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Hello everyone. So, till now we have considered flow over flat plate, with constant or 

variable temperature boundary condition. In those cases, pressure gradient was 0; right, 

dp

dx
is 0 for flow over flat plate because your free stream velocity U∞ was constant. 

Today, we will consider Boundary layer flow over a wedge, where U∞ is function of x. 

So, for potential flow you know outside the boundary layer velocity will vary as
mCx , 

where m is wedge parameter. 

(Refer Slide Time: 01:15) 

 

So, let us consider laminar boundary layer flow over a wedge. This is the case. So, you 

can see this is the wedge, with the wedge angle π β and your free stream temperature is 

T∞ and free stream velocity is U∞, x is measured along the surface and y is normal to the 

surface. So, obviously, you can see when fluid will flow over this wedge, it will be 

accelerating; the fluid velocity will accelerate.  
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So, obviously U∞ will be function of x. So, these are the assumptions we will consider 

symmetrical flow over a wedge of angle πβ. Uniform surface temperature; so, we will 

consider Tw as wall temperature as constant. Uniform upstream velocity, pressure and 

temperature. And, both pressure and velocity outside the viscous boundary layer vary 

with distance x along wedge. So, potential flow theory gives the solution for the free 

stream velocity as ( ) mU x Cx  , where m is the wedge parameter and C is constant. 

The relation between these wedge parameter m and wedge angle β is given here. So, you 

can see wedge parameter m, you can write as 
2

m






and wedge angle you can write 

in terms of the wedge parameter
2

1

m

m
 


. Now, you can see that as a special case, if 

you put β = 0 m will become 0. And, what will be the flow situation? If β becomes 0, so 

it will be flow over flat plate.  

So, you see if this wedge angle β, if you put 0, then obviously, it will become flow over 

flat plate. And, if β is 0; that means, m will be 0 and if m is 0, so U∞ will be constant. So, 

it will be a Blasius flow over a flat plate. And, if β = 1, so that will means it will become 

π, so it will be a vertical plate. So, if flow occurs then it is known as stagnation flow and 

for β = 1, m will be 1 and if you put m = 1 here, you can see U Cx  , so it is a 

stagnation flow. 

(Refer Slide Time: 04:14) 
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So, here you can see two different situations for β > 0. So, in this case you can consider 

that, flow over a wedge with angle π β and β varies between 0 and 1, then the flow 

accelerates along the surface and pressure gradient is favourable. Because 
dp

dx
< 0, so 

pressure gradient will be favourable and flow will accelerate. 

For β < 0, so if you consider flow through an expansion with angle -π β. So, β will vary 

between -1 and 0, so you can consider this expansion. So, it is kind of diffuser. So, fluid 

is entering with velocity U∞, once it is comes here, so you can see it is kind of diverging. 

So, the wall temperature is Tw and x is measured along this wedge surface. And, in this 

particular case, you can see the flow decelerates along the surface and pressure gradient 

is adverse that means, 
dp

dx
> 0.  

And, in this situation, it may happen that there will be a flow separation, and if flow 

separates boundary layer flow theory will not be valid. So, we will see that, at which 

wedge angle β flow separates? And, how do you know that flow separation has 

happened? When you will see the shear stress τw or the velocity gradient will become 0, 

so that time you will know that the, at that point, flow separates. So, after that boundary 

layer flow theory will not be valid. 

So, let us consider laminar boundary layer flow over a wedge and we will use the 

similarity transformation technique similar to what we have done for solving the 

boundary layer equation for a flow over flat plate. We will use that, similarity variable as 

well as the velocity distribution. 

(Refer Slide Time: 06:44) 
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So, you can see what we derived in similarity transformation approach, similarity 

transformation. So, we have used the similarity variable yg  and g is function of x, 

and
U

g
x
 .  

So, you can see from our earlier lecture that, we have derived g which is function of x as, 

U
g

x
 . So, you can write

U
y

x



 . And, what is the U∞? U∞ is your free stream 

velocity and we have considered it as mU Cx  , where m is the wedge parameter. 

So, here if you put 
mCx then what you will get η? η you will get as 

mCx
y

x



 and you 

can write as
1

2

m
C

y x




. Now, let us take the derivative of η with respect to y as well as x. 

So, what you will get? 
1

2

m
C

x
x











and
3

2
1

2

m
C m

y x
x






 




. 

So, now, let us write down the expression for 'f , whatever we have derived in earlier 

lecture. So, we have also shown
df g d

F
d U d



 

  . So, where Ψ is the stream function 

and we have already told that f is having the physical significance of stream function. 

