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Module - 03
Convective Heat Transfer in External Flows — |
Lecture - 09
Falkner-Skan equation: Boundary layer flow over a wedge
Hello everyone. So, till now we have considered flow over flat plate, with constant or

variable temperature boundary condition. In those cases, pressure gradient was 0; right,

dp . .
d—pls 0 for flow over flat plate because your free stream velocity U, was constant.

X

Today, we will consider Boundary layer flow over a wedge, where U, is function of x.

So, for potential flow you know outside the boundary layer velocity will vary asCx™,

where m is wedge parameter.

(Refer Slide Time: 01:15)

Boundary layer flow over 2 wedge

Assumptions:

» Symmetrical flow over 2 wedge of angle nfi

# Uniform surface temperature

» Uniform upstream velocity, pressure and temperature =

» Both pressure and velocity outside the viscous 8L vary U—‘
w

with distance x along wedge

Potential flow theory (inviscid solution) gives the solution for the
free-stream velocity as U,(x) = Cx™

Special cases:
= {
Wedge parameter: m = m Blasius flow =
m=f=0 —=
v o Zm
Wedge angle: = —— i i
m+1 Stagnation flow —
m=f=1 —
e

So, let us consider laminar boundary layer flow over a wedge. This is the case. So, you
can see this is the wedge, with the wedge angle = B and your free stream temperature is
T., and free stream velocity is U.., X is measured along the surface and y is normal to the
surface. So, obviously, you can see when fluid will flow over this wedge, it will be

accelerating; the fluid velocity will accelerate.
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So, obviously U,, will be function of x. So, these are the assumptions we will consider
symmetrical flow over a wedge of angle np. Uniform surface temperature; so, we will
consider T,, as wall temperature as constant. Uniform upstream velocity, pressure and
temperature. And, both pressure and velocity outside the viscous boundary layer vary

with distance x along wedge. So, potential flow theory gives the solution for the free

stream velocity asU_(x) =Cx™, where m is the wedge parameter and C is constant.

The relation between these wedge parameter m and wedge angle B is given here. So, you

can see wedge parameter m, you can write as m zziand wedge angle you can write

. 2m . .
in terms of the wedge parameter S = 1 Now, you can see that as a special case, if
m+

you put B = 0 m will become 0. And, what will be the flow situation? If  becomes 0, so

it will be flow over flat plate.

So, you see if this wedge angle B, if you put 0, then obviously, it will become flow over
flat plate. And, if B is O; that means, m will be 0 and if m is 0, so U, will be constant. So,
it will be a Blasius flow over a flat plate. And, if § =1, so that will means it will become
7, SO it will be a vertical plate. So, if flow occurs then it is known as stagnation flow and

for f =1, m will be 1 and if you put m = 1 here, you can see U_=Cx, so it is a

stagnation flow.

(Refer Slide Time: 04:14)

Boundary fayer flow over a wedge

Farf>0
dp

The flow accelerates along the surface and pressure gradient is favorable =X 0
X

Forf<0

$ 1 dap
The flow decelerates along the surface and pressure gradient is adverse = 0.
p

Flow over 3 wedge with angle nf8 Flow through an expansion with angle —rfl
0sf<1 -1<§<0
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So, here you can see two different situations for f > 0. So, in this case you can consider

that, flow over a wedge with angle = B and B varies between 0 and 1, then the flow

o d
accelerates along the surface and pressure gradient is favourable. Because d—p< 0, so
X

pressure gradient will be favourable and flow will accelerate.

For p <0, so if you consider flow through an expansion with angle - . So, B will vary
between -1 and 0, so you can consider this expansion. So, it is kind of diffuser. So, fluid
is entering with velocity U, once it is comes here, so you can see it is kind of diverging.
So, the wall temperature is T,, and x is measured along this wedge surface. And, in this
particular case, you can see the flow decelerates along the surface and pressure gradient

is adverse that means, j—z > 0.

And, in this situation, it may happen that there will be a flow separation, and if flow
separates boundary layer flow theory will not be valid. So, we will see that, at which
wedge angle B flow separates? And, how do you know that flow separation has
happened? When you will see the shear stress t,, or the velocity gradient will become 0,
so that time you will know that the, at that point, flow separates. So, after that boundary

layer flow theory will not be valid.

