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Dear learners welcome to lecture -02 of the week- 04. In this lecture, I will explain the 

Membrane shell theory and the moment shell theory. In the previous lectures, we have 

completed the basic formulation and the special cases for the spherical shell, cylindrical 

shell, circular plate, and rectangular plate. 
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Before a generalized solution of a complete shell, there are two basic theories one is 

membrane shell theory and another is moment shell theory. 

Already, in lecture- 01, I have covered the membrane shell theory applies to thin shells 

and can take only the membrane loading means, it cannot sustain the bending stresses or 

bending moments, as the shell is thin and subject to only in-plane stretching cases.  

There are numerous examples in which the membrane theory of shells is applied. Since, 

it cannot take any bending stress, the moments 11M , 22M , the twisting moment 21M , and 

the shear forces 1Q , 2Q  will be 0. 

Now, we are saying that the shell is thin, therefore, 
1R


 term can be neglected. If, we do 

so, then, 12N  = 21N . Out of the five governing equations: 
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The following three equations remain for the case of membrane theory of shells.  
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The equation numbers 3rd and 4th of the five governing equations get vanish because 

these contain moment and Q terms. Later derived equation (1), equation (2), and 

equation (3), are valid for a doubly curved shell. And, you can find special cases like the 

surface of revolution for a cylindrical shell. 

Substituting the corresponding parameters, 1a , 2a , 1R , and 2R , you can get that set of 

equations for the membrane theory of shells. 
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Now, what is the expression of strains for the membrane case? For the membrane case, 

there is no curvature, no bending, and no rotations, these are considered 0, only the linear 

membrane stretching part is considered, ,x  or , y  are not considered.  

Because the shell is thin, 
2R


 is neglected, therefore, 

1

1

A
 can be replaced by 

1

1

a
. 

11  = 10 20 01

1 1 2 1

1 u u wa

a a a R 

 
 

 
.  
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22
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12  = 20 10 10 201 2
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  

   
.  

These are the expressions of strain for 11 , 22 , and 12 . Now, the general expression 

for 11N  = 
2

11

2

2

1

h

h

d
R


 



 
 

 
 . 
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Now, if we substitute the constitutive relations:  

11N  =
2

0 0

11 11 12 22

2

2

1

h

h

Q Q d
R


 



 
  

 
 ,  

Then 11N  =  0 0

11 11 12 22Q Q h  ,  

Because these are the only function of   and   not the function of thickness. If you 

take the integration 
2

2

h

h

d h


 . So, this h comes from here, the same way the expression 

for 22N  =  0 0

12 11 22 22Q Q h  .  

If we further mathematically simplify, 

  0 0 0 0 11
11 11 11 12 22 11 11 12 22

N
N Q Q h Q Q

h
         

 0 0 0 0 22
22 12 11 22 22 12 11 22 22

N
N Q Q h Q Q

h
          

From here, we can express the value of 11  or 22  in terms of 11N

h
 or 22N

h
. 



By multiplying this equation 0 0 11
11 11 12 22

N
Q Q

h
    with 12Q  , we get: 

0 2 0 11
12 11 11 12 22 12

N
Q Q Q Q

h
     

And by multiplying 0 0 22
12 11 22 22

N
Q Q

h
    equation with 11Q , we get 

0 0 22
11 12 11 11 22 22 11

N
Q Q Q Q Q

h
   .  

Now, we subtract the 2nd equation from the 1st then, we get: 

 2 0 11 22
12 11 22 22 12 11

N N
Q Q Q Q Q

h h
    .  

From here, the expression of 22  in terms of stresses can be expressed. 
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The expression of 22  will be: 

 

11 22
12 11

22 2

12 11 22

N N
Q Q

h h

Q Q Q







  

Similarly, the expression for 11  will be: 



 

11 22
22 12

11 2

11 22 12

N N
Q Q

h h

Q Q Q







 

If you substitute for an isotropic case:  

22 11 21

E
Q Q


 


  and 12 21

E
Q







.  

