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Dear learners welcome to lecture-03 of week-04. In this lecture, I shall do some more 

formulations for the special cases of the shell of revolutions. I have solved the problem 

of a cylindrical shell, special cases, spherical shells, or conical shells. But in the initial 

lectures, where I said the surface of revolution, several shell geometries can be formed 

with the general formulation. 

If we can develop the governing equations for the shell of revolution, then those set of 

equations or the solutions are valid for all kind of shells which can be generated through 

the shell of revolutions. In week-03, we have developed the governing equations in a 

general form doubly curved shell. Then in week-04, lecture-01 and lecture-2, I have 

derived the special cases like membrane theory of shells. 

If you see in the literature, you will find the shell theories, after the initial formulation 

can be divided into two categories, one is membrane theory and another is the moment 

theory. Some problems can be solved using the concept of membrane theory and some 

problems can be solved using the concept of moment shell theory. 

In the membrane shell theory, we assume that there is no bending and no shear, only 

three equations come, shear force and moments will be 0, and only in-plane stress 

resultants like 11N , 22N , and 12N  plays in the membrane shell theory.  

In the moment shell theory, the effect of bending is taken care of, and the moments are 

considered, and it is slightly typical. Already, in the week- 04 lectures, I have explained, 

when to use the membrane shell theory and the moment shell theory.  

In this lecture, I shall explain in a slightly more elaborative way, first the membrane shell 

theory for a shell of revolution, and one problem will be solved, and later the formulation 



 

 

for a moment shell theory will be done. 
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We will do an analysis of the shell structures by membrane shell theory, moment theory, 

and combined shell theory also because in a structure, you will find that there are some 

places where membrane shell theory gives accurate results, and some places where we 

have joints and a change in curvature or thickness, at those special locations moment 

shell theory works. 
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Governing equations for membrane theory of shells:  



 

 

   

   

11 2 22 2, 21 1 12 1, 1, ,
1 2

11 1, 22 1 21 2, 12 2 2, ,
1 2

11 22
3

1 2

1
0 (1)

1
0 (2)

0 (3)

N a N a N a N a q equation
a a

N a N a N a N a q equation
a a

N N
q equation

R R

  

  

     
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 
    
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These are the general equations for a doubly curved shell. These are for the case of 

membrane theory of shells, but if we are interested to convert these equations for the 

shell of revolution, for that case, r is taken as 2 sinR  . And the change of r with respect 

to  , 
dr

d
 = 1 cosR  . This already we have discussed in previous lectures, 1 1a R  and 

2a   r. 
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And if we substitute all the parameters here, then finally, it becomes an equation like this 

x xN N S   .  

In the membrane theory of shells, we assume that the shell is very thin, xN  and xN  are 

considered the same. In most of the book it is represented by S, or we can say shear in-

plane stress resultants or 12N  or 21N .  

Here,    and   . 



 

 

If we take into consideration these parameters and substitute it in those governing 

equations for the membrane theory of shells, that will lead to these three equations.  

 

 

1 1 2 1 1

22
1 1 2

1 1 2 2 3

cos 0 (1)

1
0 (2)

0 (3)

S
R rN N R rRp equation

N
R r S rR p equation

r

N N p equation


 

 

 

 
   

 

 
  

 

  

 

In the last equation, 1 1N  = 1

1

N

R
,  

1

1

R
 = 1 , and 

2

1

R
= 2 ,  

Therefore, (kappa 1) 1  and (kappa 2) 2  are written here.  

One more change here is that initially we were using 1 2 3, ,q q and q , whenever I go for a 

book of a thin elastic plate and shell they have used, 1 2 3, ,p p and p  instead of 

1 2 3, ,q q and q . To keep consistent with the literature or books I use 1 2 3, ,p p and p , but 

do not get confused as these are the same. Here, we obtained three equations, and 

equation (3) is called the Laplace equation. We want to know the solution to this 

equation. 
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The final expression is written in terms of r, you know that r is equal to 2 sinR  , if you 

further substitute those equations, then the final expression will look like this. 

1 2
1, 1

1 2 2

2, 2

2 1 2

1 2
3

1 2

1 1
cot , 0 (4.1)

sin

1 1 2cot
, 0 (4.2)

sin

0 (4.3)

N N
N S p equation

R R R

N S S p equation
R R R

N N
p equation

R R

 

 









   

   

  

  

If we substitute equation (4.3) in equations (4.1) and (4.2), that 2

2

N

R
 can be written as: 

2 1
3

2 1

N N
p

R R
    and 2

2 2 3 1

1

R
N R p N

R
    

We can substitute this ‘ 2N here in equation (4.1) and (4.2) in terms of 1N . These are the 

equations. 