So, let us consider laminar boundary layer flow over a wedge and we will use the
similarity transformation technique similar to what we have done for solving the
boundary layer equation for a flow over flat plate. We will use that, similarity variable as
well as the velocity distribution.

(Refer Slide Time: 06:44)

Boundary layer flow over a wedge
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So, you can see what we derived in similarity transformation approach, similarity

transformation. So, we have used the similarity variable 7 =yg and g is function of X,

andg = /U—‘*’
VX

So, you can see from our earlier lecture that, we have derived g which is function of x as,

g= /U—“’ So, you can writen =y fU—"" And, what is the U,? U, is your free stream
VX VX

velocity and we have considered it asU_ = Cx™, where m is the wedge parameter.

So, here if you put Cx" then what you will get n? 1 you will get as 7 = y,/cxx and you
14

m-1
can write as y,|—x 2 . Now, let us take the derivative of n with respect to y as well as x.
14
: 0 cC. ™ 0 Cm-1 ™2
So, what you will get? K/ and—77=y ——X 2.
OX 1% OX v 2

So, now, let us write down the expression for f ', whatever we have derived in earlier

lecture. So, we have also shown F =ﬂ =id—w. So, where ¥ is the stream function

dp U_ dn

and we have already told that f is having the physical significance of stream function.

fzuiwequivalent to that. And, you can

0

So, from here you can write

writey =U _ f % . And, what is g? g = ,/U—; So, you can writey =U _ f L‘;—X . So, from
14

o0

here you can write y =,U_vxf andU_ =Cx".

m+1
So, if you put it here, so you will gety =+/Cvx 2 f . So, you can see ¥(x,n) because f is
function of n we know, right. And, also you can see ¥ is function of x. So, it will be

F(x,n).
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Boundary layer flow over a wedge
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So, now let us write the von Mises transformation. So, what is von Mises
transformation? So, if from any book you can see this von Mises transformation, if (x,y)

= func (x,n), the von Mises transformation you can write as,

R R I |
ox’ ox"ox? ontox’ ox 0 on
Similarly, you can write£|X =i|x5_77|x 4 —, ax| ——|Xa—77|x.
g oOn oy X on " oy
So, from here now, y = Cvx?f.
So, from hereyoucanwrlte—| =+/Cv erlx f+JCvx7 f y _m_lxng

m-!

Similarly, %//lx :\/Cvxm%lf \/7 "' So, what you can write from here? So, you can

<|O

see it will beCx™ f '. And, it is nothing but, U_f"'. So, now, let us write the governing

equations for flow over wedge.
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Boundary layer flow over a wedge
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So, we will have the assumptions steady laminar flow, so obviously, you can write the

. ou u s . .
momentum equation as ua—+v2—. Now, in this case you will have pressure gradient.
X y

2
So, it will be—id—p+va—u. So, this is your x momentum equation.
ayZ

p dx

And, what is the energy equation? Energy equation will remain same, neglecting the

2
viscous distribution you can writeuaa—T+v%:ag. So, these are boundary layer
X
equations, right. So, in this case as pressure gradient is not 0, so we have written—£$ .
p dx

Now, we have found the stream function and its gradient with respect to x and y. So, you

will be able to find the value of u, v and its gradient. So, first let us write u. So, u = ov .

oy
So, already we have found it. So, it will be just Cx™ f "and it is same as whatever we

have written for the Blasius solution. So, for flow over flat plate we have already

defined f '= Ui So, from here you can write the x direction velocityu=U_f . And, for

0

m = 0 obviously, flow over flat plate, U, is constant and u=U_f 'we have already

shown.
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Now, the velocity v you can write asv = —aa—"”, and that we have found already. So, if
X

you see it will be—(v/Cv

m2+1xm21f +CmT_1yxm‘1f'). So, you can see from the

previous expression from here. So, that we have rearranged and we have written in this

form.

