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Dear learners welcome to week- 04, lecture- 01. In the 1st week, we covered the basic 

concept of composites, in the 2nd week, we developed the Theory of Surfaces in which 

we obtained the Gauss theorem, the first and second fundamental theorem of surfaces, 

and other derivatives of normal and tangent vectors.  

In the 3rd week, we developed governing equations for a doubly curved shell. We derived 

that from the basics by assuming a first-order displacement field i.e.,  

1 10 1u u    , 2 20 2u u    , and 3 0u w ,  

Where transverse displacement is constant along the thickness.  

Using that displacement field, we developed the basic governing equations of shell in 

curvilinear parameters   and  . These are orthogonal curvilinear parameters. And, we 



also discussed the special cases. From the basic shell equations can we get the equation 

of shells for a cylindrical shell, a spherical shell, a conical shell, a plate, or a circular 

plate?  

In today's lecture, I will discuss proceeding further after getting the governing equations. 

What are the steps to be followed to get the solutions? Ultimately, we are interested to 

find the displacement and stresses moments of the shell subjected to loading and 

boundary conditions.  
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Following are the basic governing equations of shell in which we have taken the non-

linear terms as well as linear terms. 
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 We developed these five sets of governing equations.  

Can we solve this in this form? Can we get the solution of a shell subjected to boundary 

conditions?  

Whether you talk about simply a circular cylindrical shell if you convert them to the 

equations, can we get the solution in the same form? No, we cannot get the solution in 

terms of primary displacements 10 20 0 1 2, , , ,u u w and  .  
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We have to convert these equations into the primary variables 10 20 0 1 2, , , ,u u w and  . 

For that, we use the shell constitutive relations. Here, I have given the linear shell 

equations, in most of the cases the linear shell equations are complex to solve and if we 

add non-linear terms, it will further make it more difficult to solve.  

Analytically or from a lecture point of view we aim to explain the basic steps to solve a 

linear equation, and later on, the non-linear terms can be solved.  
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For that, we need the shell constitutive relations. You may be aware of the generalized 

Hooke's law which is:  

ij ijkl klS   or vice versa ij ijkl klC  .  

This is just the reverse relation. A purely mechanical shell means elastic shell that 

ij ijkl klS   

Here, S is known as compliances matrix and C is known as stiffness matrix. We are 

aware that it is available for an orthotropic material.  

Why have we chosen an orthotropic material? The shell is made of a composite shell, a 

sandwich shell, a graphite-epoxy shell, a glass epoxy shell, or any other kind of 

composite material, they are generally orthotropic. Metal properties are orthotropic.  

So, we have chosen an orthotropic matrix. If we have chosen an isotropic matrix then 

some of the elements will be just a function of first. 11S , 22S , 33S  will be the same for the 

case of isotropic material. So, we have taken an orthotropic material and this is the 3-

dimensional relation available for a material where strain can be expressed in terms of 

stresses using this compliance matrix and we have also taken thermal loading.  

Sometimes, we want to analyze a composite shell under temperature loading if we are 

interested in such cases then we can include the temperature effect also. For a known 

temperature we can find the stress is known as thermoelastic analysis of a shell.  

These developed shell theories give accurate analysis to moderately thick to thin shells 

and the basic assumption behind is what we have developed under plane stress 

assumption. Under plane stress assumption, we assume that 33  = 0. There is no stress in 

the third direction, it is the thickness direction.  

As per the physics, we can say that the shell is very thin and the material is less, it cannot 

take stress in the third direction. By using that assumption, we can develop the shell 

theory. If we apply this assumption and put 33  = 0, then these equations are reduced 

and can be expressed like this: 
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I have just expressed for the mechanical case, including the temperature also one can 

write like this: 
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11  can be expressed in terms of a matrix Q, where matrix Q is known as a reduced 

stiffness matrix.  

