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Dear learners welcome to week- 04, lecture- 01. In the 1% week, we covered the basic
concept of composites, in the 2" week, we developed the Theory of Surfaces in which
we obtained the Gauss theorem, the first and second fundamental theorem of surfaces,

and other derivatives of normal and tangent vectors.

In the 3" week, we developed governing equations for a doubly curved shell. We derived

that from the basics by assuming a first-order displacement field i.e.,
U =Up +16, U, =Uyy +1,6, and Uy =W,
Where transverse displacement is constant along the thickness.

Using that displacement field, we developed the basic governing equations of shell in

curvilinear parameters @ and g . These are orthogonal curvilinear parameters. And, we



also discussed the special cases. From the basic shell equations can we get the equation

of shells for a cylindrical shell, a spherical shell, a conical shell, a plate, or a circular

plate?

In today's lecture, | will discuss proceeding further after getting the governing equations.

What are the steps to be followed to get the solutions? Ultimately, we are interested to

find the displacement and stresses moments of the shell subjected to loading and

boundary conditions.
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Following are the basic governing equations of shell in which we have taken the non-

linear terms as well as linear terms.



1 u
04~ 00, e, Jo o 2 -2
+leL Wy, —um& +0, = (1ol +137)  equation(l)

aR| 7 R

2

) 1 a,u
E[_ Nya +(N22a1),ﬂ N3, +(N12a2)'“]+%+(N : a,R, (Wo,ﬂ ) T:2220 B

2

1 —8 u au Aﬁ a ’f/
o, [( Nllé(wola - alRilO JJQ +(|E%[W01ﬁ - ;22—0 JJﬂ +(N12 Wy, 5 — Uy R_ZzJJa "{le Wo.o —Ug %JJ/;]

[t (00, (@),
ROR 8,8, a,a,
We developed these five sets of governing equations.

=1,W, equation(5)

Can we solve this in this form? Can we get the solution of a shell subjected to boundary

conditions?

Whether you talk about simply a circular cylindrical shell if you convert them to the

equations, can we get the solution in the same form? No, we cannot get the solution in

terms of primary displacements U, Uy, W,, i;, and i, .
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We have to convert these equations into the primary variables U, Uy, Wy, ¥, and i, .

For that, we use the shell constitutive relations. Here, | have given the linear shell
equations, in most of the cases the linear shell equations are complex to solve and if we

add non-linear terms, it will further make it more difficult to solve.

Analytically or from a lecture point of view we aim to explain the basic steps to solve a

linear equation, and later on, the non-linear terms can be solved.
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For that, we need the shell constitutive relations. You may be aware of the generalized

Hooke's law which is:

& = S;y0y Or vice versa oy =Cy -

This is just the reverse relation. A purely mechanical shell means elastic shell that

& = Sijklo_kl

Here, S is known as compliances matrix and C is known as stiffness matrix. We are

aware that it is available for an orthotropic material.

Why have we chosen an orthotropic material? The shell is made of a composite shell, a
sandwich shell, a graphite-epoxy shell, a glass epoxy shell, or any other kind of
composite material, they are generally orthotropic. Metal properties are orthotropic.

So, we have chosen an orthotropic matrix. If we have chosen an isotropic matrix then
some of the elements will be just a function of first. S, S,,, S;; will be the same for the
case of isotropic material. So, we have taken an orthotropic material and this is the 3-

dimensional relation available for a material where strain can be expressed in terms of

stresses using this compliance matrix and we have also taken thermal loading.

Sometimes, we want to analyze a composite shell under temperature loading if we are
interested in such cases then we can include the temperature effect also. For a known

temperature we can find the stress is known as thermoelastic analysis of a shell.

These developed shell theories give accurate analysis to moderately thick to thin shells
and the basic assumption behind is what we have developed under plane stress

assumption. Under plane stress assumption, we assume that o,, = 0. There is no stress in

the third direction, it is the thickness direction.

As per the physics, we can say that the shell is very thin and the material is less, it cannot
take stress in the third direction. By using that assumption, we can develop the shell

theory. If we apply this assumption and put o, = 0, then these equations are reduced

and can be expressed like this:
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| have just expressed for the mechanical case, including the temperature also one can

write like this:
_(711 ] _Q11 Q, O ] _511 1 ¢
T3 Qu © Vo3
0y, |=|Qp Qp O &y . = 0 Q y
Ty 0 0 Qg N2l . > .

