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Hello everyone. So, in last class, we discussed about the velocity boundary layer and we 

have seen that near to the wall, there is a effect of viscosity and this is a viscous region 

and away from the wall, there is a region where there is no effect of viscosity and that is 

known as inviscid region and we have discussed about the edge of the boundary layer 

and boundary layer thickness. 

Today, we will discuss about thermal boundary layer. We can see there is a region near 

to the wall, there will be an effect of this temperature gradient, but away from the 

surface, it will be at the free stream temperature T ∞. 

(Refer Slide Time: 01:18) 

 

So, we will start with the assumptions. So, we will consider steady state, two-

dimensional and laminar flow with constant properties and neglecting dissipation and 

gravity. 
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So, in last class, you can see we have derived these boundary layer equations so, this is 

your continuity equation and this is the momentum equation in general. So, if you have 

any curved surface and over it if there is a velocity boundary layer then obviously, you 

can see normal to this surface if you measure the distance from the surface to the edge of 

this boundary layer so, that is known as boundary layer thickness and there will be a 

change in the pressure along the x direction. So, along the x direction and perpendicular 

to this surface this is your y. 

So, in general, we have derived this equation, but as a special case, if you consider flow 

over flat plate, then this 
dp

dx
becomes 0 for flow over flat plate. Now, let us discuss about 

the thermal boundary layer. Let us consider that the wall is maintained at a higher 

temperature than the free stream temperature. In this condition, you can see that you 

have a wall temperature Tw and free stream temperature is T∞. Obviously, we have 

considered Tw > T∞. So, wall is hot and obviously, your T ∞ < Tw. 

There will be some region where you can see that there will be change of temperature 

and at a certain distance from the plate; you will find that this temperature will become 

equal to free stream temperature T∞. So, that distance is known as thermal boundary 

layer thickness δT. So, we measure normal distance from the surface. 

So, obviously, you can see that under certain conditions thermal interactions between 

moving fluid and a surface is confined to a thin region near the surface called the thermal 

or temperature boundary layer and the distance from the normal from the wall the 

distance at which this temperature becomes almost 99 % of the free stream velocity 

normal to the surface is known as thermal boundary layer thickness. 

So, now we have energy equation, this is your energy equation. Now, under certain 

conditions can we drop some term from this equation when we consider external flows 

which we consider as the boundary layer flows. So, in this case also we consider that 

these are the conditions for thermal boundary layer slender body without flow separation 

and it is a high Reynolds and Prandtl numbers flows and we know that Peclet number is 

product of Reynolds number and Prandtl number and generally if it is > 100, then 

thermal boundary layer is significant. 
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So, like earlier class, now we will consider both approaches intuitive approach as well as 

scaling approach. First, let us discuss about intuitive approach. Let us consider that one 

insect is there at position 0 and it finds very hot at this position so, it wants to move to 

some position 1, 2, 3, 4 and we considered that Tw > T∞. 

So, under this condition, this insect if it is feeling very hot at this position where it should 

move? So, you can see that if it moves to 1 position or 3 position obviously, it will not 

find that much change in the temperature, but if it moves to position 2, then obviously, it 

will get some relief. 

So, from intuitive approach, you can see that obviously, if it is go away from the surface 

to position 2, then it will feel somewhat cooler than earlier position. Now, let us consider 

that the insect is near to the wall surface. Let us consider that the insect is near to the 

wall and it wants to go to a some position where it will feel some significance really, 

then obviously, you can see that it will go away from the surface because the temperature 

change is more in that direction, but if it travels in the axial direction, then obviously, 

there will be not much change in the temperature. 

So, now we are considering about the change of temperature right so that means, 

gradient. So obviously, from the intuitive approach, you can see that your normal 

direction temperature gradient is higher than the axial temperature gradient. So, from 
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there you can see that
2 2

2 2

T T

x y

 

 
. So, changes in T with respect to y are more 

pronounced than changes with respect to x. So, under this condition, you can 

neglect
2

2

T

x




. So, you neglect this term. 