This is a very standard notation and one can find these types of notations in any book of 

mechanics of composites or the books on the theory of composite plates and shells. In 

the earlier books of shells, only the isotropic shells are discussed. These types of 

equations are not discussed in those books, but in the recent books after the 1990s, the 



composite material has been taken and research has been done.  

In those papers or books, you will find this kind of matrix. 

What is the definition of in-plane stress resultant 11N ?  

It is defined as: 
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Now, from here the concept of solution on the theory starts changing, if we say that we 

want to apply only for a very thin shell or very shallow shell, shallow shell means when 

you have a very large radius of curvature. When the shell is thin and it is very large, 
2R


 

component can be neglected compared to 1.  

But, in most of the thin shell theories book, you will find that 
2R


 is not considered and 

when 11N is obtained like this:  
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But if you want to solve a complete shell that because at any time we can reduce to. We 

are going to solve a generalized shell that can give us the solution for a thick, shallow as 

well as thin shell. We will consider 
2

1
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.  

Here we consider, 11  = 11 11Q   + 12 22Q  ,  

Therefore, 11N  will be: 
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We know 11  and 22 , initially, when we defined the strain components, we said that it 



contains two parts - one will be causing the membrane stretching or the stretching in the 

shell, and the second part will cause bending in the shell.  

Some terms are clubbed under the head 
0

11  and some terms are clubbed under the head 

1

11 . This term 
0

11  is called membrane stretching and 
1

11  is called bending or curvature 

the same way, 22  is expressed. 

 11N  is    
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further need to work on it.  
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Here,  
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The bending terms and the stretching terms.   
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If we substitute like this, 11N  can be written as: 
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The coefficient is denoted by some terms ijA . Generally, in the plate, we called it 
2

ijA  

index.  
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No inverse in the first index, the second index is inverse and it also tells you the radius of 

curvature in that direction.  
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It is carefully designed so that we know the meaning of every index.  

In the case of the plate just 11A  is sufficient because 11A  in the case of the plate is just 
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 

 
these two terms. You will have the components 

of 22N , 12N , and 21N . We may forget which will be the inverse one, it will help us to 

find that properly.  
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Now, we have to find the definition of a moment.  

The definition of the moment 11M  is: 

 
2

11 11

2

2

1

h

h

M d
R


  



 
  

 
  

 Now, we can express 11  in terms of 

1

11

1

1Q
R




 
 

 
 

1

0

11 11 11

1

1 ˆL NL

R


  

  
    
   

and 

1 1

0

12 22 22 22

2 2

1 1 ˆL NLQ
R R

 
  

     
       
     

  

Therefore, 11M  will become: 

1 1 1 1
2

0 0

11 11 11 11 12 22 22 22

2 1 1 2 2

2

1 1 1 1 1ˆ ˆ

h

L NL L NL

h

Q Q d
R R R R R

    
      

   



              
                      
                



 Already I have explained the meaning of 
0

11

L , 11

NL and 11̂ .  

21 0 211 21 22 0 222 22

11 11 11 11 11 11 11 12 22 12 22 12 22
ˆ ˆL NL L NLM B B D B B D            



Here, 
21

11B  = 

1
2

11

2 1

2

1 1

h

h

Q d
R R

 
 





  
   

  
 , 

1 1
2

211

11 11

2 1 1

2

1 1 1

h

h

B Q d
R R R

  
 

 



    
       

    
 ,  

and 11
ˆ  will be 

2 .  

Whenever 
2  come up we denote it as D, bending stiffness. 

1
2

21 2

11 11

2 1

2

1 1

h

h

D Q d
R R

 
 





  
    

  
   

1
2

22 2

12 12

2 2

2

1 1

h

h

D Q d
R R

 
 





  
    

  
 .  
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We have defined the definition of 11M  and 11N , now a slightly different definition is of 

12N . What is the definition of 
0

12  and 
1

12 ? 

0

12  have two parts:  



The first part is: 

20 10 0 1 10 0 2 202

1 2 2 1 2

1 1

2

u u w a u w a ua

A a A R R   

     
      

      
 

And the second part is: 

 10 20 2

2 1

1 u u a

A a 

  
 

  
 .  