Uvm+l m-1 .,
= (—f———nt)

So, if you rearrange it, you can see you can write, v = > 1
m+

And, if you see this is the similar expression this in the inside the bracket. So, if you put

m = 0; m = 0, then what will be v? So, v will be m = 0. So, it will be,

V= ,/U“’V %(—f +nf"). So, this is the expression already we have seen for flow over
X

flat plate.

Now, u, v we have found. Now, we let us find Z—Uand Z—u So, you can see from here u
X y

. u . . .
you have writtenCx" f ', so Z—you can write Cmx™f'. Again, we are using the von
X

Mises transformation. You refer in last slide and use that expressiony . So,

BiTe)

Mm-1 mns
XZ
2

ou . . . . .
a—expressmn you can write as, now again Cx"will write as U.,. Hence,
X

M Cmx™*f'+Cx"f" y\/gm—_l X7

OX v 2

so, itwill e = MY ¢ Yo g0 M1
OX X X 2

Anda—u:mef"\/:xmzlzuw /U—“’f".
oy 1% 124

2
And, 8—L:=Uw wavf"'\/gxmzlzuwu—wf"'. Now, you see we have written the
oy X 1% VX

: ou  ou o
expression foru, —,v, —,—.
OX oy oy
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Now, we need to find the pressure gradient. So, for pressure gradient, so you can see for

boundary layer flow, Zy—pzo, right. So, whatever pressure will be there outside the

boundary layer that will be impressed inside the boundary layer. So, outside you can use
Bernoulli’s equation and find, what is the temperature gradient.

(Refer Slide Time: 22:46)

Boundary layer flow over a wedge
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So, you can see the flow outside the boundary layer can be considered as inviscid. So,

2
’0U°°:Cor

from Bernoulli’s equation you can write p°°+T you can

= . S0, you can Writeld—p.

p dx

.. dp du
write —= = —
dx A dx

So, inside the boundary layer whatever pressure gradient will be there, that will be equal
dp du,_

to the outside pressure gradient. So, that will be l—°°which will be -U .
p dx dx

And, we knowU_ =Cx". So, d;i“’ =Cmx"". So, from here you can see l%you can

: muU? : ou ou ou d :
write as ———=. So, now, the expressions for u, v, —, — a—and —pyou put in the
X

ox ' oy oy’ dx

X momentum equation.
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Boundary layer flow over a wedge
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We have X momentum equatlonua—u+va—u_—1d—p+v—l;. So, all these expressions
ox oy pdx oy
you put in this x momentum equation. So, we will get,
Uoof'[—mu“’f' e ]] /U Vm+1[ f——nf'jU Mg
X +1 VX
2 2 2

Then, we have—id—p, you can write as mu., . And, ou . S0, you can write, vU—°° f"

p dx X ay VX

So, this is the expression you simplify it, multiply both side byU—XZ. So, multiply both

o0

side with Uizand simplify it.

00

So, if you do it, you will get, mf '2+mT_177f - m2+1 ff "— mz_lnf "f"and that will

be just m+ f ™

So, you can see here, this terms will get cancelled, this term and this term and you will
+1 . L .
get, f"+ 2 ——ff"+m(-f'*)=0. So, you can see we started with partial differential

equation, then after using the similarity transformation we could transfer the PD to

ordinary differential equation. So, this equation is known as Falkner-Skan equation.
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So, you can see this is a third order ODE and non-linear, third order non-linear ODE.
And, what are the boundary conditions? Boundary conditions you have, at n = 0, ok,

from u = 0; you can write f'(0)= 0 and from v = 0 you have the expression of v. So,
from there you can write f'(0)= 0. It is kind of a stream function where you are

assuming the value of stream function on the wall as 0. And, at n —o0, so u = U... So,

from here you can write f '(c0) = 1.

If you put m =0 then, you will get flow over flat plate and you will get the Blasius
equation back. So, you let us see whether we get it or not. So, if m = 0, then you can see
from this equation m = 0, so this is the last term will become 0 and here it will be 1/2.

So, it will be, f +% ff "=0; which is your Blasius equation.

