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Lecture – 07 

Pohlhausen solution: similarity method 

 

Hello everyone. So, today we will consider thermal boundary layer over a flat plate and 

we will find the temperature distribution using Similarity Method and this solution is 

known as Pohlhausen solution.  

We will consider two-dimensional, steady, laminar flow with constant properties. The 

free stream temperature T∞ is constant and the wall temperature Tw in general will 

consider that it varies with x which is the axial direction, later we will consider a special 

case where we will assume Tw as constant. 

In last class, we have already solved the velocity distribution using similarity method. As 

we are assuming that properties are constant so, velocity distribution is independent of 

temperature distribution. Here, we are considering low speed flow which is 

incompressible flow. So, we can neglect viscous dissipation effect. 
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First let us write down the energy equation and let us introduce non-dimensional 

temperature, w

w

T T

T T








. So, energy equation for steady laminar flow we can 

write
2

2

T T T
u v

x y y


  
 

  
. So, this is the thermal boundary layer equation right. 

So, we are neglecting the viscous dissipation effect and now let us introduce non-

dimensional temperature; non-dimensional temperature w

w

T T

T T








. So, here T∞ is the 

free stream velocity and that is constant, but Tw which is your wall temperature in 

general, we will consider Tw as function of x and as a special case, later we will consider 

that Tw is constant and you can see if Tw > T∞ so, temperature distribution will look like 

this because at the wall, we have maximum temperature and free stream temperature as 

y→∞. 

So, with this now, if I write the energy equation, then you can write
2

2
u v

x y y

  


  
 

  
. 

So, now, let us write the boundary conditions. You can see at the wall where y = 0, you 

have T =Tw and y →∞ means away from the boundary, you have free stream temperature 

T∞. 

You can see that as x →0 at the leading edge of the flat plate, we have free stream 

temperature T∞. So, at y = 0, you have T = Tw so, θ will be 0 at or y → ∞ so obviously, it 

is away from the wall you can see at the edge of the bond layer, you have T∞ so, T = T∞ 

and you can write θ = 1 and at x →0, you have T = T∞ so, θ will be 1. 

Now, we have already solved the velocity distribution using similarity method. Can we 

have some similarity with the momentum equation and the energy equation when ν =α. 

So, when ν is when will be the ν = α? When Prandtl number, Pr= 1. 

So, as a special case let us say for Prandtl number= 1 your ν you can write is equal to α 

and the momentum equation whatever we have so, you can write down 

2

2

u u u
u v

x y y


  
 

  
,and this u you write in terms of non-dimensional velocity 

*
u

u
U

 then, you can see you can write
2

2

* * *u u u
u v

x y y


  
 

  
. 
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And what are the boundary conditions for this equation at y = 0, u* = 0 no slip boundary 

condition, at y →∞, you have u*= 1 and at x →0, you have u* = 1. 

Now, you see these equations. This is the energy equation where θ is the non-

dimensional temperature with these boundary conditions and this is the momentum 

equation where u* is the non-dimensional velocity and these are the boundary 

conditions. So, if you compare these two for Prandtl number= 1 so, these are the same 

equation because if you replace θ = u*, then you can see the boundary conditions are 

same and ν = α. So, both equations are same.  

So, you can write for Prandtl number =1, θ can be replaced with u* that means, you can 

write θ = u*; that means, w

w

T T u

T T U 





. So, you can see already we have solved the 

velocity distribution using similarity method and we could convert the partial differential 

equation to ordinary differential equation using similarity approach. 

In this case, whatever we have shown now that for Prandtl number =1 as a special case, 

the governing equations, energy equation as well as the momentum equation are same, 

and θ = u*. So obviously, we can have the similarity solution at least for Prandtl 

number=1 for the temperature distribution.  