When we were developing the shell governing equations, the first part is corresponding 

to 12N and the second part corresponding to 21N .  

12N  =  
2

12

2

2

1

h

h

d
R


 



 
 

 
 .  

12  = 66Q 12  

12  have three contributions 
0

1 1 1
ˆL NLplus plus    .  

The same way 21N  will be: 

 
2

0

66 2 2 2

1

2

ˆ1

h

L NL

h

Q d
R


   



 
   

 
 .  

Now, we can say, 
1

1

A
 is common, so, 

1

1

1
R




 
 

 
come here.  

12N  will be: 

1

10 1 10
1 20 1 022

1 2 1 1 1

66

2 1
2 20 1

2 0 2 1

2 1 2

1 1
, , 1 ,

2
1 1

, , ,

h

h

u a u
u a w

a a a R R
Q d

R R a u
w a

R a a

  

  



 











      
         

         
     

                 

  
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The first term 

1

66

2 1

1 1Q
R R

 


  
   

  
will become the definition of 

21

66A , the bending term 

will be denoted by 
21

66B .  

12N  will become:  

21 0 212 21

66 1 66 1 66 1

1
ˆ

2

L NLA A B    .  

Similarly, 21N  will be: 

12 0 121 12

66 2 66 2 66 2

1
ˆ

2

L NLA A B    .  

Sometimes 1/2 is taken inside the definition because it is common in all the non-linear 

terms. In some books of shell theories, 1/2 is taken inside the definition of 1

NL  and 2

NL , 

but in some books, it is kept outside.  
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We can write or generalizes in an index form.  

The very first definition is ijA
 will be: 

1
2

2

1 1

h

ij

h

Q d
R R 

 






  
    

  
 .  

The definition of ijB
 will be:  

1
2

2

1 1

h

ij

h

Q d
R R 

 
 





  
    

  
 .  

What is the definition of D? The definition of ijD
 will be: 

 

1
2

2

2

1 1

h

ij

h

Q d
R R 

 
 





  
    

  
 .  

 

The definition of non-linear terms ijA
 will be:  



1 1
2

2

1 1 1

h

ij

h

Q d
R R R  

  


 



    
         

    
 .  

For the case of non-linear terms, we have three indexes. If you are not considering the 

non-linear terms then do not worry, but if you consider the non-linear terms then it will 

have three indexes and the last two indexes 

1 1

1 1
R R 

 
 

   
       

   

will have inverse terms. 

Similarly,  

1 1
2

2

1 1 1

h

ij ij

h

B Q d
R R R



  

  
 

 



    
          

    
   

and ijD
will be: 

 

1 1
2

2

2

1 1 1

h

ij

h

Q d
R R R  

  
 

 



    
         

    
 . 

These are the generalized definition for ijA , ijB , and ijD . The point to be noted here  

ijA
 ijA

, because ijA
 =

1
2

2

1 1

h

ij

h

Q d
R R 

 






  
    

  
 . 

Here, the term 

1

1
R




 
 

 
 is inverse but in the case of ijA

, the term 

1

1
R




 
  

 

is 

inverse. They will be equal only when you say that your shell is very thin and you are 

going to neglect these terms R  and R , then they will be the same.  
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Now, we are clubbing into a matrix form that 11N , 22N , 12N , and 21N . 

21 22 21 220

11 12 11 12 11111 1

21 22 21 220

12 22 12 2222 22 2

21 210
12 66 6612 1

12 0 12
21 266 12 66

1

2ˆ

ˆ

ˆ

ˆ

L

L

L

L

A A o o B B o o AN

A A o o B B o oN

N o o A o o o B o

N o o o A o o o B





 

 


 

       
       
                 
       
             

211 222

1 12 1

111 122

12 22 2

212

66 1

122

66 2

NL

NL

NL

NL

A o o

A A o o

o o A o

o o o A









   
   
   
   
   
     

 

There will be a matrix in which the non-zero components are placed like this. The first 

component are 
21

11A , 
22

12A , 
21

12A , 
22

22A , 
21

66A , and 
12

66A , these will contain the linear 

combination, the stretching part, and the component 
21

11B , 
21

12B  will have the bending part, 

plus the green terms are non-linear contribution.  