Oy Q; Q, O &n By
0y |=|Qp Qp O Ep [+ By |T
712 0 0 Qg || 712 Y

o,, can be expressed in terms of a matrix Q, where matrix Q is known as a reduced

stiffness matrix.

This is a very standard notation and one can find these types of notations in any book of

mechanics of composites or the books on the theory of composite plates and shells. In

the earlier books of shells, only the isotropic shells are discussed. These types of

equations are not discussed in those books, but in the recent books after the 1990s, the



composite material has been taken and research has been done.

In those papers or books, you will find this kind of matrix.

What is the definition of in-plane stress resultant N,, ?

It is defined as:

Now, from here the concept of solution on the theory starts changing, if we say that we
want to apply only for a very thin shell or very shallow shell, shallow shell means when

you have a very large radius of curvature. When the shell is thin and it is very large, Ri
2

component can be neglected compared to 1.

But, in most of the thin shell theories book, you will find that Ri is not considered and
2

when N,, is obtained like this:

N,=| oy (1+ Ri]dg and we proceed further.

2

N‘%c—.,\,\j

But if you want to solve a complete shell that because at any time we can reduce to. We

are going to solve a generalized shell that can give us the solution for a thick, shallow as

well as thin shell. We will consider (1+ RLJ )

2

Here we consider, o,, = Q. &, + QL&

h
2

Therefore, N, will be: [ Q2 +Q,,,, (HRijdg .
h

-h 2
2

We know ¢, and ¢,,, initially, when we defined the strain components, we said that it



contains two parts - one will be causing the membrane stretching or the stretching in the
shell, and the second part will cause bending in the shell.

Some terms are clubbed under the head &, and some terms are clubbed under the head
&,. This term ¢, is called membrane stretching and &;, is called bending or curvature
the same way, ¢&,, is expressed.

Ny is [ Q, (&l +gapy)+Qy (5, +g£§2)[l+ Rijdg, it is not even that simplified, we

2

N“:"‘—'N‘j

further need to work on it.
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g0 — i[%JruﬂaﬁJr Wod, | 1 [awo — aiu“’} J consists of these explicit terms.
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The bending terms and the stretching terms.

oW, _
oa R

2
Where, these 22( J are non-linear terms



And these terms% Uy 08y Wody
oo a, 5,3

are linear contributions.

-1
Here it is i is common, we can take it as [1+%]
1

Because A = a [1+ %]

1

-1
We will take 1 inside and (1+%j will be taken common. &, will be:
& 1

(l+£j_l l[%-l-ﬂaﬁ-l-MJ-i—(]ﬁ-ij_l 1 (a\N aium] [al/ll ﬁaﬁ
R) |a\da & df R R) (2a° R ) Ja\da a, op

Now, we can say:

This term 1 %+uﬂaii+wOal ,will be &%,
al\da a, 08 R

This term [ 12 (aw 4l 10 j is having slight difference it is known as &))",
2a°\ 0

a
6W1
And this term = is known as &},
a aa a 6,8

S

-1
This &; has three components in which [1+—J is common can be written like this:

=) A
£, = (1+ %) [8% + (1+ %j el + élll] .

Similarly, &,,can be written as:

-1 -1
S S A
Yy = (1+ R_zj [8;); +(1+ Ej En+ 6‘;2]

|
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If we substitute like this, N,, can be written as:

-1 -1
S S S A
Q, [1+ R—zj [1+ a} {81"; + (1+ gJ N+ 5111] +
-1 -1
S S oL S NL o, Al
Q (1+—j(l+—j & +[1+—j &g, +&
12 R2 R2 22 R2 22 22

dg

=2
s
B
Il
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But, for the case of N,, :

-1 -1
[1+ Ri] common and the same terms &5, + (MRLJ &y +¢ &, multiply d¢

2 2

-1
will be there. We will have terms like this Q,, [1+ Rij[H%j and
2

=]
{gff +(1+%j el +¢& 1} is the strain part.