If, you substitute that, that reduces to only 
1

Eh
. 

We can say that 11  is: 

 11 11 22

1
N N

Eh
     

 22 22 11

1
N N

Eh
     

 
12 12

2 1
N

E





  

You may be thinking, why are we interested to find 11 , 22 , and 12 ?  Because our 

ultimate aim is to find the deflection or the strains in the body and then the stresses.  

Because the governing equations are in terms of 11N ,  22N , and 12N , for this case, if we 

somehow know the value of stress resultant, then we can tell that how much strain will 

be developed in that body. Therefore, we have derived the expression of strains in terms 

of stress resultants.  

For the case of a composite plate: 

1
11

21 121

E
Q

 



 

2
22

12 211

E
Q

 



  

The expression will be slightly complex, if you substitute those values one can obtain the 

expression. 
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Now, we will express those 3 equations depending upon the special cases, because 

ultimately, we are going to solve the problem. The very first case is the shell of 

revolution in which the generator may be a curved line.  

For that case 1a = 1R  and the Lame’s parameter 2a  = r = 2 sinR   

If, we have to take the derivative with respect to  ,
 2

1

sin
cos

d R
R

d





   

Already, in lecture 01 of week 04, I have explained that how it will be 1 cosR   by using 

some terminologies and curvatures: 1

1

1
K

R
  and 2

2

1
K

R
 . 

If you substitute these parameters taking    and   , these equations will look like 

this: 

   

   

11 22 1 21 1 1 1, ,

22 1 21 1 12 2 1, ,

11 22
3

1 2

cos 0 (1)

cos 0 (2)

0 (3)

N r N R N R q R r equation

N R N R N r q R r equation

N N
q equation

R R

 

 





   

   

  

 

Instead of 2 sinR  , we are using r  in the equations, so that the equations look clean. But 

later on, when we are going to solve the problem then, r needs to be replaced by capital 



2 sinR  .  
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Similarly, in the governing equations for a circular cylindrical shell, 1a  = 1, 2a  = R,    

1R =  , and 2R  = R. If you substitute this expression, these three equations we will 

obtain. 

   

   

11 22 1 21 1 1 1, ,

22 1 21 1 12 2 1, ,

11 22
3

1 2

cos 0 (1)

cos 0 (2)

0 (3)

N r N R N R q R r equation

N R N R N r q R r equation

N N
q equation

R R

 

 





   

   

  

.  

The solution of the circular cylindrical shell is very easy and from the structural point of 

view, that most of the surfaces are made of circular cylindrical shell, it is a well-

researched area in which the structures are developed and the solution is easy.  

One can get the solution for the generalized shell of revolution, But, for an example point 

of view, I will explain that to solve this equation. Here, the 3rd equation says that N  or 

22N = R 3q . And, if you substitute in the second equation, then 12N  can be obtained and if 

you substitute in the first equation, then 11N  can be obtained.  

In this way, the 1st, 2nd, and 3rd equations are solved and during that process, if some 

constants come, they will be found.  
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All three equations are written here in a proper way: 

, , 1

1
0xx x xN N q

R
      equation (1) 

,

, 2 0x x

N
N q

R

 

     equation (2) 

3 0
N

q
R

     equation (3) 

The very first application, for example, a closed cylindrical shell under liquid pressure, 

or a liquid storage tank. If you say that there are cylindrical shells in which the LPG, 

some oil, or water is stored inside that tank and the cylinder filled with liquid is simply 

supported from the ends.  

Then, we can directly utilize this set of equations. Initially, after developing the 

governing equations, we have to convert those equations into the basic primary variables, 

then we solve them. But, these types of cases of a membrane shell theory can be solved 

in terms of stresses themselves. 

 



(Refer Slide Time: 12:54) 

 

For the case of liquid pressure, you can say that Z is going upward, but the pressure is 

acting downwards. Then, 3q  can be written as: 

3 0 cosq p R     

 We have taken that pressure is acting in the negative surface normal of that. 

