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Hello, everyone. So, in the last lecture, we have derived the Pohlhausen equation starting 

from the energy equation. Today, we will find the different Heat Transfer Parameters 

like heat flux, heat transfer coefficient, Nusselt number, from the solution of Pohlhausen 

equation.  
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So, you can see that dimensionless temperature we have derived in last class, 

temperature for uniform wall temperature condition; that means, Tw is constant θ which 

is your dimensionless temperature which is function of η and Prandtl number, 
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And the derivative of θ we have also derived and that η = 0, the expression is, 
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So, once you know the temperature distribution from the Pohlhausen solution then you 

will be able to calculate the local heat flux as well as local heat transfer coefficient and 

local Nusselt number and you need the value of 0

d

d





 ; that means, the temperature 

gradient at the wall to find the heat flux. So, first let us find what is the local heat flux.  

So, you know by definition, ''
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and that is coming from Fourier’s law of heat conduction. And we have taken the 

dimensionless temperature such a way that T = Tw +(T∞ - Tw) θ. And the similarity, 
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can write this minus you can take it inside. So, you can write, ( ) '(0)w

U
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x
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So, we have found the local heat flux. Now, we will calculate the local heat transfer 

coefficient. So, local heat transfer coefficient you know from the equation from 

Newton’s law of cooling you will be able to calculate. 
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So, local heat transfer coefficient 
''
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and this we are writing from the Newtons 

law of cooling. So, ''

wq , just we have calculated. So, this is your, 
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So, this you can cancel so you will get we will just write 
K

x
and we will multiply in the 

numerator x and we will take inside this inside this root. So, it will be x
2
. So, you will 

get '(0)
U

x



 . What is

U

x
 ?  

So, you know the Reynolds number definition right. So, this will be local Reynolds 

number at any location x. So, local Reynolds number
xeR , you can write

U

x
 . So, this now 

you can write '(0)
xe

K
R

x
 .  

Now, once you know the local heat transfer coefficient you can calculate the local 

Nusselt number because you know the definition of local heat transfer as
hx

K
. So, local 

Nusselt number is definition by xh x

K
. So, you can see this x 

x

K
if you take this side. So, 

this will be left with '(0)
xeR  . So, once you can find the derivative '(0) , then you will 

be able to find the value of local heat transfer coefficient and local Nusselt number. 
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Now, let us calculate the total heat transfer from the plate of length L and we will 

calculate it for unit width. So, total heat transfer rate from a plate of length L you can 

calculate qw. So, just local heat flux you have calculated into area. So, per unit width so, 

it will be, ''

0

(1 )

L

w wq q dx  . L is the length of the plate.  

So, if you put the expression of ''

wq . So, the constant you can take it outside the integral. 

So, it will be
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  . So, if you integrate it you will get 

twice ( )wK T T . 

And if you put the limit L then you will get L in the numerator. So, that we will take 

2 ( ) '(0)w

U L
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


 . So, from here you can see 2 ( )wK T T and what it is? It is 

Reynolds number right 
U L


  so, based on the plate length. So, '(0)

LeR  . Once you 

know the total heat transfer rate you will be able to calculate the average heat transfer 

coefficient. 
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So, average heat transfer coefficient we will calculate 
( )(1. )
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, right this is 

Newton’s law of cooling. So, per unit to it so, 1xL. So, if you put the value so, you will 

get
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So, this you cancel. So, you will get, 
2

'(0)
Le

K
h R

L
 . From here average Nusselt 

number you will calculate. So, average Nusselt number u

hL
N

K
 . So, from this 

expression you can see it will be 2 '(0)
LeR  . 

So, all these expression we have written in terms of '(0) . So, '(0) is still unknown 

because you need to find it from the temperature distribution. Here you notice the local 

heat transfer coefficient and average heat transfer coefficient. So, you can see that your 

average heat transfer coefficient is double of the local heat transfer coefficient at x = L. 

And similarly, average heat transfer coefficient is twice of the local Nusselt number at x= 

L. 

So, if you see, let us say this is the Nusselt number distribution with length L. So, this is 

the plate length L. So, how it varies? So, let us say your local Nusselt number varies like 

this. So, if this is the local Nusselt number variation, then your average Nusselt number 

will be twice at x =L. So, this will be the average Nusselt number it is average Nusselt 

number and you can see it is value is double of this. 

 So, what is this value? So, this is your Nusselt number x at x = L. And 

this 02
xu u xN N   . So, this is your double, so this is the same distance. So, it will be the 

same value, so obviously, it will be the 02
xu u xN N   . 
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So, in this slide we are showing the temperature gradient at η = 0 for different Prandtl 

number. So, this has been evaluated numerically for a range of Prandtl numbers by 

Pohlhausen. That the numerical solutions and 
2

2

d f

d
= 0, already we have found from the 

Blasius solution. 