Now, we have solved for the velocity profile because, these third order non-linear
ordinary differential equation if you solve using numerical technique, then you will get
the velocity profile for flow over a wedge. Now, let us consider energy equation as a
special case we will consider surface or the wall as a uniform temperature, so
temperature will remain constant; with that assumption let us find what will be the

equation to find the temperature distribution.

(Refer Slide Time: 31:16)
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2
So, if you see we have written the energy equation asug—TJrv%:a%. So, now,
X

already we have the transformation details. Here, we are assuming T,, = constant. And,
. : . T-
we are assuming 6 is function of n only, 8 =60(n) = T

0 w

-I_-FV . So, from here you can see,

T=T,+(,-T,)0.

So, the equation you can see you can write if you put here, so you will

getu%Jrv%:agye And, 0 is function of n only and we have the transformation

OX

2
variable n, right. It isp = y,/u So, let us find the value ofﬂ ﬂand a—Tand
VX ox oy oy’

already we have the value for u and v.

So, %nowyou find. So,7n = y,/ . And, an:\/gxmzlanda—”:y Em_—le And
OX VX oy 1% OX v 2

again, we will use the von Mises transformation and we will find 86_9
X

In this particular case, 0 is function of n only, so easily you can find the derivative. So,

you canwriteﬁzé"y Em—1x2 So, this you can write asm—_lné?'.
OX v 2 2X
And, %If you write it will be%_e \/Exmzl. So, you can write,/U—we'. And,
oy oy 1% VX
6? U, Uo g
oy. vx

So, if you now substitute this with the value of u v here. So, what you will get?

U, f Mt [Jey Ml ¢ -l f] e — oY= 9", multiply both side with
2X X 2 m+1 VX

X :
R and rearrange it.

0
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So, you will get as mT_lnf '49'—mT+1f¢9'—mT_177f '0' =2 9" that means, it will be,
14

Pie". So, this term this term will get cancelled, so you will get finally,
r

9"+%(m+1)f9'=0. So, you can see this is the ODE and this is linear equation,

because already you know the value of f, right from the velocity distribution. So, this is
known. So, from the Falkner-Skan solution you will be knowing the velocity profile. So,

from there you can calculate the f.

And, if you put for m = 0 as a special case flow over flat plate, then you can see m = 0;
that means, it will be 6?"+% f@'=0. This is your Pohlhausen equation we have already

derived for flow over flat plate. And, what are the boundary conditions? So, boundary
conditionsatn =0T =T,. So, if itis T =T, then 6 = 0. And, at n —, so T will be T,

so it will be 1.

And, you can see this is the second order ODE. Using some numerical technique you can
solve this equation, you can find the temperature distribution and if you know that,
already we have derived the expression for temperature non-dimensional temperature for
flow over flat plate, similarly, you can do the analysis here and you can find the

temperature distribution as non-dimensional temperature.

(Refer Slide Time: 37:42)
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n
(m+1)
o e[ fdy

Je ° dn
n

fe ©
0

And, if you remember, we have written the expression for g—eit is required to find the
n

0=1-

m+

0'——.q

Nusselt number or heat transfer coefficient. So, that at n = 0, right;
dZ(O) = 1,7 . S0, once you know the f from the velocity distribution you will
n ® JL;“Prjqu
Ie ° dn

0

be able to find, what isj—e? And, using some numerical technique you can find the
n

value.

So, if you solve this Falkner-Skan equation whatever we have derived. So, you will get

the velocity profile. And, once you know the velocity profile from the energy equation

whatever we have derived ordinary differential equation you will be able to find the

temperature distribution. And, once you know the temperature distribution you will be

able to find 3—9: 0 that means, the temperature gradient at the wall and you will be able
n

to find, the local heat transfer coefficient, local Nusselt number, average heat transfer

coefficient and average Nusselt number.

(Refer Slide Time: 40:08)
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So, if you see laminar wedge flow, so for different § and corresponding m value is

Re’:

shown here and if you seeC, 5 this value if you see here then, you can see for

B=0, m = 0. So, what is your f "(0) ? That means, your velocity gradient at the wall. So,

that is 0.33206. So, that you have already found, right. So, this is the flat plate case.