Depending upon the definition in some of the books 1 by 2 is kept outside, sometimes, it 

is kept inside the definition. So, it is just a matter of choice. The point to be noted here is 

that if it is a plate, then the terms 
21

11B  
21

12B  may not exist, but for the case of shell, all the 

terms will exist.  

Similarly, we can represent the couple constitutive relation.  



21 22 21 22 20

11 12 11 12 111111 1

21 22 21 220

12 22 12 2222 22 2

21 210
12 66 6612 1

12 0 12
21 266 12 66

ˆ

ˆ

ˆ

ˆ

L

L

L

L

B B o o D D o o BM

B B o o D D o oM

M o o B o o o D o

M o o o B o o o D





 

 


 

       
       
                 
       
             

11 222

12 1

111 122

12 22 2

212

66 1

122

66 2

NL

NL

NL

NL

B o o

B B o o

o o B o

o o o B









   
   
   
   
   
     

 

These are the in-plane stresses and in terms of strains. Ultimately, for the case of a 

solution, we will write it explicitly and solve it. But first, we have to define it like this. It 

is also important to write like this from a programming point of view, we write a nonzero 

component of a matrix, and then later on we have to multiply with this.  
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The same way, with the moment 11M , 22M , 12M , and 21M , we have to find it and 

arrange that in 
21

11B , 
21

11D , and 
211

11B matrix. 
21

11B  is for bending, 
21

11D  is called stretching, 

and 
211

11B  is the non-linear part.  
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Now, we have the shear forces 1Q  and 2Q  can be written as 44A  and 55A  and the 

coefficient will be 
0

23  and 
0

13 . 

0

23442

0
551 13

A oQ

o AQ





   
    

      

 

Here point to be noted that for the case of first-order shear deformation theory, it is 

multiplied or divided with some SK  depending upon the situation.  

Here we are taking a general case, in the first-order theory the shear forces when you 

evaluate, do not come so accurately.  

We have to multiply with a factor known as the shear correction factor. Based on the 

geometry and loading the shear correction factor is evaluated and it is multiplied with 

that so that we can get accurate shear stresses along with the thickness.  
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Already, I have discussed that for a case of thin shell 
2R


  and 

1R


 are neglected and for 

the case of shallow shell these are neglected, but for the case of thick shell, these are 

considered. Now, how do you solve this 

1

1

1
R




 
 

 
? Ultimately, you are writing a 

program you need one number.  

This term can be written like  
1

1 x


 , the binomial expansion of that will be: 

 
1 2 31 1 .........x x x x


        

If we expand that term and it will go up to infinity.  

Based on the inclusion of these terms will give you an entirely different shell theory, 

whether we say that we have to take only the first term, the logic behind that is if the 

thickness is small and 1R  is large then, this can be neglected.  

But, for the thick shell, generally, in the case of flugge’s shell theory, up to the second-

order terms are considered in this binomial expansion. 



2 3 4
2

21

11 11

2 1 1 1 1

2

1 1 ......

h

h

A Q d
R R R R R

    




        
              
         

   

In most of the thin shell theories, only the first term 
1

1
R


  is taken in the case of inverse 

and some researchers have considered 
1

1
R


  also and some other researchers have 

considered up to this. Depending upon that compared to 1 the contribution of these terms 

is less, but sometimes they may give more accuracy at the stresses required zone.  