So, we will use the similarity method to solve these energy equation and we will find the 

temperature distribution and if we can convert for other Prandtl number for Prandtl 

number ≠ 1, this partial differential equation to ordinary differential equation; that 

means, similarity solution exist for Prandtl number ≠1. 
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So, you can see that the temperature distribution at any location say let us say x2 and 

another location if you see here so, it will have free stream temperature T∞ and you have 

let us say Tw so, this is your T∞, this is your Tw and this is location x1.  

So, you can see that the temperature distribution if you see here and here for let us say 

Tw is equal to constant; you can see that these are similar profiles. So, if you can scale 

down the temperature distribution at location x2 with a scaling factor, then you can get 

the same temperature distribution at x1. So that means, so, whatever temperature 

distribution say we are getting here θ versus y at different x location. 

So, this will be you can see that at y =0, you have θ = 0 and y →∞, it will be 1. So, you 

will have another profile. So, you can see these are the temperature profile at different x 

locations. Now, if you use this similarity variable, then you can see that if you plot θ 

versus η, then it will all the temperature profile will fall in same curve. So, it will fall in 

same curve. 

So, let us start with whatever similarity variable η we have derived in earlier class and 

we will assume that θ is function of η only because here you can see it might fall in the 

same profile and using similarity method, if we can convert this partial differential 

equation to ordinary differential equation; that means, your similarity solution exists. If 

you see the energy equation, in the energy equation u and v are known from the solution 

of velocity distribution; that means, this is linear equation because velocity profiles are 

known, only you need to find the temperature distribution. 

So, let us assume that θ is function of η only and η already we have found in last class 

as
U

y
x




 . So, this is the similarity variable. So, we have written in terms of two 

independent variables x and y and properties ν is constant and U∞ is the free stream 

velocity that is also constant.  

Also, let us assume in general that Tw is a function of x. So, 
( )

( )

w

w

T T x

T T x








and now 

( ) ( ( ))w wT T x T T x    . So, let us write the energy equation the derivatives in terms of 

these with respect to the derivative with respect to η. 
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So,
U

y
x




 . So, 
U

y x









and
1

2 2

Uy

x x x x

 




   


. 

Now, let us find the derivative of temperature. So, we have
T

x




. So, it will be. So, 

( ) ( ( ))w wT T x T T x    . So,
T

x




, you can see. So, this will be total derivative; 

( )w w
w

dT dTT
T T

x dx dx x


 

 
   

 
. 

So, now 
T

x




you can write as so, you can see this you 

can (1 ) ( )w
w

dTT d
T T

x dx d x

 





 
   

 
. So, now, 

'(1 ) ( ) '( )
2

w w

T
T T T

x x


 


    


. 

Now, similarly you find the derivative of T with respect to y. So, 
T

y




you can write now 

you see Tw is function of x. So, its derivative with respect to y will be 0 so, you will 

get ( ) ( )w w

T
T T T T

y y y

  


 

   
   

   
.  

So, you can see, you can write ( ) 'w

UT
T T

y x








 


and

2

2
( ) ''w

UT
T T

y x








 


. 
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Now, we have also velocities u and v. So, that let us find. So, u obviously, you know that 

'u U f and in last class, we have already derived the velocity v in terms of F first let 

us write that and then we will write in terms of F. So, v if you see in last class, we have 

written
'' '

'

F g
v g U yF

F g
   . 

And if after separation of variables if you see that we have written
''

' 2

F f

F
  . Η already 

you know so, that we have written yg  , here y we can write 
g


and g we have written 

U
g

x
 and

3

'g

g
, if you see the equation where we have separated the variables that we 

have written
3

' 1

2

g

g U





  . So, from here we can write 
2

' 1

2

g
g

g U





  and F obviously, 

you can see '
u

F f
U

  . 