And, if you see the case, where this is your f "(0); that means, your velocity gradient at
the wall. So, velocity gradient at the wall become 0. What does it mean? Shear stress is
0. And, if it become shear stress as 0; then obviously, the fluid particle will just float, and
that is the point of flow separation. And, flow separation occurs at that point. So, you

corresponding P value you can see an m value you can see where flow separates.

So, after that your boundary layer theory is not valid, because the important assumptions,
one of the important assumptions we have taken while deriving the boundary layer
equation is that flow does not separate. So, here flow is separating at this p value. So, this
is the separation point.

Now, for different B value, so this is the similar case. And, at this point you can see that

f "(0) becomes O for this particular B, and if you see the f'versus n, what

isf'?f '=Ui. So, Uiand m, SO you can see what is the velocity profile at different

0 o0

value of B.

So, this is the case, where flow separates. And, if you plot the f "versus n then you will

be able to see, so for this particular case where flow separates you can see, the value of

f "is 0. And, raised other p values, you can see you have a positive value that means,

shear stress is present at the wall, but at B value of -0.19884 your velocity gradient
becomes 0 and flow separates.
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Boundary layer flow over a wedge

Nu. /R R= M
Nu, | Re, d 1
m Pr=07 0.8 1.0 5.0 100
~0.0753 022 23 0272 0457 0570
0 0292 0307 033 0585 0730
0111 0.331 0348 0378 0669 0851
0333 0334 0403 0440 0792 1013
10 0496 0523 057 1043 134
40 0813 088 0938 173  223%
k —df(0) _ 2k —d6(0)
h,=;\lR€xE— h-‘--L—V‘ReLT’]-
—dB(0) — . —d6(0)
Nul = \'Re,d—’? = ZVRQLW
do(o Nu .
©) : that means, X So, for different values of m and these for

Now, if you see the

Re’

X

different Prandtl number 0.7, 0.8, 1, 5 and 10, these are the values of dg(O) at different
n

m.
déo .
So, now once you know the value of d—you will be able to calculate the local heat
n
- k dé(0)
transfer coefficient because, h, = —./Re, a4 So, for at any Prandtl number and any
X n

m value you will be able to find local heat transfer coefficient, local Nusselt number,
average heat transfer coefficient and average Nusselt number. From this table you can
see. So, from the solution of the Falkner-Skan equation and the energy equation the

d6(0)

value of ,atn =0, itis diluted.
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Displacement thickness

Displacement thickness, §°, is defined as the distance by which the external potential flow
is displaced outwards as a consequence of decrease in velocity in the boundary layer.
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Now, let us define displacement thickness, momentum thickness and shape factor for
boundary layer flow. So, first let us discuss displacement thickness. Consider just free
stream velocity U... So, if you consider this case then obviously, you can see your stream

line will be all parallel to each other, right.

So, if you consider a stream line, so it will be parallel to each other all stream line. Now,
if you bring one flat plate here. So, what will happen? So, due to the presence of flat
plate there will be formation of boundary layer, over this flat plate, so it will. So, this is
the boundary layer. So, this, at this location, this is your boundary layer thickness 6.

Now, you can see that in the presence of flat plate, this stream line will be no longer flat,
ok, because it will deflect. Why? Because velocity gradient will be there and due to the
velocity gradient to have the same mass flux at each location these stream line will
deflect. So, your new stream line will be like this. So, it was earlier flat sorry a straight

line, but there will be deflection due to the presence of this flat plate.

Because, you can see at this location 1 and at this location 2, you should have same mass
flow rate and as it is a stream line there will be no flow across the streamline. So, mass
flow rate at 1 should be equal to mass flow rate 2. And hence, as velocity gradient will
be there these stream line will deflect and these deflection is known as displacement

thickness d*.
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So, now, let us find, what is the 6*? So, from here you can see that at section 1 what is
mass flow rate, will be equal to mass flow rate at section 2. So, at section 1 it will be just

pU_ S because here also, it is same thickness 8. And, at section 2 there will be velocity

variation here.
)

So, it will be pJ'udy+pr5*. Now, divide both side by pU _and rearrange. So, you can
0

5 5
find 6* = 5—J.Uidy. Now, this & we can write § = Idy , S0 &* if you put it here and you
0

0 0

)
can write 5* = I(l—Ui)dy .