-1
For the case of &) this Q, [1+ RLJ[H%J will be the coefficient. For the non-linear,

2

if multiply with then these three terms &, &))", and &, will be the coefficient, for the

case of bending ¢&., will be the coefficient.
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The coefficient is denoted by some terms A;. Generally, in the plate, we called it A

index.
oL 211 21 A1 22 ~0L 222 22 Al
Nll 811 + 1 811 + B 11 811 + 2 822 + 2 822 + B 12 822

Here, this index is noted as:
For the case of linear it will be A, for the case of non-linear it will be A%*, and for the
222 and 81222 .

case of bending it will be BZ'. Q,, contribution will be

Why we have put that index 217? It tells you that 2 means (1+ Rij and 1 means
2

2

2 4
S S
1+= (| 1+=| dg¢,
LQ“( R ]( RJ ’
2
No inverse in the first index, the second index is inverse and it also tells you the radius of

curvature in that direction.



Let us say IQH( RJ(LL Rf ] de.

2
2

When we talk about non-linear terms then, it will have 2 inverses.

- faleglg og)«

2

It is carefully designed so that we know the meaning of every index.

In the case of the plate just A, is sufficient because A, in the case of the plate is just

Q,,d¢, here, we do not need the second index at the top because there are no terms,

N‘Ij'—;l\)\:!'
-

but now we have (1+ %] and [1+ Rij these two terms. You will have the components

1 2

of N,,,N,,,and N,, . We may forget which will be the inverse one, it will help us to

find that properly.
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Now, we have to find the definition of a moment.

The definition of the moment M, is:

My = | oug [l-FRi}dg

2

N‘}'—;N\T

-1 -1
Now, we can express o, in terms of Q| 1+ i] &+ £1+ ij e\ +&, |and
R, R,
-1 -1 7
Q1+ | | +|1+2| gV +é,
RZ R2

Therefore, M,; will become:

2 ¢\ ¢\ Al ¢\
JIHR_J Q“(HRJ gﬁLJ{HEJ gl +é&, +Q12[1+R_J 8§2L+[1+R—2j EN+E, |tde
2

Already | have explained the meaning of &%, &} and &,.

_ P21 0L 211 ~NL 2145 22 ~0L 222 ~NL 24
Mll - Bll 811 + Bll gll + Dll gll + BlZ 822 + BlZ 822 + D12 822



h
2 -1
Here, B = [ ¢Q ( J(Hi} deg,
11 J; 11 R2 Rl
2

5 N, )
gQ“[ E](“E] [“ﬂ i

211 _
Bll =

I\)‘D_'—.I\)\D'

and ¢&,, will be ¢°.

Whenever ¢ come up we denote it as D, bending stiffness

h
2 -1
D% = [ £*Q, [1+ Rij[u %) d¢
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We have defined the definition of M, and N,,, now a slightly different definition is of

N,,. What is the definition of »., and 7}, "

7, have two parts:



The first part is:

i{% Ulo%_i_ 1 (avvo_%uloJ(awo_azuzo]}
R

Al 6a a, 88 2A\0a R )l R,

And the second part is:

A\ & Oa

1 [GUIO u20 %]
When we were developing the shell governing equations, the first part is corresponding

to N,,and the second part corresponding to N,, .

71y = Qg 712

7., have three contributions @ plus @ plus ¢a, .

The same way N,, will be:

(1+ %]Q% (ng + )" +ga32)dg.

,\,‘\:_L_,N\:y

-1
1 .
Now, we can say, K IS common, so, (1+%J come here.

N,, will be:

1
l Uy 1 < Uy,
[UZO’a a al’ﬂJ—i_ 2a12 (1+ le (WO’Q Rl ]

2
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The first term Qg [1+ %j(ﬁ%j will become the definition of A%, the bending term
will be denoted by BZ .

N,, will become:

A + o @ + By
Similarly, N,, will be:
Ay + 6 @+ B,

Sometimes 1/2 is taken inside the definition because it is common in all the non-linear
terms. In some books of shell theories, 1/2 is taken inside the definition of @ and @,"

but in some books, it is kept outside.
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We can write or generalizes in an index form.
The very first definition is Ai].*ﬂ will be:

)y e)
Q [1+R JLHR ] deg.

a 4

,\,‘\:_c_,,\)\g-

The definition of B will be:

Q (1+ Rij(l—i_ Rij cdg.

a B

N‘é_'—;l\ﬂ:

What is the definition of D? The definition of Dij?‘ﬁ will be:
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The definition of non-linear terms ””’7 will be:




Ve ) [1e)
Q; (1+ RJ(H RJ £l+ RJ dg .