So, now, if you substitute all these here, you will get velocity v. So, it will 

be
2

'
( ) '

2

f g
v g U f

g
    . So, 

1
'( )

2 2

f
v g U f g

U


 



    . 
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So, if you take half ν g outside and it will be 
1

[ ' ]
2

v g f f   . So, it will 

be
1

[ ' ]
2

U
v f f

x
 


  . So, this ν if you take inside the root, then you will 

get
1

[ ' ]
2

U
v f f

x


  . 
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So, let us put all these values in the energy equation. So, energy equation 

is
2

2

T T T
u v

x y y


  
 

  
. So, now, one by one let us put. So, you have u, 

''(1 ) wU f T  and another term will be there. So, you can see this term we have written 

and this term you can write now. So, it will be '( ) '
2

wU f T T
x


   . 

Now, we have
T

v
y




so, if you write it 

1 1
'( ) ' ( ) ' ( ) ''

2 2
w w w

U U U
f T T T T f T T

x x x
    


  

       . 

So, now, you rearrange this equation. So, if you rearrange you will get so, first multiply 

both side by
( )w

x

U T T  
. So, you can see in the first term. So, U∞, U∞ will get cancelled 
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so, you can write
''(1 )

( )

w

w

xf T

T T








. The next term you can see U∞ will get cancelled 

wT T  also will get cancelled and this x, x. So, you will get finally, ' '
2

f


 . 

Then, here also ( )w

U
T T

x


  is there so, you will get ' '

2
f


 . Then, the next term you can 

see here you will get only 
1

'
2

f and here you can see 



that means, it is 

1

rP
because 

Prandtl number is 



right, Prandtl number is 




moving from diffusivity to thermal 

diffusivity. So, you can write 
1

rP
and '' . 

So, here you can see this is wT T  , it is 1  we will write here 
''( 1) w

w

xf T

T T








and you 

have minus we taken right hand side. So, it will be
1 1

' ''
2 r

f
P

  . 

Now, divide both sides; divide both side by '( 1)f   . So, if you rearrange it, you will 

get
'

1 ' 1 1 ''

2 ' 1 ' 1

w

w r

xT f

T T f P f

 

 

 
  

. 

So, you see we have separated the variables. If you see the left-hand side, it is function of 

x only and right hand side it is function of η only because AP is function of θ and θ is 

also a function of η. So, we have separated the variables. 

So, you can see this is Tw. So, Tw is a function of x only so, all these terms are function 

of x so, this is function of x and this right-hand side terms are function of η only. So, as 

left-hand side equal to right-hand side and left-hand side is function of x and right-hand 

side function of η so, it will be equal to some constant and that constant let us say that it 

is λ. So, this will be equal to λ. 
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We have separated the variable so; you can write it as
'

w

w

xT

T T







. So, you can write dTw 

so, '

wT is wdT

dx
. So, we will write w

w

dT dx

T T x







.  

So, now, integrate. So, you will get ln( ) ln lnwT T x c   . So, you can write 

wT T Cx  or
wT T Cx  . We have assumed that wall temperature Tw is function of 

x and it varies in this way. 

As a special case, you can see that if λ = 0; if  λ  = 0, then you will get wT T C  . So, 

Tw and T∞ is constant, and c is constant so, this is equal to constant. So, you can see that 

it is a case of uniform wall temperature. So, this is a special case. But in general, we have 

derived and Tw varies asT Cx

  . 

So, now let us consider the other terms which is a function of η only. So, if you consider 

that term, then you will get
1 ' 1 1 ''

2 ' ' 1 ' ' 1r

f

f P f

 


 
 

 
. Now multiply both side 

by '( 1)rP f   . So, what you will get? You will get
1

' '' '( 1)
2

r rP f P f      . So, you 

will get '' ' '( 1) 0
2

r
r

P
f P f       . 
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 So, you see that this equation is ordinary differential equation. So, we started with the 

partial differential equation and we used similarity transformation and transferred this 

partial differential equation to ordinary differential equation for Prandtl number ≠1 as 

well because it is a function of Prandtl number.  

So that means, similarity solutions for this temperature distribution exist and we could 

get this second order linear ordinary differential equation. You can see this is second 

order and as f is known 'f f and 'f are known from the velocity distribution, so 

obviously, this is linear equation. So, you can see this is second order linear ordinary 

differential equation and this equation is known as Pohlhausen equation. 