 

1, 1 1 3

1 1 2 2

1, 3, 2

2 1 2

1 1 1 1
cot , cot (4.4)

sin

1 1 2cot 1
, (4.5)

sin sin

N N S p p equation
R R R R

N S S p p equation
R R R

 

  

 




 

 
      

 

     
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Now, we can define new variables. why are we doing these things? We want to convert 

all these three equations either into two variables or a single variable so that we can get 

the solution easily. We can solve these equations no problem, but we need to find some 

technique that is well-explained in the book “Thin Elastic Plate and Shells” by Theodor.  

Already, I have given all these things in the references. We can assume: 

1 2 2 2

2 2sin sin

U V
N S

R R 
    
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If we use this expression and substitute it into this, ultimately, these three equations can 

be converted into two equations like this. 

 

 

3 22
3 1 2

1

22
3, 2 1 2

sin
, , cos sin sin (4.7)

, , sin sin (4.8)
sin

R
U V p p R equation

R

R
U V p p R R equation

 

  


  

 


   

   

  

Finally, we get these equations (4.7) and (4.8) having variables U and V, then we take 

differentiation with respect to   in equation (4.7) and in (4.8) equation with respect to 

 . And subtracting the second equation from the first equation will give you this single 

equation. 

2

2

2

1 2 1 1,

sin1 1
, , ( , ) (4.9)

sin sin

R
U U F equation

R R R R
 




 

 

 
  

 
 



 

 

We can further deduce it in terms of a single variable, ,U   and ,U  , variable V can be 

eliminated from those equations. Then, this equation can be solved using the standard 

techniques. And once we know variable U, we can find the variable V by substituting it 

in equation (4.7) or (4.8). And then we can find the normal stresses and shear stresses. In 

this way, we can solve the problems. 
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Where ( , )F   is a loading function and that can be represented as: 

    3 2

2 3 1 2 2, 3,,
1 2

1
( , ) sin cos sin sin

sin
F R p p R p p

R R
 

     


    .  

This is the way the shell of revolution problem is solved. If you substitute the real values 

of 1R , 2R , and  , then you can get the solution of all kinds of shells which are developed 

using the shell of revolution. 
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Now, there is another case, for the symmetrically loaded shell of revolution which means 

the shells are generated through the revolution. They are symmetric around the  , and if 

we assume that loading is also symmetric, for that case it is not dependent on 

 , 2 0p  .  Further, shear components 12 21N N  = 0.  

If this is the situation, then from that equation,  1 ,
sinN r


  can be represented as: 

 1 1 3sin cosrR p p   .  

If you integrate with respect to  , then,  

   
0

1 1 1 3sin sin cosN r rR p p d



        

And ultimately, 1 sinN r   will be: 

 1 1 3sin cosrR p p d     + 
0

1 0sinN b   some integrating constant.  

From here, we can find out 1N  for an axially symmetrically loaded shell, where 
0

1N  is 

the applied in-plane stress at the boundary.  
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Ultimately, 1N  can be represented like this. 

 
1

0 0 2

1 2 0
1 2 1 32 2

2 2

sin1
sin cos sin

sin sin

N R
R R p p d

R R






   

 
   .  

For an open kind of shell, when 0r  = b and b = 
0

2 0sinR   , where then 
0

2R  is the principal 

radius of curvature at 0  . For the closed case, some of the terms are going to be 0. 
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Let us solve a problem, a cylindrical tank with a bottom in the form of an ellipsoid of 



 

 

revolution- axisymmetric loading. You can see, here, the bottom part is ellipsoidal in 

shape and the upper part is a cylindrical tank. It consists of two shells - one is cylindrical, 

another is an ellipsoidal shell. The membrane solution will be valid up to these lines 

because at the junctions there will be a drastic change in curvature and the solution will 

not be valid. 

We assume that it is filled with water or some liquid and the height of the ellipsoidal 

cylinder is b, the length of the cylindrical cylinder is L, and the vapor pressure is 
0p , and 

that distance is denoted as 0x . And the origin is here. The cylindrical tank is filled, the 

specific weight of a liquid is l .  

We can say that the total load or a total pressure is acting at any point can be represented 

as: 

 p  lp L x R   
 

.  

First, we will discuss, the cylindrical shell and then the ellipsoidal shell. When L = 2x , 

then p
= 0, only vapor pressure is there, but after  L x , pressure will follow this 

rule. 