From there, 
3 0 cos

N
q p R

R

      , in some of the books it is 0 cosp R  , we 

assume that liquid pressure will be in opposite direction always.  

Here,   is known as the specific weight of the liquid and this is the component that, 

when   = 0, it will be equal to  1R ; when,   = 90˚, then it will be 0, there will be no 

pressure at the top of the liquid. If you substitute in the 3rd equation it becomes 

0 cosp R  .  

Depending upon the initial assumptions, in the 3rd equation, some are putting 
N

R

 - 3q  or 

some are putting 
N

R

  + 3q  . Because of that, there is a slight change in the surface 

normal. From here, N  can be found, it is varying, circumferential stress resultant N  

will be: 



2

0 cosN p R R      
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Now from this equation, if we substitute in the 2nd equation: 

2

, ,

1 1
sinxN N R

R R
         

Ultimately, it will be: sinR  . 

Now, we have to integrate with respect to  . If, we integrate with respect to  , then 

sinR   is acting as a constant and xN   will be: 

 1sinxN x R f      , because it is partial derivative along x.  

1f   will be a function in the   direction. Now, we can substitute this expression in the 1st 

equation, here ,xx xN  will be: 

, ,

1
xx x xN N

R
   , and if you take the derivative with respect to  , then it will be: 

 
1

R
    1cos 'x R f    .  

Integrating with respect to x gives you this expression:  



xxN = 
2

cos
2

rx
   1

1
'f x

R
 +  2f  ,  

Here,
2f  is another constant function of  , now, we have to find, 

1f , 
1 'f , and 

2f .  
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The cylinder is simply supported which means the axial force and axial moment are 

going to be 0, here, we are talking about the membrane stress the moment is not there. 

When you say that x = 0 of a shell and x = L, then, xxN = 0. 

If we apply this condition,  

If we put x = 0, then 
2

cos
2

rx
  = 0,  1

1
'f x

R
 = 0, and  2f  = 0.  

And, if we put that x = L, then  
2

1cos '
2

rL L
f

R
  = 0 and  1 'f   = cos

2

rLR
 .  

If, we integrate with respect to  , then,  

 1f   = sin
2

rLR
  + 3f , integrating constant come, but it is not a membrane state of 

stress, therefore, this integrating constant 3f  = 0.  
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From here we can find all the stress resultant in terms of pressure, radius, and length: 

2

0 cosN p R R    ;   

1
sin

2
xN R L x  

 
  

 
;   

 2 2cos
2

xxN xL x


   ,  

They are varying accordingly. Now, we can say that xx
xx

N

h
  , these are the average 

stresses, 
N

h


  , and x

x

N

h


  .  

And, after that we have already derived the expression of xx ,  , and x , from there 

we can find the strains in terms of xx  : 

 
1

xx xxN N
Eh

     

Then, xx ,  , and x  are having terms like, u , v , or w , from these three 

equations, we can solve displacements by integrating, because they are having some 

derivatives.  
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Now, there are some other applications, i.e., roof shell structures, when we design a roof 

of a building, which is under self-weight, it may be a spherical dome, a cylindrical shell, 

a frustum kind of thing, a conical shell, or any other kind.  

2nd application is liquid storage facilities and the 3rd application is Axisymmetric 

pressure vessels. When you talk about an axisymmetric loaded dome roof or a spherical 

dome roof, then the main concept is that first, we have to find the component of loads.  

If we correctly define the components of load, then the problem will be easy to solve. If, 

the loading components are not defined properly then it will be a problem, because, once 

you know the loading the equations become very simple. And, further for the case of 

axisymmetric, in-plane component of stress resultant 12N = 21N =  0. 
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Next in the case of the cylindrical shell, we have to define the components of loading and 

the boundaries that, maybe simply supported x = 0 and x = L. From here, one can find 

N , xN  , and xxN , the gist of this problem is that in membrane shell theory the loading 

component should be clearly defined, and then depending upon the case we can solve the 

problem.  