And you can see as a special case for uniform wall temperature you can put λ = 0. So, for 

λ=0 which is a special case Tw is constant for that you can write the Pohlhausen equation 

as '' ' 0
2

rP
f   . So, you can see here, this is your linear equation because f is known 

from the velocity distribution and this is the second order linear ordinary differential 

equation. 

So, this equation now you can solve using some numerical technique and find the 

temperature distribution and once you get the temperature distribution, you will be able 

to calculate the heat flux and from there you can calculate the heat transfer coefficient 

and Nusselt number. 
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Now, let us consider the special case when the flat plate is maintained at constant 

uniform temperature so; that means, Tw is constant and whatever Pohlhausen equation 

we got, now let us find the solution of this ordinary differential equation applying the 

boundary conditions. 

So, for λ =0, here now Tw is constant we can write '' ' 0
2

rP
f   where Tw is constant. 

So, this is a special case for λ=0. 

Now, what are the boundary conditions? At η=0 because y = 0 you will get η =0 and it is 

your Tw so that means, Tw - Tw = 0 so; that means, θ will be 0 and η → ∞ when y →∞ 

and x →0 these two boundary conditions are merged into 1 and for η →∞ you can write 

θ= 1. 

So, now, you can integrate this equation so, you can write 
'' 1

' 2
rP f




  so, what is '' ? 

You can write 
d

d
right; 

( ')
1

' 2
r

d

d
P f





  . 

So, integrating the above equation so, what we will get? So,
0 0

( ')

' 2

rPd
fd

 





   . So, if 

you integrate what you will get here?
0

( ')
ln( )

'(0) 2

rP
fd







  . 

So, unless you know the velocity distribution f so, 'f  and f, f is the stream function 

equivalent to a stream function, you will not be able to integrate so, you are keeping it in 

terms of integral form. So, if you write this so, you can write 0
2

'(0)

rP
fdd

e
d









 . 

So, integrate this above equation; integrate the above equation. So, we will 

integrate 0
2

'(0)

rP
fd

d e d





 

  
  

  . 
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Here, we will put the limit from η to ∞; η to ∞. So, if you put it, then what you will get? 

θ at η = ∞ minus θ at η = '(0) and this is your η to ∞, 0
2

rP
fd

e d








 

 . So, now, you see θ at 

η →∞ we have the boundary condition θ = 1. So, you can put this is as 1. So, these value 

is 1. 

(Refer Slide Time: 35:35) 

 

So, now, θ (η) we express in terms of other terms. So, you can 

write 0
2

( ) 1 '(0)

rP
fd

e d







   
 

   . 

So, now, we are left with another boundary condition at η =0, θ = 0. So, now, let us put 

that boundary condition. So, another boundary condition is there at η = 0, θ = 0. So, if 

you put that value so, 0
2

0

0 1 '(0)

rP
fd

e d





 
 

   . 

Now, we can find the value of '(0) . So, 

0
2

0

1
'(0)

rP
fd

e d








 







. So, once '(0) is known 

so, now, we can find θ(η).  
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So, 

0

0

2

2

0

( ) 1

r

r

P
fd

P
fd

e d

e d













 



 

 



 







. So, this is the temperature distribution. So, if you know the 

function f, then you will be able to integrate and you will be able to find the temperature 

distribution using some numerical technique you can solve this equation. 

So, in this equation now you can see that if you write

0 0

0

2 2

0

2

0

( )

r r

r

P P
fd fd

P
fd

e d e d

e d

 



 





 

 



  

 

 






 



. 

So, you can see another dη will be here another dη will be here. 

