the shell of the revolution is subjected to a concentrated load or the boundary

conditions, its strength affects very significantly. Load carrying capacity affects when it
is subjected to bending effects.

(Refer Slide Time: 19:46)
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concentrated load is applied, which will cause a bending effect and a moment effect. And

you see at the axis these are clamped, flanges are there.

This is also called an edge effect or boundary effect. Then if a structure is made of a
composition of two or more shells of revolutions like previously, we have done that
cylindrical shell and ellipsoidal shell. Now, in this kind of container, where curvature
changes or thickness changes, this kind of bending stress may exist.

(Refer Slide Time: 20:30)
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If the material of the shell is ductile, then bending deformation decreases away from the
end and do not influence the load-carrying capacity of the shell structure. But if shell
material is brittle like a composite, then bending deformation remains proportional to the
applied load until failure, so it will cause a significant decrease in the load-carrying
capacity of the shell.

That is why, when we talk about a composite shell, most of the time we used to get the
solution means we do not go for a membrane theory of shells, or a moment we want to

solve a complete shell equation.

The reason behind that is in the composite shells, the very basic ingredient is the material
properties change abruptly from layer to layer. This change in material property and
poisson's ratio is different, cause deformation. Due to that, bending may take place. If it
is made of an isotropic material, then this issue is not there that means delamination may

take place.



So, for the case of a composite shell, preferably, we try to solve all the complete
equations, we do not simplify only using the moment shell theory or the membrane shell
theory. At the interfaces and the axis, these problems further enhance or amplify for the
case of composite shells.
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So, inthis case, « =¢ and B =6 . 1 would like to derive the first sets of governing
equations for the moment theory of shells, and then its solution. For the case of the shell
of revolutions, these parameters A =R, (¢#) , A, =R,(¢)sing , r=R,sin¢ are known

to you. First, we will find the linear strain-displacement relations for the present case.

(Refer Slide Time: 22:41)



g E\ < 1{7%—00)

2

L [ vy 4 U want)

€y -
~ PLSIh+
R A T
Q}Smc} &Sm%
|
Bz k[ 0ten]y
: w9
G :L—I Z(V,gsm‘ﬁ w,gg>~ml 4@@‘0@)
Rz‘?m% g
81012—(U,¢—W) :
& :#(v +UCOSg—Wsing);
22 RZS' & 0 )
o_ 1~ cosg 1
2= RY " Rosing Rysing
1
&, = {E(u+w,¢)} ;
¢
1 . cos
8;2ZW(V,BSIH¢+W,%)—WS§¢(U+W,¢);and
1 1 cosg ow 1 1 —Sin¢v, cos¢V

&, = ———W,,,——U,
¥ RysingR,singod R ¥ R Y R’ R,

These are the strain displacement relations for the shell of revolutions.
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(Nlesin¢)‘¢—N22Rlcos¢+ RN, , +QR,sing+0q,RR,sing=0 equation (1)
Nog-R+(R,SiNGNy, )  +N,R c0sg—Q,R sing+0,RR,sing=0 equation (2)
(QR;sing)  +(Q,R;) , + NiR, sing+ N,R;sing+q,RR,sing=0 equation (3)
(MR, sing) +M,R cosg+RM,, ~QRR,sing=0 equation (4)
My, R +(R,SingM, ) , —M,R cos¢—Q,RR,sing=0 equation (5)

These are the five governing equations, which contain all the variables all moments, and

in-plane stress resultants for the shell of revolutions.



In the previous case, when we are talking about the membrane theory of shells, we have
neglected the moments and shears. But now we have taken all the variables together, and

substitute the value of R, R,, a,, and a,
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Now, using the shell constitutive relations and mathematical simplification. Q, can be

expressed from equation (5) and Q, is expressed from equation (4). Substituting into the
first three equations, it reduces to three partial differential equations.

(N,R;sing)  —N,R cos¢—QR,sing+gRR,sing=0

(QR;sing) , + N;R;sing+N,R;sing+ ;R R, sing =0

(MR, sing) . +M,R, cosg—QRR,sing=0

A closed-form solution can be obtained for such cases, it is very difficult and more
complex.
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In the most general cases, the shell of revolutions under axis-symmetric load case, the
displacement along second interaction is 0, and N,,= Q, =M, = 0. If we assume such
cases, these three equations reduce like this. And the constitutive relations for the

isotropic case can be written like this.