So, from here you can write 
g

f
U




 equivalent to that. And, you can 

write
1

U f
g

  . And, what is g?
U

g
x
 . So, you can write

x
U f

U


 



 . So, from 

here you can write U x f   and mU Cx  .  

So, if you put it here, so you will get
1

2

m

C x f 


 . So, you can see Ψ(x,η) because f is 

function of η we know, right. And, also you can see Ψ is function of x. So, it will be 

Ψ(x,η). 
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So, now let us write the von Mises transformation. So, what is von Mises 

transformation? So, if from any book you can see this von Mises transformation, if (x,y) 

= func (x,η), the von Mises transformation you can write as, 

y y x y x y

x

x x x x x x
 

 

 

       
           

       
. 

Similarly, you can write x x x x x x

x

y y x y y


 

 

      
         

      
. 

So, from here now, 
1

2
m

C x f 


 .  

So, from here you can write
1 1 3

2 2 2
1 1

'
2 2

m m m

y

m C m
C x f C x f y x

x


 



    
  


 

Similarly, 
1 1

2 2'
m m

x

C
C x f x

y






 
 


. So, what you can write from here? So, you can 

see it will be 'mCx f . And, it is nothing but, 'U f . So, now, let us write the governing 

equations for flow over wedge. 
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So, we will have the assumptions steady laminar flow, so obviously, you can write the 

momentum equation as 
u u

u v
x y

 


 
. Now, in this case you will have pressure gradient. 

So, it will be
2

2

1 dp u

dx y





 


. So, this is your x momentum equation. 

And, what is the energy equation? Energy equation will remain same, neglecting the 

viscous distribution you can write
2

2

T T T
u v

x y y


  
 

  
. So, these are boundary layer 

equations, right. So, in this case as pressure gradient is not 0, so we have written
1 dp

dx
 . 

Now, we have found the stream function and its gradient with respect to x and y. So, you 

will be able to find the value of u, v and its gradient. So, first let us write u. So, u
y





. 

So, already we have found it. So, it will be just 'mCx f and it is same as whatever we 

have written for the Blasius solution. So, for flow over flat plate we have already 

defined '
u

f
U

 . So, from here you can write the x direction velocity 'u U f . And, for 

m = 0 obviously, flow over flat plate, U∞ is constant and 'u U f we have already 

shown. 
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Now, the velocity v you can write as v
x


 


, and that we have found already. So, if 

you see it will be
1

2 11 1
( ')

2 2

m
mm m

C x f C yx f


 
  . So, you can see from the 

previous expression from here. So, that we have rearranged and we have written in this 

form. 

So, if you rearrange it, you can see you can write, 
1 1

( ')
2 1

U m m
v f f

x m


  

  


 

And, if you see this is the similar expression this in the inside the bracket. So, if you put 

m = 0; m = 0, then what will be v? So, v will be m = 0. So, it will be, 

1
( ')

2

U
v f f

x


   . So, this is the expression already we have seen for flow over 

flat plate.  

Now, u, v we have found. Now, we let us find 
u

x




and 

u

y




. So, you can see from here u 

you have written 'mCx f , so 
u

x




you can write 1 'mCmx f . Again, we are using the von 

Mises transformation. You refer in last slide and use that expression
3

2
1

2

mC m
y x




. So, 

u

x




expression you can write as, now again 

mCx will write as U∞. Hence, 

3
21 1

' ''
2

m
m mu C m

Cmx f Cx f y x
x 


 

 


 

So, it will be
1

' ''
2

mU Uu m
f f

x x x
  

 


.  

And
1

2'' ''
m

m Uu C
Cx f x U f

y x 







 


.  

And, 
1

2

2

2
''' '''

mU Uu C
U f x U f

y x x



 


 

 


 


. Now, you see we have written the 

expression for u, 
u

x




, v, 

u

y




,

2

2

u

y




.  
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Now, we need to find the pressure gradient. So, for pressure gradient, so you can see for 

boundary layer flow, 
p

y




=0, right. So, whatever pressure will be there outside the 

boundary layer that will be impressed inside the boundary layer. So, outside you can use 

Bernoulli’s equation and find, what is the temperature gradient. 

(Refer Slide Time: 22:46) 

 

So, you can see the flow outside the boundary layer can be considered as inviscid. So, 

from Bernoulli’s equation you can write 
2

2

U
p C

 
   or you can 

write
dp dU

U
dx dx

 
  . So, you can write

1 dp

dx
.  

So, inside the boundary layer whatever pressure gradient will be there, that will be equal 

to the outside pressure gradient. So, that will be 
1 dp

dx
 which will be 

dU
U

dx


 . 