(Refer Slide Time: 12:30) 

 

In the cylindrical portion of the tank 1R    and 2R R . The very first equation is: 



 

 

1 2
3

1 2

0
N N

p
R R

    

Here, 1R   , this 1

1

N

R
 will not participate.  

Therefore, 2
3 0

N
p

R
  , it is valid for when *x x . 

The distribution of 2N  for the cylindrical portion can be represented like this. 

 * *

2 lN R p x x   
 

 

In the previous figure, the distribution of 2N  is varying linearly as L is increasing up to 

here, but it is constant over the cylindrical portion where hydrostatic pressure acts after 

the force. And 2N  varies linearly till the bottom of the tank. 
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Now, we want to find the value of 1N , in the second equation, 12N  = 0, we are 

substituting the value of 2,N  , I will go back to slide at 6:10, equation (4.1), S = 0.  

For axisymmetric, this portion 
1 2

1 2cot
,S S

R R



  = 0.  

2,N   + 2p  = 0, it will identically satisfy, so we will directly go to the first equation. 1N  



 

 

can be found by solving this equation (4.1). 

I am directly writing that 11N  can be represented as: 

11
2 2

Gp R
N

r


    

Where, G contains two parts qG  and lG  

qG  is the self-weight of the tank per unit length. In the cases, where self-weight is 

neglected, there we will not consider qG .  

If the self-weight is considered, then qG = 
L

t

x

q dx  

Here, tq  is the self-weight per unit length. We can find these things. Then, lG  is the self-

weight of the liquid filling the cylinder. If the tank is supported at the junction with the 

lower bottom, then N 1 can be represented as:  

0

1

2 2

x

t

p R
q dx

r



  . 
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If tq  is constant, then finally integration can be solved. I would like to say that 

circumferential stress 11N  will be: 



 

 

 
2 2

tq xp R

r



 .  

If the tank is filled by gas only, then the circumferential force 2N  is always greater than 

the meridional force. If we neglect the self-weight, then,  

2

tq x

r
  = 0 and 2N  = 2 1N . 
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Now we are talking about the stresses in the ellipsoidal portion, for that, first, we have to 

find the total load acting in the third direction. 3p  is: 

2

*

1 sinlp L R d




  
 
  
 
 

  equation (4.83), length multiplied by l  will give you the total 

pressure acting on that tank.  

The principal radius of curvature for a shell of revolution is given in terms: 

 
3

2
1

2

1

1 sin

R
R



 






 and  2
2

1

1 sin

R
R



 





 

Where 
2

2
1

R

b
   ,  



 

 

b is the length of a semi-axis, and R is the radius of the cylinder. In this way, the radius 

of curvature is known to us. 
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And then we can find the value of 1N  by substituting in the first equation. 

1 2
3

1 2

0
N N

p
R R

   . 1R  and 2R  are known to us, we can find 2N : 

* 1 2
2 2

2
1

cos

1 sin
L

N Rb
N R p L

R




 

  
      

    

,  

And ultimately, 3p  can be represented as: 

*

2

cos

1 sin
L

b
p L




 

 
  
  
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If we substitute this expression using those governing equations, we have already found 

these things. In the present case, some more terms come up as per the loading conditions 

and the final expression of 1N  will be: 

2

0 2* * 0
0 2 02 2

1 2 12 22
2 2

sincos
cos sin

2 sin 2 sin1 sin

L
Rp R p Rb

R R L d N
R R


 

  
  

   
         

 .  

0

1N  is 
 *

2 2

LR p L V

R

 




 ;  

0

2R  = R; 0  =
2


; and V  (volume of the ellipsoid) = 22

3
R b .  

2N and 1N  are also obtained for the ellipsoidal case. Substituting the actual value of 

2R L , we can find the stresses in the cylindrical tank. 
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The final expression will be: 

 

 

* 2 3
2

1 32
2 2

2

1 cos

2 3 sin 1 sin

L L
R p L R b

N
R V

  

 

 
 



 

When the cylinder part is transitioned, into the ellipsoidal part, then, the meridional 

curvature changes abruptly. This zone is called the edge effect zone. When the 

cylindrical portion is connected to an elliptical, this zone is called the end zone. In this 

case, membrane shell theory does not give accurate results which means the membrane 

shell theory is valid slightly away from that zone. 

If you see, in this zone, we are not able to find the solution. And some high stresses or 

bending moments present in this zone. And we should know for designing of this kind of 

special case, it may crack from these joints. We have to find the moments and couples at 

this joint, the moment theory of shells works in this field. 