Eh Eh
le(l_luzJ(gl"',ugz) sz(l 2)(62-1-#81)

M, =D(k +uk,) M, =D(k,+uk)

But you are aware that for the case of a composite, N, can be written as:

1 = Que, + Qné&, . For the elastic case, N;, N,, M,, and M, are written like this.

Where k; and Kk, are the curvature part of the strain displacement relations.
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Here, for the axis-symmetric case:

g =§(uw—w); &, :Riz(ucotgzi—w);

(u+w,).

__ 11 __ 1
k, = . {Ri(u+w,¢)} and k, = cot¢RlR

2

. u 1
And a new variable V = —l+—W,¢.

Now, we have now 12 equations.
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This further can be written in terms of actual components N, N,, M, and M, by

substituting all these things.

N, =B, [%(u,¢—w)+Rﬁ(u cot¢—w)},

2

N, =B, [i(u cot¢—w)+%(u,¢—W)]

1 M
M, = —D{avle—zvl cotd , and



1 U
M, = —D[R—V10°t¢+§V1,¢]

2
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Now, we have two displacements u and w, five stress resultants N,, N,, M,, M,, Q,,

and Q,. We have taken Q, =0, therefore, we have 5 strains and 12 equations. We can
solve a set of equations. In the 5th week, | will explain that if you substitute these

components N, N,, M, and M, into the basic governing equations.

These three governing equations can be expressed in terms of primary displacement
variables u, w, and V. These will be expressed like that. Three equations can be solved as
partial differential equations. one solution can be obtained if it is based on the boundary
conditions. The solutions can be expressed in terms of a trigonometry series or power

series or some other kind of a series and the solution is obtained.

From those solutions:

LN, 6Mm,
1max h h2

— NZ +6M2

02 max h h O-lmax

In this way, the stresses are obtained.
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We are assuming some other variables let us say V, and U = R,Q(¢).

Here Q, = 0, substituting this variable into the equations, ultimately, these three

equations will be converted into one equation:

%[(leingﬂQz cos@)r |, +(p,sing+ p,cosg)r=0.

N,sing+Q,cos¢ =—F(¢)

If we integrate with respect to ¢, that leads to this equation

Q¢
F(#)= [ Rr(p.sing + p,cosg)dg +C,

Q

Where F is the loading parameter.
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And from here, N, and N, can be written like this:

le—COt¢U— F(¢2) and szd—ui+ F'(¢2)
R, R,sin" ¢ dg R, R;sin“¢

- pst :

Finally, doing some mathematical simplifications, N, and N, will lead to two parameters

V and U. U is a 2 by 2 matrix. Simultaneously these two equations will look like this:
LU)+VvU =EhRV, +¢(4).

This is the value and this L is the differential operator, we can solve such kind of

system.

The purpose of describing these things is if we get the N, and N, , by substituting the

value of the radius of curvature R,, the loading parameter F(¢), and the value of U:
U=R,Q,.

We can get the expression of N, stress resultant in the first direction and the expression

of stress resultant in the second direction N, .

Similarly, once you can solve these stress resultants U and V, then by using all those

things, we can get all the moments and strains.



With this, the basic methodology is explained here. But when you are going to solve a

problem, depending upon the boundary conditions F (¢#) will be a different loading

parameter, the rest of the equations will remain the same. In week-05, lecture-01, I shall
explain the complete formulation from the scratch for a cylindrical infinite or finite shell,

their governing equations, and the solution techniques.

In these lectures, the basic equations in terms of stress resultants, there are some
problems in the shell theories that can be directly solved using the same stress resultant
equations. But in general, if we can convert into a primary displacement form this that is

the more general form, we can solve all kind of a problem.

The general approach is to convert into a primary displacement form, and then get the
solution for that. After that, we can get the stress resultants. With this, I would like to end

this lecture here.

Thank you very much.