So, now you can see this integrant is same in both the integral, but the limits are different 

0 to ∞ and η to ∞. So, if you subtract that so obviously, you can get 0 to η. So, 

θ(η)

0

0

2

0

2

0

( )

r

r

P
fd

P
fd

e d

e d





 





 





 











. 
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So, this expression also we can write in terms of ''f . So, we will start with the Blasius 

equation. So, whatever we have derived in the last class so, you can see Blasius equation 

that is your ''' '' 0
2

f
f f  . So, you can write

( '')

'' 2

d
f

fd

f


  . So, integrate this equation 

so, you will get
0 0

( '')

'' 2

d f f
d

f

 

   . 

So, now, you can see that you will get
0

''
ln( )

''(0) 2

f f
d

f



  . Now multiply both sides 

with Prandtl numbers; multiply both side with Prandtl number. So, if you see here if you 

multiply Prandtl number so, you can write this as
0

[ '']
ln( )

[ ''(0)] 2

r

r

P

P

f f
d

f



  . 

So, from here, you can write 0
2[ '']

[ ''(0)]

r
r

r

P
P fd

P

f
e

f




 . 

So, if you see in the last expression whatever you have 0
2

rP
fd

e




so, that expression we 

have written in terms of ''f . So, ''(0)f you know right because ''(0)f we have found 

from the velocity distribution so, this is the velocity gradient at η = 0 and that value is 

0.33206. 
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So, now, if you put this in this expression; in this expression so, what you will get? You 

will get so, the dimensionless temperature; dimensionless temperature distribution you 

will get 0

0

[ '']

( , )

[ '']

r

r

P

r

P

f d

P

f d





 









. 

So, you can see here in this expression so obviously, [ ''(0)] rPf is there and so, whatever 

expression we have got here 0
2

rP
fd

e




so, that expression you put in the expression here in 

this expression and you just rearrange it finally, you can write the temperature 

distribution as the dimensionless temperature distribution. 

So, after rearrangement you will get θ which is function of η and Prandtl number is equal 

to 0

0

[ '']

[ '']

r

r

P

P

f d

f d












. So, after doing some rearrangement, you will get this as the final 

temperature distribution and you can see if you know the value of ''f from the velocity 

distribution, you will be able to calculate the temperature distribution. So, this equation 

you can solve numerically. 

So, now, let us see that as a special case whatever we started with that for Prandtl 

number =1 what is the temperature distribution is it same as the velocity distribution let 

us see. So, for Prandtl number =1 this is a special case. So, for Prandtl number= 1 you 

can see what you can write θ(η) for Prandtl number =1 is equal to 0 to η.  

So, Prandtl number =1. So, you can write 0

0

( ')
'( ) '(0)

( )
'( ) '(0)

( ')

d f
f f

f f
d f




 




 

 





. 

So, now what is f prime? 'f is the velocity 
u

U

and at η = 0 '(0)f . So, you can see this is 

your 0 and this is also 0 and what is '( )f  →∞? So, that is your 1 because u →U∞. So, 
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this is your 1. So, you can see that from this expression that θ (η) = '( )f  and what is f 

prime? It is nothing, but
u

U

. 

So, the dimensionless temperature and velocity distribution are identical for Prandtl 

number = 1 that means for Prandtl number = 1, you have δ = δT. So, it will be the non-

dimensional temperature distribution will be same as non-dimensional velocity 

distribution. 

So, in today’s class, we have started with the energy equation and we defined one non-

dimensional temperature w

w

T T

T T








. We have assumed in the beginning that Tw is 

function of x and we have derived the Pohlhausen equation in general which is your 

second order linear ordinary differential equation and we have shown that using 

similarity variable approach, we could convert the PDE to ODE for any Prandtl number. 

For a special case, λ  = 0, the wall temperature becomes constant and for that we have 

found the solution for temperature distribution and this temperature distribution we have 

expressed in terms of your velocity gradient ''f once you know the velocity distribution 

from the solution of Blasius equation you will be able to find the temperature 

distribution.  

So, to you can solve this equation using some numerical technique and at last we have 

shown that for Prandtl number =1, the temperature distribution and velocity distribution 

are identical and you can write that 
u

U




  

Thank you. 
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