So, if you see now the energy equation, we can write as considering only one term in the 

right-hand side which is your diffusion term. So, this is known as boundary layer energy 

equation and if you divide by ρ Cp, then you can write 
p

T T k
u v

x x C

 
 

 
that is your 

thermal diffusivity
2

2

T

y




. So, we can see that we have dropped one term 

2

2

T

x




because it 

is much smaller than the
2

2

T

y




. 

(Refer Slide Time: 08:34) 
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Now, let us consider the scaling approach. In scaling approach, we will examine the 

order of magnitude of each term and we will see that if some term can be dropped. So, 

use scaling to arrive at boundary layer approximation. Assign a scale to each term in an 

equation and obviously, we are considering slender body. So, you know that we have a 

free stream velocity U∞. Free stream temperature T∞ and the plate length is L and we 

have thermal boundary layer thickness δT. 

Now, let us postulate that 1T

L


. So, with that assumption, let us go ahead and we will 

see that under what condition this is valid. So, now, let us see what terms in the 

governing equations can be dropped and under what conditions is 1T

L


valid. 

So, now let us assign the scales. We will assign the scales temperature 

difference wT T T  , Ty  thermal boundary layer thickness and x in axial direction 

it is order of the plate length L. In this particular case, now the scale of u will depend on 

the value of Prandtl number and obviously, your scale of v will also depend on the value 

of Prandtl number. So, we can see scales for u and v depend on whether δT is larger or 

smaller than δ. 
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So, first let us consider that thermal boundary layer thickness is higher than the velocity 

boundary layer thickness. So, you see here. So, this is your thermal boundary layer 

thickness and it is higher than the velocity boundary layer thickness δ. If you see the 

velocity distribution obviously, the velocity will vary up to the velocity boundary layer 

thickness δ which is known as also hydro dynamic boundary layer thickness and after 

that it will have the same velocity U∞ right. 

So, the scale of u we can consider in this particular case as the order of U∞ which is your 

free stream velocity. When T  , we will consider the scale of velocity u as order of 

free stream velocity U∞ because you can see that at T , we have the free stream velocity 

U∞. 

Now, we will use continuity equation to find the order of velocity v. So, we know the 

continuity equation 0
u v

x y

 
 

 
so obviously, you can write

v u

y x

 

 
. So, the v will be 

order of so, what is the order of u? It will be U∞, order of Ty  and x L . So, you can 

see TU
v

L

 . 

Now, let us examine the convection terms. We have two convection terms and let us see 

that what is the order of magnitude of each term. 
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So, if you see the scale of convection term so, we have 
T

u
x




this is the first term and 

what is the order of this? So, u U , T T   so, that we will write T

x




so, x L .  

So, 
U T

L

 . 

Similarly, the other convection term 
T

v
y




. So, this is the order of v so, v is TU

L

 and 

T T  which is wT T and your Ty  . So, you can see these T T will cancel out so, 

it will have
U T

L

 . So, you can see both the terms are having the same order. So, we 

cannot drop any term in the convection. So, both terms are comparable. So, you cannot 

drop any term from this convection. 
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Now, let us consider the diffusion terms. So, first term is
2

2

T

x




. So, what is the order of 

this? So, you can see it is 
2

T

L


and the next term is

2

2

T

y




. So, what is the order? It is

2

T

T




. 

So, now, let us see. So, we know that

2

2 2
2

2

22

( )T

T

T T

x L
TT L

y





 






. 

Now, we have already postulated that 1T

L


. So, what does it mean? From here, you 

can see that
2 2

2 2

T T

x y

 

 
. So, as 1T

L


so obviously, you can see

2 2

2 2

T T

x y

 

 
. So, drop 

2

2

T

x




from diffusion. So, if you drop these term, then obviously, essentially you will get 

the boundary layer energy equation. So, boundary layer energy equation you can write 

T T
u v

x y

 


 
both are comparable so, we did not drop any term is equal to now you have 

thermal diffusivity 
2

2

T

y




dropping the term

2

2

T

x




. 

(Refer Slide Time: 16:16) 
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So, now, let us see that under what condition is T << L valid. So, for that we will take 

one convection term, one diffusion term and obviously, as both terms are there in the 

boundary layer energy equation so, both will be comparable. So, you can see that the 

convection term
T

u
x




, we can compare with the diffusion term

2

2

T

y




. So, now put the 

scale. So, what is the scale of u? It is
2

T

T T
U

L





 
. 