If we talking about composite plates in that case that researcher has considered the term 

up to: 

2
2

21

11 11

2 1 1

2

1 1

h

h

A Q d
R R R

  




    
       
     

  

Because at the interfaces the transverse stresses are there bending stresses are there, we 

need to consider these terms. If you take up to the second-order, then it is considered as 

flugge’s shell theory.  
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And if you multiply, ultimately, you get the terms like this 



2 2 32
21

11 11 2 2

1 2 1 2 1 2 1

2

1

h

h

A Q d
R R R R R R R

    




 
      

 
  

You have to evaluate it through the thickness.  

If it is an isotropic shell or a single layer shell, though it may be orthotropic material, if it 

is a single layer shell, then you have to integrate it. But, now here we are talking about a 

composite shell that may have an ‘N’ number of layers then how do you evaluate it?  

In the case of the N layer, layer-wise you have to do addition that if the first term is 11Q , 

at each layer, the stiffness will be different. Let us say K goes from 1- N,  

11

1

N
K

K

Q


  , K-th layer will be 1, 2, 3, and so on.  

Let us say, K = 1, then the integration will give you   times and if you put the limits 

2 2

h h
to


 , the coordinates of the top layer minus the coordinates of the bottom.  

If there is one layer let us say K-th layer, coordinate of upper layer minus lower 

coordinates gives you the thickness. Ultimately, it is the thickness of that layer, 

 1K K    is the thickness of that layer.  

Now, the second term 
1R


, if you integrate it will become 

2 2

1

1 1

1

2

K K

R R

 
 

  
 

 and the third 

term will be 
2 2

1

2 2

1

2

K K

R R

 
 

 
 

 this, when we have a 
2 then it will be a 

3 , therefore 

fourth term will be 
3 3 3 3

1 1

2 2

1 2 1 2 1 1

1 1

3 3

K K K K

R R R R R R

    
   

      
   

 and the fifth term will be 

4 4

1

2 2

2 1 2 1

1

4

K K

R R R R

 
 
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.  

In this way, we can evaluate the effective coefficient of 
21

11A  for a case of a multi-layered 

composite plate. 



 
2 2 2 2 3 3

1 1 1
1

1 1 2 2 1 2 1 221

11 11
3 3 4 4

1
1 1

2 2 2 2

1 1 2 1 2 1

1 1 1

2 2 3

1 1

3 4

K K K K K K
K K

N
K

K
K K K K

R R R R R R R R
A Q

R R R R R R

     
 

   

  



 

      
            
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     

  

Whenever we are going to develop a solution for a multi-layered plate based on FSDT 

theory or a classical shell theory or any higher-order shell theory, then we evaluate 

effective coefficients and adding through like this.  
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What is this 11

KQ ? 11

KQ  can be found in terms of stiffness in that direction: 

1
11

12 211

K
K

K K

E
Q

 



 

These relations are given in books of composites, but for reference, I am presenting here:  

21 1
12

12 211

K K
K

K K

E
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

 
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
, 2

22

12 211

K
K

K K

E
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 
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
, and 66 12

K KQ G .  

A composite shell may have many layers and for a cross-ply, it may be 0˚, 90˚, 0˚, 90˚, 

and so on. What is the concept of KZ  and 1KZ  ? Let us say we are giving numbers 1, 2, 

3, 4, 5, up to n, and in between K-th comes.  



For a K-th layer, this will be the bottom coordinate and this will be the top coordinates. 

Above that, there will be K +1-th layer, and here will be K - 1-th layer. This will be KZ  

and this will be 1KZ  .  

These are the standard procedure one can use. For a composite shell concept, these are 

the same thing KZ  layer instead of thickness, we decide the thickness of a shell is 

2 2

h h
to


.   
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We have defined the constitutive relations, now, we will solve for a static case and first, 

we will try for the linear governing equations, and here all static terms are going to be 0.  
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 



    
 

 
      
 

So, why we 



In the shell theories even after developing the basic governing equations, we can further 

simplify which means the solution of the first one is the membrane theory of shell and 

the second is the moment theory of shell or a flexural theory of shells. Why do we need 

separate treatments?  