And, we know mU Cx  . So, 
1mdU

Cmx
dx

  . So, from here you can see 
1 dp

dx
you can 

write as 
2mU

x

 . So, now, the expressions for u, v, 
u

x




, 

u

y




, 

2

2

u

y




and 

dp

dx
you put in the 

x momentum equation. 
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We have x momentum equation
2

2

1u u dp u
u v

x y dx y




  
   

  
. So, all these expressions 

you put in this x momentum equation. So, we will get, 

1 1 1
'[ ' '' ] [ '] ''

2 2 1

mU U U Um m m
U f f f f f U f

x x x m x


 


   

 

  
   


. 

Then, we have
1 dp

dx
 , you can write as

2mU

x

 . And, 
2

2

u

y




. So, you can write, 

2

'''
U

f
x




 . 

So, this is the expression you simplify it, multiply both side by
2

x

U

. So, multiply both 

side with 
2

x

U

and simplify it.  

So, if you do it, you will get, 
2 1 1 1
' ' '' '' ' ''

2 2 2

m m m
mf f f ff f f 

  
   and that will 

be just '''m f . 

So, you can see here, this terms will get cancelled, this term and this term and you will 

get, 
21

''' '' (1 ' ) 0
2

m
f ff m f


    . So, you can see we started with partial differential 

equation, then after using the similarity transformation we could transfer the PD to 

ordinary differential equation. So, this equation is known as Falkner-Skan equation.  
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So, you can see this is a third order ODE and non-linear, third order non-linear ODE. 

And, what are the boundary conditions? Boundary conditions you have, at η = 0, ok, 

from u = 0; you can write 'f (0)= 0 and from v = 0 you have the expression of v. So, 

from there you can write 'f (0)= 0. It is kind of a stream function where you are 

assuming the value of stream function on the wall as 0. And, at η →∞, so u = U∞. So, 

from here you can write 'f (∞) = 1. 

If you put m =0 then, you will get flow over flat plate and you will get the Blasius 

equation back. So, you let us see whether we get it or not. So, if m = 0, then you can see 

from this equation m = 0, so this is the last term will become 0 and here it will be 1/2. 

So, it will be, 
1

''' '' 0
2

f ff  ; which is your Blasius equation.  

Now, we have solved for the velocity profile because, these third order non-linear 

ordinary differential equation if you solve using numerical technique, then you will get 

the velocity profile for flow over a wedge. Now, let us consider energy equation as a 

special case we will consider surface or the wall as a uniform temperature, so 

temperature will remain constant; with that assumption let us find what will be the 

equation to find the temperature distribution. 

(Refer Slide Time: 31:16) 
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So, if you see we have written the energy equation as
2

2

T T u
u v

x y y


  
 

  
. So, now, 

already we have the transformation details. Here, we are assuming Tw = constant. And, 

we are assuming θ is function of η only, ( ) W

w

T T

T T
  




 


. So, from here you can see, 

( )w wT T T T    . 

So, the equation you can see you can write if you put here, so you will 

get
2

2
u v

x y y

  


  
 

  
. And, θ is function of η only and we have the transformation 

variable η, right. It is
U

y
x




 . So, let us find the value of
T

x




, 

T

y




and 

2

2

T

y




and 

already we have the value for u and v. 

So, 
x




now you find. So,

U
y

x



 . And, 

1
2

mC
x

y









and

3
2

1

2

mC m
y x

x





 



. And 

again, we will use the von Mises transformation and we will find
x




. 

In this particular case, θ is function of η only, so easily you can find the derivative. So, 

you can write
3

2
1

'
2

mC m
y x

x






 



. So, this you can write as

1
'

2

m

x



.  

And, 
y




if you write it will be

1
2'

mC
x

y










. So, you can write '

U

x



 . And, 

2

2
'

U

y x










.  

So, if you now substitute this with the value of u v here. So, what you will get? 

1 1 1
' ' [ '] ' ''

2 2 1

U U Um m m
U f f f

x x m x x


    

 
  



  
   


, multiply both side with 

x

U

 and rearrange it.  
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So, you will get as 
1 1 1

' ' ' ' ' ''
2 2 2

m m m
f f f


     



  
   that means, it will be, 

1
''

Pr
 . So, this term this term will get cancelled, so you will get finally, 

Pr
'' ( 1) ' 0

2
m f    . So, you can see this is the ODE and this is linear equation, 

because already you know the value of f, right from the velocity distribution. So, this is 

known. So, from the Falkner-Skan solution you will be knowing the velocity profile. So, 

from there you can calculate the f. 