(Refer Slide Time: 18:56) 



 

 

 

It is observed that membrane theory alone cannot accommodate all the loads, support 

conditions, and geometries in the actual shells. In general, the shell of revolutions 

experiences both stretching and bending to resist an applied loading which distinguishes 

significantly the bending of shells from the elemental behaviour of the plate.  

If the shell of the revolution is subjected to a concentrated load or the boundary 

conditions, its strength affects very significantly. Load carrying capacity affects when it 

is subjected to bending effects. 
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These are some examples of the shell though the boundaries are perfect, but a 



 

 

concentrated load is applied, which will cause a bending effect and a moment effect. And 

you see at the axis these are clamped, flanges are there.  

This is also called an edge effect or boundary effect. Then if a structure is made of a 

composition of two or more shells of revolutions like previously, we have done that 

cylindrical shell and ellipsoidal shell. Now, in this kind of container, where curvature 

changes or thickness changes, this kind of bending stress may exist. 
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If the material of the shell is ductile, then bending deformation decreases away from the 

end and do not influence the load-carrying capacity of the shell structure. But if shell 

material is brittle like a composite, then bending deformation remains proportional to the 

applied load until failure, so it will cause a significant decrease in the load-carrying 

capacity of the shell.  

That is why, when we talk about a composite shell, most of the time we used to get the 

solution means we do not go for a membrane theory of shells, or a moment we want to 

solve a complete shell equation.  

The reason behind that is in the composite shells, the very basic ingredient is the material 

properties change abruptly from layer to layer. This change in material property and 

poisson's ratio is different, cause deformation. Due to that, bending may take place. If it 

is made of an isotropic material, then this issue is not there that means delamination may 

take place.  



 

 

So, for the case of a composite shell, preferably, we try to solve all the complete 

equations, we do not simplify only using the moment shell theory or the membrane shell 

theory. At the interfaces and the axis, these problems further enhance or amplify for the 

case of composite shells. 
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So, in this case,    and   . I would like to derive the first sets of governing 

equations for the moment theory of shells, and then its solution. For the case of the shell 

of revolutions, these parameters  1 1A R  ,  2 2 sinA R   , 2 sinr R   are known 

to you. First, we will find the linear strain-displacement relations for the present case.  
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 0

11

1

1
,u w

R
   ;  

 0

22

2

1
, cos sin

sin
v u w

R
  


   ;   

0

12

2 2

1 cos 1
, ,

sin sin
v v u

R R R
 




 
    

 1

11

1 1 ,

1 1
,u w

R R





 

  
 

;  

 
   1

22 2

1 22

1 cos
, sin , ,

sinsin
v w u w

R RR
  


 


    ; and 

1

12

2 2 1 1 1 2

1 cos 1 1 sin cos
, , ,

sin sin

w
w u v v

R R R R R R
  

  


  


    


 

These are the strain displacement relations for the shell of revolutions. 
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 

 

   

 

1 2 22 1 1 , 1 2 1 1 2,

2, 1 2 12 12 1 2 1 2 1 2,

1 2 2 1 1 2 2 1 3 1 2, ,

12 2 12 1,

sin cos sin sin 0 (1)

. sin cos sin sin 0 (2)

sin sin sin sin 0 (3)

sin c

xN R N R R N Q R q R R equation

N R R N N R Q R q R R equation

Q R Q R N R N R q R R equation

M R M R

 

 

 



   

   

   



    

    

    



 

1 2, 1 1 2

12, 1 2 1 2 1 2 1 2,

os sin 0 (4)

. sin cos sin 0 (5)

R M Q R R equation

M R R M M R Q R R equation



 

 

  

  

   

 

These are the five governing equations, which contain all the variables all moments, and 

in-plane stress resultants for the shell of revolutions. 



 

 

In the previous case, when we are talking about the membrane theory of shells, we have 

neglected the moments and shears. But now we have taken all the variables together, and 

substitute the value of 1R , 2R , 1a , and 2a  
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Now, using the shell constitutive relations and mathematical simplification. 2Q  can be 

expressed from equation (5) and 1Q  is expressed from equation (4). Substituting into the 

first three equations, it reduces to three partial differential equations. 

 

 

 

1 2 2 1 1 2 1 1 2,

1 2 1 2 2 1 3 1 2,

1 2 2 2 1 1 2,

sin cos sin sin 0

sin sin sin sin 0

sin cos sin 0

N R N R Q R q R R

Q R N R N R q R R

M R M R Q R R







   

   

  

   

   

  

 

A closed-form solution can be obtained for such cases, it is very difficult and more 

complex. 
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In the most general cases, the shell of revolutions under axis-symmetric load case, the 

displacement along second interaction is 0, and 12N = 2Q  = 12M = 0. If we assume such 

cases, these three equations reduce like this. And the constitutive relations for the 

isotropic case can be written like this.  