For the case of non-linear terms, we have three indexes. If you are not considering the

N“:'.'N‘j

non-linear terms then do not worry, but if you consider the non-linear terms then it will

-1 -1
have three indexes and the last two indexes [HRLJ £1+i] will have inverse terms.

B 4

Similarly,

h

> -1 -1
B = [Q |1+ |[1+=| |1+= | «d
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These are the generalized definition for A;, By, and D; . The point to be noted here

N | =

-1
7= A, because Al :IQ” (“Ri](HRij dg.

“h s 2
2

S

-1 -1
Here, the term (“Ri] is inverse but in the case of A‘fﬂ, the term (HR_] IS
s

o

inverse. They will be equal only when you say that your shell is very thin and you are

going to neglect these termsR, and R, then they will be the same.
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Now, we are clubbing into a matrix form that N,,, N,,, N,,,and N,,.

[ A21 22

0 0|

N11 1 2

N, _ 22l 222 6 0

N,| |o o 20

Na [0 0o o A2

r oL

81 1

oL
822

oL
}/12

oL
_7/712

_81211 B1222
B Bz
0
0

0

21
0o B o

0O O
0O O

12
0 Bg 1

>

>

N

>

=

>

@,

™ p211 222

0o 0|

1 2
lél.l 152 0 0
o o AY o
o 0o o0 A

There will be a matrix in which the non-zero components are placed like this. The first

21
1

22

component are 2

combination, the stretching part, and the component

21
2 1

22
2

21
s » and

=2 these will contain the linear

plus the green terms are non-linear contribution.

BZl

11

BZ will have the bending part,

Depending upon the definition in some of the books 1 by 2 is kept outside, sometimes, it

is kept inside the definition. So, it is just a matter of choice. The point to be noted here is

that if it is a plate, then the terms B2 B/ may not exist, but for the case of shell, all the

terms will exist.

Similarly, we can represent the couple constitutive relation.




[p21 22 M oL ] [2t 22 I A 211 222 I &NL ]

M Bll Bl2 0 O 811 D11 D12 0 O 1 Bll BlZ 0 0 81
21 p22 oL 21 22 A

M 22 B, B, 0 o ||¢& 22 D, D, 0 o | ¢

M

M

111 122 NL
B, By 0 0 | &
1 o o Bi o |7y o o Do ||@&| |0 o B o ||la&

2] [0 o o Bg |[/°%L] [0 o o Dg |[@] |[o o o B |lap-

These are the in-plane stresses and in terms of strains. Ultimately, for the case of a
solution, we will write it explicitly and solve it. But first, we have to define it like this. It
is also important to write like this from a programming point of view, we write a nonzero

component of a matrix, and then later on we have to multiply with this.
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The same way, with the moment M,,, M,,, M,,, and M,,, we have to find it and
arrange that in BZ', D7, and B2 matrix. B2 is for bending, D2’ is called stretching,

and B’" is the non-linear part.
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Now, we have the shear forces Q, and Q, can be written as A,, and A.. and the

A, o] &
coefficient will be &5, and &} . {QZ}:{ ” } =
Q 0 As &

Here point to be noted that for the case of first-order shear deformation theory, it is

multiplied or divided with some K depending upon the situation.

Here we are taking a general case, in the first-order theory the shear forces when you

evaluate, do not come so accurately.

We have to multiply with a factor known as the shear correction factor. Based on the
geometry and loading the shear correction factor is evaluated and it is multiplied with

that so that we can get accurate shear stresses along with the thickness.
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Already, | have discussed that for a case of thin shell Ri and = are neglected and for
2 1

the case of shallow shell these are neglected, but for the case of thick shell, these are

-1
considered. Now, how do you solve this (1+ %j ? Ultimately, you are writing a

1

program you need one number.

This term can be written like (1+ x)fl, the binomial expansion of that will be:

(1+ x)f1 =1-X+X =X+
If we expand that term and it will go up to infinity.