And, if you put for m = 0 as a special case flow over flat plate, then you can see m = 0; 

that means, it will be
Pr

'' ' 0
2

f   . This is your Pohlhausen equation we have already 

derived for flow over flat plate. And, what are the boundary conditions? So, boundary 

conditions at η = 0 T = Tw. So, if it is T =Tw, then θ = 0. And, at η →∞, so T will be T∞, 

so it will be 1.  

And, you can see this is the second order ODE. Using some numerical technique you can 

solve this equation, you can find the temperature distribution and if you know that, 

already we have derived the expression for temperature non-dimensional temperature for 

flow over flat plate, similarly, you can do the analysis here and you can find the 

temperature distribution as non-dimensional temperature. 

(Refer Slide Time: 37:42) 
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( 1)

2

0

( 1)

2

0

Pr

Pr

0

1

m

m

fd

fd

e d

e d





















 

 



 







. 

And, if you remember, we have written the expression for 
d

d




it is required to find the 

Nusselt number or heat transfer coefficient. So, that at η = 0, right; 

( 1)

2

0

Pr

0

(0) 1

m
fd

d

d

e d











 







. So, once you know the f from the velocity distribution you will 

be able to find, what is
d

d




? And, using some numerical technique you can find the 

value. 

So, if you solve this Falkner-Skan equation whatever we have derived. So, you will get 

the velocity profile. And, once you know the velocity profile from the energy equation 

whatever we have derived ordinary differential equation you will be able to find the 

temperature distribution. And, once you know the temperature distribution you will be 

able to find 
d

d




= 0 that means, the temperature gradient at the wall and you will be able 

to find, the local heat transfer coefficient, local Nusselt number, average heat transfer 

coefficient and average Nusselt number. 

(Refer Slide Time: 40:08) 
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So, if you see laminar wedge flow, so for different β and corresponding m value is 

shown here and if you see
1

2Re
2

x
fxC , this value if you see here then, you can see for 

β=0, m = 0. So, what is your ''(0)f ? That means, your velocity gradient at the wall. So, 

that is 0.33206. So, that you have already found, right. So, this is the flat plate case. 

And, if you see the case, where this is your ''(0)f ;  that means, your velocity gradient at 

the wall. So, velocity gradient at the wall become 0. What does it mean? Shear stress is 

0. And, if it become shear stress as 0; then obviously, the fluid particle will just float, and 

that is the point of flow separation. And, flow separation occurs at that point. So, you 

corresponding β value you can see an m value you can see where flow separates. 

So, after that your boundary layer theory is not valid, because the important assumptions, 

one of the important assumptions we have taken while deriving the boundary layer 

equation is that flow does not separate. So, here flow is separating at this β value. So, this 

is the separation point. 

Now, for different β value, so this is the similar case. And, at this point you can see that 

''(0)f becomes 0 for this particular β, and if you see the 'f versus η, what 

is 'f ? '
u

f
U

 . So, 
u

U

and η, so you can see what is the velocity profile at different 

value of β.  

So, this is the case, where flow separates. And, if you plot the ''f versus η then you will 

be able to see, so for this particular case where flow separates you can see, the value of 

''f is 0. And, raised other β values, you can see you have a positive value that means, 

shear stress is present at the wall, but at β value of -0.19884 your velocity gradient 

becomes 0 and flow separates.  
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Now, if you see the
(0)d

d




; that means, 1

2Re

x

x

Nu
. So, for different values of m and these for 

different Prandtl number 0.7, 0.8, 1, 5 and 10, these are the values of 
(0)d

d




at different 

m. 

So, now once you know the value of 
d

d




you will be able to calculate the local heat 

transfer coefficient because, 
(0)

Rex x

k d
h

x d




 . So, for at any Prandtl number and any 

m value you will be able to find local heat transfer coefficient, local Nusselt number, 

average heat transfer coefficient and average Nusselt number. From this table you can 

see. So, from the solution of the Falkner-Skan equation and the energy equation the 

value of
(0)d

d




, at η = 0, it is diluted. 
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Now, let us define displacement thickness, momentum thickness and shape factor for 

boundary layer flow. So, first let us discuss displacement thickness. Consider just free 

stream velocity U∞. So, if you consider this case then obviously, you can see your stream 

line will be all parallel to each other, right.  

So, if you consider a stream line, so it will be parallel to each other all stream line. Now, 

if you bring one flat plate here. So, what will happen? So, due to the presence of flat 

plate there will be formation of boundary layer, over this flat plate, so it will. So, this is 

the boundary layer. So, this, at this location, this is your boundary layer thickness δ. 