The reason behind that is we can solve a problem altogether, but that will be more 

complex. If we say that if loading in the boundary condition is such that it comes under 

the assumptions of membrane theory of shells, then we will apply the concept of 

membrane theory of shells. The idea behind that shell is very thin and it is subjected to 

only in-plane stretching, there is no bending moment.  

 

Moments 11M , 22M  and 12M , 21M  are 0. If we assume this condition because we say 

that it cannot take a bending moment only the stretching in a plane can take place. Then, 

the equation (3) and equation (4), if you put all 0, then 1Q  and 2Q  will be 0.  



The equation (3) and equation (4), become identically 0 and from that 1Q  and 2Q  gives 

0. If you use this relation in equation (5) that will give you: 

 11 22
3

1 2

0
N N

q
R R

 
    
 

 

And it will become the third equation.  
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Now, if you substitute in the first and second equation that will give you these three 

equations 

   

   

11 2 22 2, 21 1 12 1, 1, ,
1 2
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a a

N N
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R R

  

  

     
 

     

 
    
 

 

Depending upon a situation or requirement we can apply.  

Now, you see that the number of governing equations is reduced, plus the number of 

variables also have been reduced. We have variable 11N , 22N , 12N , and 21N . Again, 

depending upon the cases, we can say that our variables will be also three, later on, some 



terms will going to be 0 and that equations will be 3 in numbers.  

The membrane state of stress that cannot support the bending and twisting momentum, 

then the corresponding theory is of the thin shell in which we assume that there are no 

bending moments.  
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Now, what are the necessary and sufficient boundary conditions? When we mean 

concept, it is when we are going to apply the membrane theory of shells.  

Based on your careful examination, suppose, some work come to your research work, 

you are going to solve a problem let us say in the case of a fluid-filled structure, for 

example, you have a very big cylinder in which the oil is filled and it is buried inside the 

soil.  

It is carrying a vehicle like LPG storage tanks and through a trailer, it is moving. You 

want to know the stress is in the shell or let us say some aerospace is moving and their 

body of shell you want to study.  

When do you analyze those shells under the membrane theory of shells? The very first 

condition: the boundaries of a shell-free from transverse shear forces and moments 

which means the boundary should be free from any moment and shear force.  

Generally, the simply supported one is the most ideal situation. In the simply supported 

one, we may have no moments, but we may have the shear forces at the boundary. The 



free boundaries: no moments, no shear forces and the loads applied to the shell 

boundaries must lie in the plane that is tangent to the middle surface.  

Load should be applied in such a way they lie in the plane of the middle surface so that 

they cause a pure stretching effect in the shell. They do not cause a bending effect. The 

next condition is the normal displacement and rotations at the shell edges are 

unconstrained which means they are allowed to move, i.e., their edges can displace freely 

in the direction of normal to the middle surface.  

Boundary condition should be applied in such a way that the w which is the transverse 

deflection, can have the transverse deflection, which may allow moving in that direction. 

The shell must have a smooth varying and continuous surface. If there is a breakup in 

curvature, if there are abrupt changes in the dimensions or the curvature then their 

moments may arise.  

We cannot apply those concepts.  
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And, then the component of the surfaces and edge load must be also smooth and 

continuous functions of coordinates. If we talk about a structure, inside that there may be 

some disruptions.   

These are the points where curvature changes and then there are some certain changes in 

the thickness or some boundary conditions, clamped, it may have stresses. There we 



cannot apply the solution. We cannot say that the membrane theory of stresses will apply 

to those conditions.  

It should be continuous like this. In this zone, the membrane theory of shells can be 

applied.  
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Now, we are going to perform the membrane theory of stresses in the next lecture. I will 

explain one or two examples of the circular cylindrical shell.  

First, we will convert using this concept that the longitudinal axis  = x,   =  , 1a = 1,  

2a  = R, 1R  =  , and 2R  = R. We will first convert these three equations into a 

cylindrical equation, and depending upon the loading and other boundary condition we 

are going to solve these equations.  

Thank you very much. 