And, the solution of a cylindrical shell is very easy. In that case, first, we solve the 3rd 

equation and then, 2nd and 1st equations. For the case of cylindrical shell, it is very easy 

and boundary conditions are satisfied in the terms of stress resultants.  
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Now, there are cases of some mixed shells, like a cylindrical, spherical, ring, or conical 

shape.  

How do we get the solution in that case?  First, we have to find the solution in 3 

domains, and then we have to club the solution. But, at the joints, the solutions will not 

be valid, because there will be a change in curvature. 

The stress moments may generate at the curvature change point or the thickness if the 

thickness of the shell is changing. The membrane shell theory cannot predict the accurate 

behavior of all these junctions and the supporting structures, where the boundary 

conditions are expressed in terms of displacement. 

These types of designs are given in detail in the book Thin Plates and Shell by Edward 

Ventsel. If you are interested, can go and see how to solve these kinds of problems. You 

are aware that the membrane shell theory cannot give the solution here, then the concept 

of moment shell theory comes, and then, we can get the solution. For a complete 

structure, we add those which means, there are areas where membrane shell theory is 

applicable and areas where moment shell theory is applicable. 



It is a combination of both. If, you do not consider the membrane shell theory, then, your 

design is not reliable because, at the joint, it may have a large number of stresses, we 

need to assess that.  
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Next, is the moment theory of circular cylindrical shell, we are talking about the only 

circular cylindrical shell, because the moment theory, in general, is very complex. We 

cannot get the solution for all the cases; we have an analytical solution for typical cases.  

The solution for a circular cylindrical shell is possible in some cases. Most of the time 

the circular cylindrical shells are used extensively for structural applications and for the 

locations where deflections are restricted which means the boundary conditions are 

expressed in terms of deflections.  

If, you say that in the case of a simply supported we have satisfied only axial stress we 

did not satisfy that w = 0. If, we have to satisfy the clamped edge, let us say, the cylinder 

is clamped at some points, then your deflection is 0 and slope is 0.  

Because at the clamped edge, there will be shear force and moment both. It will not 

come into a membrane case; because in the membrane, we do not assume shear force and 

a moment or the horizontal force.  

There is a change in the curvature like, cylindrical to spherical, spherical to conical, or 

some other kind, membrane theory cannot maintain deflection and rotation compatibility 



between the shells. At these locations, shear forces and moments are generated and 

which causes shear stresses and bending.  

The very important observation is that at the junctions though the moments, shear forces, 

bending stresses, or shear stresses are generated, but it decays it vanish very rapidly 

when we go away from that corner or the joint.  

That is why we say that it is a local effect, near the juncture it is high, but as you go 

away, it vanishes very rapidly sometimes we called it is a boundary effect. 

The moment shell theory is used to find the boundary effect at the junctions, because the 

small thickness or a small bending moment may cause large stresses in the shell.  
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Already, I said that an analytical solution is possible, for some typical cases, therefore, if 

you are interested to find the solution, then we have to go for an approximate or a 

numerical solution, these days, we say, finite element solution or numerical solutions. 
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Let us say for the case of moment shell theory, general equations in a case of the circular 

cylindrical shell can be expressed like this. 

11, 12, 1

22, 12, 1 2

22, 12, 2

11, 12, 1

22 2, 1, 3

. 0 (1)

. 0 (2)

. 0 (3)

. 0 (4)

0 (5)

x

x

x

x

x

R N N q R equation

N R N Q q R equation

M R M RQ equation

R M M RQ equation

N Q RQ q R equation











  

   

  

  

    

 

Ultimately, these 5 equations can be written into 3 equations, by using the concept 

12,

1 11,x

M
Q M

R


    and 

22,

2 12,x

M
Q M

R


     

And substituting in the 5th equation, this gives you: 

22 22, 12, 11, 12, 3

1
0x xx xN M M RM M q R

R
         , and it becomes the 3rd equation. 

Equation (1) and equation (2) remain the same. 