Now, you can see that in the presence of flat plate, this stream line will be no longer flat, 

ok, because it will deflect. Why? Because velocity gradient will be there and due to the 

velocity gradient to have the same mass flux at each location these stream line will 

deflect. So, your new stream line will be like this. So, it was earlier flat sorry a straight 

line, but there will be deflection due to the presence of this flat plate.  

Because, you can see at this location 1 and at this location 2, you should have same mass 

flow rate and as it is a stream line there will be no flow across the streamline. So, mass 

flow rate at 1 should be equal to mass flow rate 2. And hence, as velocity gradient will 

be there these stream line will deflect and these deflection is known as displacement 

thickness δ*. 
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So, now, let us find, what is the δ*? So, from here you can see that at section 1 what is 

mass flow rate, will be equal to mass flow rate at section 2. So, at section 1 it will be just 

U   because here also, it is same thickness δ. And, at section 2 there will be velocity 

variation here. 

So, it will be
0

*udy U



   . Now, divide both side by U  and rearrange. So, you can 

find
0

*
u

dy
U



 


   . Now, this δ we can write
0

dy



   , so δ* if you put it here and you 

can write
0

* (1 )
u

dy
U






  .  

So, this is the mathematical expression of displacement thickness. And, also you can 

define in this way say you have a boundary layer and this is the velocity distribution, and 

if you have a free stream velocity then, how much distance you have to shift this wall to 

maintain the same mass flux. So, that distance is known as also δ*. So, you can see here 

displacement thickness δ* is defined as the distance by which the external potential flow 

is displaced outwards as a consequence of decrease in velocity in the boundary layer. 
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Now, we will talk about the momentum thickness. So, momentum thickness θ is defined 

as the loss of momentum in the boundary layer as compared with that of potential flow. 
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So, let us consider the same figure here. So, this is your flat plate and this is your stream 

line, and there will be formation of boundary layer, and this is your δ, this is also δ, 

section 1 and this is your section 2, but there is a deflection in a boundary layer and so 

this will be your δ*, right. This is your displacement thickness.  

So, you can see that, if you see the rate of momentum at section 1 and section 2, it will 

not be same although, mass flow rates are same. So, there will be deficit in momentum at 

section 2. So, this deficit is known as momentum thickness. So, mathematical if you see 

here. So, what is the rate of momentum transfer at section 1, at section 1? So, what is 

that? That will be your U U   . So, that is your momentum.  

So, U U   . So, that will be 2U  . And, rate of momentum transfer at section 2. So, at 

section 2 you can see; so, it will be 2

0

u dy



 . So, this is your momentum transfer in this 

section and in outside it will be 2 *U  . 

So, now, you see there will be a deficit. And, this deficit momentum deficit you can find 

the momentum deficit. So, this the difference you can write as, 

2 2 2 2

0

*U U u dy U



           .  

And, you know the value of δ* we have found in last slide. So, it is
0

* (1 )
u

dy
U






  . 

So, you put these values in the δ*, you divide by 2U 
, rearrange this, you will 

get
0

(1 )
u u

dy
U U




 

  . 
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And shape factor, so a shape factor H is used in boundary layer flow to determine the 

nature of the flow. So, H is defined as ratio of displacement thickness to the momentum 

thickness. So,
*

H



 . And, you can see it is known as shape factor, because it solely 

depends on the shape of the velocity. So, the higher the value of H; the stronger the 

adverse pressure gradient and large values of H implies that boundary layer separation is 

about to occur. And, for Blasius laminar boundary layer flow you can find H = 2.59. 

So, in today’s class we considered laminar boundary layer flow over a wedge and we 

defined the wedge angle and the wedge parameter and velocity varies as 
mCx as a 

potential flow. And then, we define the stream function and the similarity variable η and 

from there we found the velocity u and v from the stream function gradient.  

And later, we from the momentum equation we substituted this value of u, v and velocity 

gradients and we derived the Falkner-Skan equation. And, you can see the Falkner-Skan 

equation is the third order non-linear ordinary differential equation, so using any 

numerical technique you can solve this ordinary differential equation. 

Then, we considered energy equation keeping the Tw as constant. And, again we define 

the non-dimensional temperature θ which is function of η only, and we converted this 

partial differential equation to ordinary differential equation using similarity 

transformation and that is second ordered ODE and Linear.  
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And, from there we express the non-dimensional temperature and also
(0)d

d




. Then, we 

have shown the numerical solution for this Falkner-Skan equation, and we have shown 

that flow separates at a particular value of β and after that your laminar boundary layer 

theory will not be valid. At last we defined the displacement thickness as well as the 

momentum thickness and shape factor. 

Thank you.  
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