0 0

So, this is the mathematical expression of displacement thickness. And, also you can
define in this way say you have a boundary layer and this is the velocity distribution, and
if you have a free stream velocity then, how much distance you have to shift this wall to
maintain the same mass flux. So, that distance is known as also 6*. So, you can see here
displacement thickness &* is defined as the distance by which the external potential flow

is displaced outwards as a consequence of decrease in velocity in the boundary layer.

(Refer Slide Time: 48:20)

Momentum thickness
Momentum thickness, 8, is defined as the loss of momentum in the boundary layer as
compared with that of potential flow. S
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Now, we will talk about the momentum thickness. So, momentum thickness 0 is defined

as the loss of momentum in the boundary layer as compared with that of potential flow.
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So, let us consider the same figure here. So, this is your flat plate and this is your stream
line, and there will be formation of boundary layer, and this is your 8, this is also ,
section 1 and this is your section 2, but there is a deflection in a boundary layer and so
this will be your &*, right. This is your displacement thickness.

So, you can see that, if you see the rate of momentum at section 1 and section 2, it will
not be same although, mass flow rates are same. So, there will be deficit in momentum at
section 2. So, this deficit is known as momentum thickness. So, mathematical if you see
here. So, what is the rate of momentum transfer at section 1, at section 1? So, what is

that? That will be your pU_oU . So, that is your momentum.

So, pU_ 38U . So, that will be pU25 . And, rate of momentum transfer at section 2. So, at

)
section 2 you can see; so, it will be pfuzdy. So, this is your momentum transfer in this
0

section and in outside it will be +0UZ25*.

So, now, you see there will be a deficit. And, this deficit momentum deficit you can find
the momentum deficit. So, this the difference you can write as,

o
pUIO=pULs - plutdy - pUls™.
0

S5
And, you know the value of &* we have found in last slide. So, it isé*:_[(l—ui)dy.
0 0

So, you put these values in the &*, you divide by pUZ, rearrange this, you will

a u.u
geto=[(1-—y) Yy,
! u,’uU

0
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(Refer Slide Time: 51:53)

Shape factor

A shape factor, H, is used in boundary layer flow to determine the nature of the flow
H B
8

The higher the value of H, the stronger the adverse pressure gradient. Large values of H
impées that boundary layer separation is about to occur. For Blasius laminar boundary layer
H =259

And shape factor, so a shape factor H is used in boundary layer flow to determine the

nature of the flow. So, H is defined as ratio of displacement thickness to the momentum

*
thickness. So, H :%. And, you can see it is known as shape factor, because it solely
depends on the shape of the velocity. So, the higher the value of H; the stronger the
adverse pressure gradient and large values of H implies that boundary layer separation is

about to occur. And, for Blasius laminar boundary layer flow you can find H = 2.59.

So, in today’s class we considered laminar boundary layer flow over a wedge and we

defined the wedge angle and the wedge parameter and velocity varies as Cx™as a
potential flow. And then, we define the stream function and the similarity variable n and

from there we found the velocity u and v from the stream function gradient.

And later, we from the momentum equation we substituted this value of u, v and velocity
gradients and we derived the Falkner-Skan equation. And, you can see the Falkner-Skan
equation is the third order non-linear ordinary differential equation, so using any

numerical technique you can solve this ordinary differential equation.

Then, we considered energy equation keeping the T,, as constant. And, again we define
the non-dimensional temperature 6 which is function of n only, and we converted this
partial differential equation to ordinary differential equation wusing similarity

transformation and that is second ordered ODE and Linear.
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And, from there we express the non-dimensional temperature and alsod—. Then, we
n

have shown the numerical solution for this Falkner-Skan equation, and we have shown
that flow separates at a particular value of B and after that your laminar boundary layer
theory will not be valid. At last we defined the displacement thickness as well as the

momentum thickness and shape factor.

Thank you.
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