And if you see the temperature distribution θ which is w

w

T T

T T




versus η. So obviously, at 

different x location all the temperature profile falls in the same curve, but it varies for 

different Prandtl numbers. 

So, you can see Prandtl number  =  1. So, this is the case where Prandtl number  =  1. So, 

in this profile temperature profile will be same as the velocity profile, that we have 

already discussed. And for other Prandtl number you can see how it varies with η. So, at 

different Prandtl numbers.  
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So, now, whatever results we have shown Pohlhausen’s results now can be approximated 

by for different Prandtl number, this is the numerical value of temperature gradient at η  

=  0. So, this actually is approximated by Pohlhausen as
1

30.332Pr . So, you can see if 

you see 0.6. So, if you put 0.6 Prandtl number here so
1

30.6 0.332 0.280X  .  

And for different Prandtl number you can see that almost this is comparable. So, this is 

the numerical solution and this is approximate, 
1

30.332Pr . So, 0.6 to 15 we have shown 

here and in this range so, 
1
3'(0) 0.332Pr  .  

So, you can approximate the first derivative of dimensionless temperature at η = 0 

as
1

20.564Pr . For other range I am writing where Prandtl number →0. Generally, it will 

be valid in the range of 0.005 < Pr < 0.005. Then in this range 0.6 to 15 this is the 

approximation.  

So, 
1

30.332Pr in the range of 0.6 and 15 and it will be 
1

30.339Pr  for high Prandtl 

number. So, generally it is Prandtl number greater than 15. So, now, you got some 

approximate value of '(0) in terms of Prandtl number. So, from the Pohlhausen 

numerical solutions that is approximated in the power of Prandtl number. 
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So, for the range 0.6 and 15 you can write ''

wq because we have already found the 

expression. So, if we put the value of
1

3''(0) 0.332Pr  . So, you can write as, 

1
3'' 0.332 ( ) Prw w

U
q K T T

x


  . 

Local heat transfer coefficient you can write
1 1

3 20.332 Pr Rex x

K
h

x
 . So, local Nusselt 

number you can write
1 1

3 20.332Pr Rex xNu  . And average heat transfer coefficient it will 

be twice of hx at x = L. So, it will be
1 1

3 20.664 Pr ReL

K
h

L
 . And, average Nusselt number 

will be
1 1

3 20.664Pr ReLNu  .  

You can see that already we have seen this scale of this Nusselt number and the heat 

transfer coefficient using that scale analysis. So, if you recall using scale analysis we 

have written for high Prandtl number fluids, high Prandtl number of fluids; that means, 

your thermal boundary layer thickness will be less than hydro dynamic boundary layer 

thickness and, generally oils have large Prandtl number of the order of 1000. 

So, here if you recall we have written
1 1

3 2Pr Rex xNu . So, you can see here same order 

with a value 0.332. Similarly, for low Prandtl number fluids δT > δ generally, liquid 

metals have small Prandtl number of the order of 0.01.  

So, if you recall, we have found
1 1

3 2Pr Rex xNu . So, you can see the power of Prandtl 

number for high Prandtl number fluids the power is 1/3 and low Prandtl number of fluids 

the power of Prandtl number is 1/2. So, that we have already found from the scale 

analysis. 

And from this numerical solution you can see that for low Prandtl number fluids, Prandtl 

number →0 your
1

2'(0) 0.564Pr  . So, if you write the local Nusselt number for low 

Prandtl number fluids then, 
1 1

2 20.564Pr Rex xNu  . 
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Now, we will discuss about the fluid friction and heat transfer relation. So, you can see 

that we have found the local Nusselt number 
1 1

3 20.332Pr Rex xNu  in the range of Prandtl 

number 0.6 and 15. Now, this we can rewrite as, which can be rewritten as
Pr Re

x

x

Nu
. So, if 

you divide it and you will get in the right-hand side as
2 1

3 20.332Pr Rex

 
. 

So, you can see left hand side is the dimensionless group right. So, this is called local 

Stanton number. So, the left-hand side it is Stanton number. So, this is
Pr Re

x

x

Nu
. So, this is 

known as local Stanton number. So, from this relation you can see that x
x

h x
Nu

K
 . 

Prandtl number is



. So, you can write 

p

K

C



 and 

1


and Reynolds number. So, 

U x


 ; so from here you can rearrange it. So, you can write it as x

p

h

C U 

. So, you can see 

the local Stanton number is given by this relation x

p

h

C U 

. 

So, now you can write 
2 1

3 20.332Pr Rex xSt
 

 or you can write
2 1

3 2Pr 0.332Rex xSt


 . 