Based on the inclusion of these terms will give you an entirely different shell theory,

whether we say that we have to take only the first term, the logic behind that is if the

thickness is small and R, is large then, this can be neglected.

But, for the thick shell, generally, in the case of flugge’s shell theory, up to the second-

order terms are considered in this binomial expansion.



2 2 3 4
= IQll[l—i_i] l+£+(£j —[iJ +(i] +onn d¢
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2
In most of the thin shell theories, only the first term 1+% is taken in the case of inverse

and some researchers have considered 1—i also and some other researchers have

considered up to this. Depending upon that compared to 1 the contribution of these terms

is less, but sometimes they may give more accuracy at the stresses required zone.

If we talking about composite plates in that case that researcher has considered the term

Jal gl b

Because at the interfaces the transverse stresses are there bending stresses are there, we

up to:

,\_,‘:_!.,N\:-

need to consider these terms. If you take up to the second-order, then it is considered as

flugge’s shell theory.
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And if you multiply, ultimately, you get the terms like this
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2
You have to evaluate it through the thickness.

If it is an isotropic shell or a single layer shell, though it may be orthotropic material, if it
is a single layer shell, then you have to integrate it. But, now here we are talking about a
composite shell that may have an ‘N’ number of layers then how do you evaluate it?

In the case of the N layer, layer-wise you have to do addition that if the first term is Q,,,

at each layer, the stiffness will be different. Let us say K goes from 1- N,

N
Q) |, K-th layer will be 1, 2, 3, and so on.

K=1
Let us say, K = 1, then the integration will give you ¢ times and if you put the limits

_?h to 2 , the coordinates of the top layer minus the coordinates of the bottom.

If there is one layer let us say K-th layer, coordinate of upper layer minus lower

coordinates gives you the thickness. Ultimately, it is the thickness of that layer,

(gK+l — gK) is the thickness of that layer.
Now, the second term i, if you integrate it will become —l[———J and the third
R 2R R

. 1( 2 2 . o
term will be E(ﬂ—g—'(} this, when we have a g2 then it will be a g3 , therefore
2 2

] 1 3 3 l 3 3 ) ]
fourth term will be —5[%—;—;j+§[%—% and the fifth term will be
2 1" Y2
1 gi+l _ gli
4\ R,R* R,R?)

In this way, we can evaluate the effective coefficient of A% for a case of a multi-layered

composite plate.
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Whenever we are going to develop a solution for a multi-layered plate based on FSDT

N

21 _ K

1= ZQll
K=1

theory or a classical shell theory or any higher-order shell theory, then we evaluate

effective coefficients and adding through like this.
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What is this Q5? Qff can be found in terms of stiffness in that direction:
ES

Q=
R BT

These relations are given in books of composites, but for reference, 1 am presenting here:

,and Qf =G5 .

K =K K
QK _ U Ef QK _ E,
12 = 2 = K
2

BTN 1 g

“HMeMHa

A composite shell may have many layers and for a cross-ply, it may be 0°, 90°, 0°, 90°,
and so on. What is the concept of Z, and Z,,,? Let us say we are giving numbers 1, 2,

3,4, 5, upton, and in between K-th comes.



For a K-th layer, this will be the bottom coordinate and this will be the top coordinates.

Above that, there will be K +1-th layer, and here will be K - 1-th layer. This will be Z,

and this will be Z,,,.

These are the standard procedure one can use. For a composite shell concept, these are
the same thing Z, layer instead of thickness, we decide the thickness of a shell is

_hton
2 2
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We have defined the constitutive relations, now, we will solve for a static case and first,

we will try for the linear governing equations, and here all static terms are going to be 0.

1r .
ai_a (Nuaz ),a —Npa,, +(N2131) + NlZalﬂ] Ql +0¢, =0 equation(l)
L
1r Q, .
——| =Nya ; +(Npay) , +Nya, , +(Npa,) J+—+q2 =0 equation (2)
8,8, - ’ R,
17 .
aa, -M,8,, +(Mya,) +(M21a1)’ﬂ + Mlzam}—Q1 =0 equation(3)  So, why we
L
17 .
al_a__Mllai,ﬂ +(M22a1),ﬁ + MZlaZ,zx +(M12a1)’a:|_Q2 =0 equation (4)
2

-0, =0 equation(5)

[ N11 sz] (QlaZ ),a (Qzai),ﬂ
- + +
R R a,a, a,a,



In the shell theories even after developing the basic governing equations, we can further
simplify which means the solution of the first one is the membrane theory of shell and
the second is the moment theory of shell or a flexural theory of shells. Why do we need

separate treatments?