We cannot solve in terms of moments; we have to convert these in terms of primary 

variables. We have to find the value of 11N , 12N , 22N , 11M , 12M , 22M  in terms of u, v, 

and w, then we can substitute it here. That is why it is difficult, getting all these terms.  
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Ultimately, the very simple solution, I am going to solve here is that axis-symmetric 

bending, for that case, the deformation is independent of   , xN  , xM  , and Q  are 

considered 0. 
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If you take consideration of this, it will give you these three equations. 

11, 1

1 1, 22 3

11, 1

(1)

0 (2)

. 0 (3)

x

x

x

N q equation

R Q N q R equation

R M RQ equation



  

 

 



From the 3rd equation, 
1Q  = 11,xM , and if you substitute it in the equation (2), this gives: 

22
11, 3 0xx

N
M q

R
   , 2nd equation modified.  

The 1st equation can be directly found that 11N = 
1q dx C  .  

If you substitute all these things, that we can solve from the 2nd equation. 
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What is the definition of 11 , 22 , and curvature 1K  for this case? Derivative with respect 

to   = 0, and v = 0. If we choose all these things, then strain components are expressed 

like this 
11 22 1 0,; ; xx

du w
K w

dx R
 


    .  

Now, 11N  = 11Q 11  + 12Q ,  

And integrating,  

11N  = 
21

Eh



du w

dx R


 
 

 
.  

Now, we say that xxN  = 0, from here, 
du

dx
 = 0w

R
  and  



22N  = 
21

Eh du w

dx R




 
 

  
,  

If you substitute this expression here, that gives you the expression of 
22N  = 

Ehw

R


. 

Ultimately, we are expressing all the variables in terms of transverse deflection w. The 

moment 11 0,xxM Dw   and 22 0,xxM D w  . 
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If you substitute in the 2nd equation, it leads to a fourth-order differential equation in x. 

This equation: 

0
0, 32xxxx

Ehw
Dw q

R
   can be solved  

And there will be a homogeneous solution wh  and a particular solution wp .  

We can assume a homogeneous solution wh  = Kxe . If, you substitute: 

4

2
0

Eh
DK

R
  .  

For finding the roots, we multiply with h and divide by h.  

We can assume 
24

Eh

R D
 = 4 . 



Ultimately, the equation becomes 4 44 0K   .  

We can write the equation like  
2

2 22K   = 0, we can say that, 2 22K  = 0,  

Then 2K = 22 , then K  = 2i .  

In this way, there will be 4 roots, 2 roots will be the same and there are complex roots.  

The solution wh  = xe  1 2cos sinK x K x  + xe   3 4cos sinK x K x  .  

1K , 
2K , 

3K  and 
4K  are unknowns, it is a fourth-order equation, so there will be 4 roots. 

For solving these we need four boundary conditions.  

We can solve a maximum of 4 variables and what will be the particular wp solution?  
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The particular solution can be written as 
2

3q R

Eh
. We have assumed a udl, for that case, 

2

3q R
wp

Eh
 . The boundary conditions; if a shell edge is built in means clamped, then we 

say that w = 0, 0,xw  = 0, x = 0 and x = L, we will have a fourth boundary condition.  

We can solve 1K , 2K , 3K  and 4K . Then, for the case of simply supported shell, the 



deflection is 0 and the moment is 0. So, from there ,xxw  = 0. Similarly, when the shell is 

free the moment and shear force are 0. 

The expression of the moment 
11M  = 0, , 0xxw  , and , 0xxxw  . By following this 

boundary condition, we can solve them. Then, the next is the D case when the shell is 

loaded with
0Q  and 0M , because at the edges we can say there is some shear force 

0Q  

applied and the moment 0M is applied. For that case, 0M = ,xxDw  and shear force 

0Q = ,xxxDw . 

In this way, we can solve the problems. I have explained the membrane shell theory, and 

moment shell theory, the one can do the application part, the details are given in any thin 

shell theory book. Next, I am going to provide you a general solution to solve a general 

cylindrical shell for a simply supported shell. In the next lecture, I will explain the basic 

solution of a shell. 

Thank you very much. 