From the Blasius solution, we have found the local skin friction coefficient. So, if you 

write down the expression for local skin friction coefficient which is known as friction 
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coefficient because for flow over flat plate the friction is the dominant drag due to sheer 

stress. 

So, you can write 1
2

0.664

Rexf

x

C  . So, you can see from this expression and this expression 

you can write
2

3Pr
2

xf

x

C
St  . So, this relation is known as Colburn analogy. So, this 

relation is known as Colburn analogy. 

So, this is between the fluid friction and heat transfer for laminar flow on a flat plate you 

can write this expression. So, what is the advantage of using this analogy because, if you 

know the friction coefficient then you will be able to calculate the heat transfer right 

from this expression. 

Now, when Prandtl number  =  1; so this expression will become 
2

xf

x

C
St  and this 

expression is known as Reynolds analogy. So, you can see you can calculate local heat 

transfer coefficient, when local friction coefficient is known on a flat plate under the 

conditions in which no heat transfer is involved. 

So, now, let us consider the variable wall temperature what we started during the 

derivation and we have shown from the analysis that Tw varies as Tw  =  T∞ + Cx
C x to 

the power λ where C is the constant. 

(Refer Slide Time: 25:49) 
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So, you can see variable wall temperature ( )wT x T Cx  , and this is the Pohlhausen 

equation right. So, this is the ordinary differential equation. So, for a special case we put 

λ = 0, where wall temperature become constant; so we drop this term. 

So, from this equation if you numerically solve then if you can calculate the 

nondimensional temperature derivative at η = 0; that means, at the wall for different 

value of λ then for different Prandtl number this is the variation. So, you can see this is 

the dimensionless temperature gradient variation at the wall, for different value of λ, and 

at different Prandtl number. So, you know that λ = 0, these denotes for flow over flat 

plate with uniform wall temperature case.  

So, by numerical techniques if you can solve then you can plot this and once you know 

this value then the same expression for local heat transfer coefficient, average heat 

transfer coefficient, local Nusselt number, and average Nusselt number you will be able 

to calculate. 

Now, when you consider variable wall temperature, then can you find the value of λ for 

which the wall will be maintained that constant heat flux condition. 

(Refer Slide Time: 27:25) 

 

So, this is your variable wall temperature Tw is function of x. Now, what will be the 

value of λ, for which wall will be maintained at uniform heat flux condition? So, we have 
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to find what is the value of λ? So, the heat flux local heat flux you can write, 

'' ( ) '(0)w w

U
q K T T

x





  . 

So, this expression just in previous slide we have derived now, you can see wT T , so 

you have Tw function of x so, wT T you can put Cx
. So, you can put '(0)

U
KCx

x

 


 .  

So, now, you can write it as 
1

2'(0)
U

KC x
x







 because here in the denominator you have 

x
1/2

. So, here x
λ
 so, 

1

2x


; so this is the expression for local heat flux right. So, now, to 

maintain at uniform wall heat flux condition it should be independent of x right, then 

only the wall will be maintained at constant heat flux condition. 

So, you can see here K is the thermal conductivity that is constant, C is the integration 

constant, U∞ free steam velocity is constant. This is your fluid kinematic viscosity that is 

also constant; '(0) which is your temperature gradient at η = 0 so, that having some 

numerical value. So, that is also constant, but it varies with
1

2x


. 

So, these terms would be 1 right. Then only it will be independent of x. When it will be 

1? When 
1

2
  will be 0; so that means, 

1

2
  will be 0 then it will be x

0
; that means, 1. 

So, it will become independent of x. So, λ  = 1/2. 

 So, for λ  =1/2 what will be ''

wq . So, you can see this will be 1. So, it will be 

'(0)
U

KC
x



 which is constant. So, for the constant heat flux along the wall, the 

expression should be independent of x; so λ will be 1/2.  

So, in today’s class we have found the local heat transfer coefficient, average heat 

transfer coefficient, local Nusselt number, average Nusselt number, in terms of 

temperature gradient at η=0. Then later we have shown the numerical solution of 

Pohlhausen equation, and there we have tabulated the value of '(0) for different Prandtl 

number. Then Pohlhausen approximated this temperature gradient at the wall with 
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Prandtl number relation and we have shown that for the range of Prandtl number 

between 0.6 and 15. 

The Nusselt number varies with 
1

3Pr and
1

2Re . The same we have shown earlier from the 

scale analysis as well. Later we have defined the Stanton number and from there we have 

shown the Colburn analogy as well as the Reynolds analogy. So, this can be used to find 

the heat transfer coefficient if you know the friction coefficient. 

Then, for variable temperature boundary condition we have shown the numerical 

solution and later we have found the value of λ for which your flat plate wall will be 

maintained at uniform wall heat flux condition and the value of λ is 1/2. 

Thank you.  
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