The reason behind that is we can solve a problem altogether, but that will be more
complex. If we say that if loading in the boundary condition is such that it comes under
the assumptions of membrane theory of shells, then we will apply the concept of
membrane theory of shells. The idea behind that shell is very thin and it is subjected to

only in-plane stretching, there is no bending moment.

Moments M,,, M,, and M,,,M,, are 0. If we assume this condition because we say
that it cannot take a bending moment only the stretching in a plane can take place. Then,

the equation (3) and equation (4), if you put all 0, then Q, and Q, will be 0.



The equation (3) and equation (4), become identically 0 and from that Q, and Q, gives

0. If you use this relation in equation (5) that will give you:

And it will become the third equation.
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Now, if you substitute in the first and second equation that will give you these three

equations
1 .
aa [( Ny, ),a —Npa, , + ( N21a1)’ﬁ + leai,/}:| +0, =0 equation(l)
2
1 i
an Nya; 5 +(Npdy) , +Nydy, +(Npp3,)  +0d, =0  equation(2)
2
Nll N22 i
-——-——%1-0,=0 equation(3
[ R R, 05 q 3)

Depending upon a situation or requirement we can apply.

Now, you see that the number of governing equations is reduced, plus the number of
variables also have been reduced. We have variable N;;, N,,, N,,,and N,, . Again,

depending upon the cases, we can say that our variables will be also three, later on, some



terms will going to be 0 and that equations will be 3 in numbers.

The membrane state of stress that cannot support the bending and twisting momentum,
then the corresponding theory is of the thin shell in which we assume that there are no

bending moments.
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Now, what are the necessary and sufficient boundary conditions? When we mean

concept, it is when we are going to apply the membrane theory of shells.

Based on your careful examination, suppose, some work come to your research work,
you are going to solve a problem let us say in the case of a fluid-filled structure, for
example, you have a very big cylinder in which the oil is filled and it is buried inside the

soil.

It is carrying a vehicle like LPG storage tanks and through a trailer, it is moving. You
want to know the stress is in the shell or let us say some aerospace is moving and their

body of shell you want to study.

When do you analyze those shells under the membrane theory of shells? The very first
condition: the boundaries of a shell-free from transverse shear forces and moments

which means the boundary should be free from any moment and shear force.

Generally, the simply supported one is the most ideal situation. In the simply supported

one, we may have no moments, but we may have the shear forces at the boundary. The



free boundaries: no moments, no shear forces and the loads applied to the shell

boundaries must lie in the plane that is tangent to the middle surface.

Load should be applied in such a way they lie in the plane of the middle surface so that
they cause a pure stretching effect in the shell. They do not cause a bending effect. The
next condition is the normal displacement and rotations at the shell edges are
unconstrained which means they are allowed to move, i.e., their edges can displace freely

in the direction of normal to the middle surface.

Boundary condition should be applied in such a way that the w which is the transverse
deflection, can have the transverse deflection, which may allow moving in that direction.
The shell must have a smooth varying and continuous surface. If there is a breakup in
curvature, if there are abrupt changes in the dimensions or the curvature then their

moments may arise.
We cannot apply those concepts.
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And, then the component of the surfaces and edge load must be also smooth and
continuous functions of coordinates. If we talk about a structure, inside that there may be

some disruptions.

These are the points where curvature changes and then there are some certain changes in

the thickness or some boundary conditions, clamped, it may have stresses. There we



cannot apply the solution. We cannot say that the membrane theory of stresses will apply

to those conditions.

It should be continuous like this. In this zone, the membrane theory of shells can be

applied.
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Now, we are going to perform the membrane theory of stresses in the next lecture. 1 will

explain one or two examples of the circular cylindrical shell.

First, we will convert using this concept that the longitudinal axis « =x, g = 0, a,=1,
a, =R, R, = oo, and R, =R. We will first convert these three equations into a

cylindrical equation, and depending upon the loading and other boundary condition we

are going to solve these equations.

Thank you very much.