   1 1 2 2 2 12 21 1

Eh Eh
N N   

 

   
      

    
   

   1 1 2 2 2 1M D k k M D k k      

But you are aware that for the case of a composite, 1N  can be written as: 

 
2

1 11

2

2

1

h

h

N d
R


 



 
  

 
  

11  = 11 11Q   + 12 12Q  . For the elastic case, 1N , 2N , 1M , and 2M  are written like this. 

Where 1k  and 2k  are the curvature part of the strain displacement relations.  
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Here, for the axis-symmetric case:  

 1 1,

1

1
u w

R
   ;  2

2

1
cotu w

R
   ;  

 1

1 1

1 1
,k u w

R R


 
   

 
 and  2

1 2

1
cot ,k u w

R R
   .  

And a new variable V = 1

1 1

1
,

u
w

R R
 .  

Now, we have now 12 equations.  
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This further can be written in terms of actual components 1N , 2N , 1M  and 2M  by 

substituting all these things. 

   1 2

1 2

1
, cotN B u w u w

R R





 
    

 
,  

2N  =    2

2 1

1
cot ,B u w u w

R R





 
   

 
,  

1M  = 1, 1

1 2

1
cotD V V

R R





 
  

 
, and  



 

 

2M  = 1 1,

2 1

1
cotD V V

R R





 
  

 
. 
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Now, we have two displacements u and w, five stress resultants 1N , 2N , 1M , 2M , 1Q , 

and 2Q . We have taken 2Q  = 0, therefore, we have 5 strains and 12 equations. We can 

solve a set of equations. In the 5th week, I will explain that if you substitute these 

components 1N , 2N , 1M  and 2M  into the basic governing equations.  

These three governing equations can be expressed in terms of primary displacement 

variables u, w, and V. These will be expressed like that. Three equations can be solved as 

partial differential equations. one solution can be obtained if it is based on the boundary 

conditions. The solutions can be expressed in terms of a trigonometry series or power 

series or some other kind of a series and the solution is obtained. 

From those solutions: 

1 1
1max

2

6N M

h h
    

2 2
2max

6N M

h h
    1max   

In this way, the stresses are obtained.  
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We are assuming some other variables let us say 1V and U =  2R Q  .  

Here 1Q  = 0, substituting this variable into the equations, ultimately, these three 

equations will be converted into one equation: 

   1 2 1 3

1

1
sin cos , sin cos 0N Q r p p r

R
         .  

 1 2sin cosN Q F      

If we integrate with respect to  , that leads to this equation 

   
0

1 1 3sin cos

fQ

Q

F R r p p d C      ,  

Where F is the loading parameter.  
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And from here, 1N  and 2N  can be written like this: 

 
1 2

2 2

cot

sin

F
N U

R R




    and 

 
2 3 22

1 1

1

sin

Fdu
N p R

d R R



 
   .  

Finally, doing some mathematical simplifications, 1N  and 2N will lead to two parameters 

V and U. U is a 2 by 2 matrix. Simultaneously these two equations will look like this: 

  1 1( )L U vU EhRV     .  

This is the value and this L  is the differential operator, we can solve such kind of 

system. 

The purpose of describing these things is if we get the 1N  and 2N , by substituting the 

value of the radius of curvature 2R , the loading parameter  F  , and the value of U: 

 U = 2R 2Q .  

We can get the expression of 1N  stress resultant in the first direction and the expression 

of stress resultant in the second direction 2N .  

Similarly, once you can solve these stress resultants U and V, then by using all those 

things, we can get all the moments and strains. 



 

 

With this, the basic methodology is explained here. But when you are going to solve a 

problem, depending upon the boundary conditions  F   will be a different loading 

parameter, the rest of the equations will remain the same. In week-05, lecture-01, I shall 

explain the complete formulation from the scratch for a cylindrical infinite or finite shell, 

their governing equations, and the solution techniques.  

In these lectures, the basic equations in terms of stress resultants, there are some 

problems in the shell theories that can be directly solved using the same stress resultant 

equations. But in general, if we can convert into a primary displacement form this that is 

the more general form, we can solve all kind of a problem.  

The general approach is to convert into a primary displacement form, and then get the 

solution for that. After that, we can get the stress resultants. With this, I would like to end 

this lecture here. 

Thank you very much. 