So, if you see, now we can write 2

T this side and we will write 2L so, we have divided by 

L in the left-hand side so, in the right-hand side, we will write 
U L





,we have divided by 

L in the left-hand side so, we will also divide in the right-hand side. So, we can 

write
2

2

T

L U L

  

 

, you see. 

What is



? 



 is nothing but Prandtl number and Reynolds number is

U L


 . So, Prandtl 

number is 



 and Reynolds number based on the characteristic length L in this particular 

case, it is plate length is 
U L


 where ν is your kinematic viscosity. So, you can see, we 

can write 
2

2

1

L

T

r eL P R


based on L. 

So, you can see that
1 1

2 2

1

L

T

r e
L P R


. So, from here, you can see when this T

L


<<1. So, you 

can see here. So, T

L


<< 1 when you can see your 

1 1
2 2

Lr eP R >> 1. So, from this you can see .  

So, T

L


, we have already postulated that it is << 1 when your 

1 1
2 2

Lr eP R >> 1. So, that 

means, this is your Peclet number. So, 
1

2

eP >> 1; that means, Peclet number also will be 

>>1. 

So, in this case, if you consider let us say Peclet number is 100. So, if you consider 

Peclet number 100, then what will be your T

L


? So, if it is Peclet number 100 so, you can 
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see for Peclet number is 100 so, T

L


from here what will be that value? So, it will 

be 100 . So, it will be 10, 
1

10
so, it will be 0.1. So, you can see that Peclet number is 100 

T

L


will be 0.1. So, it is very small. So, generally we say that for thermal boundary layer 

to exist Peclet number should be greater than 100. 

Now, you can see that we have written T

L


as this expression. So, for any x we can write 

1 1
2 2

1

x

T

r e
x P R


so that means, 

xeR we are defining as
U x


 . So, for at any x or T

x


, we can 

write
1 1

2 2

1

xr eP R
. 

So, from this expression, you can see how your thermal boundary layer thickness varies 

with x. So, you can see from this expression, it varies with root x and velocity boundary 

layer also varies with x . So, you can see from this expression that T varies with x . 

You can see that we have already found the hydrodynamic boundary layer 

thickness 1
2

1

xe
x R


. So, 

x


is this expression and T

x


is having this expression. So, you can 

see T


what you can write? So, T


so, this you can write as

1
2

1

rP
. 

So, now, you can see
1

2

1T

rP




. So, what does it mean that T > δ when your 

1
2

rP < 1. 

So, you can see that when you have low Prandtl number fluids, then your thermal 

boundary layer thickness will be higher than the hydro dynamic boundary layer 

thickness. So, generally you see that liquid metals are having low Prandtl number values. 

So, for those cases, you can have the thermal boundary layer thickness, you can have 

higher than the hydro dynamic boundary layer thickness. 
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Now, let us discuss about the local heat transfer coefficient and local Nusselt number and 

what is the order we will find. So, you know local heat transfer coefficient definition 

from Newton’s law of cooling, you can write; from Newton’s law of cooling you can 

write 
''

w

w

q
h

T T




and what is your heat flux? Heat flux is nothing but 
0y

w

T
k

y

T T












. 

Now, let us see what is the order of h. So, now, T

T
k

h
T






. So, that means, you can see 

T

k
h


and we know what is the value of T

x


 so, from there, you can write 

1 1
2 2

1

x

T

r e
x P R


 

so, from here, you can see that
1 1

2 2

xr e

k
h P R

x
. So, this is the local heat transfer coefficient 

order and if you consider local Nusselt number, then the local Nusselt number
xu

hx
N

k
 . 

So, now you can see
T

k
h


. So, Nusselt number you can see will be order of h if it is 

order of 
T

k


so, it will be 

T

x


and 

T

x


from here, you can see 

1 1
2 2

x xu r eN P R and from here 

also you can see 
xu

hx
N

k
 so, it is 

1 1
2 2

xr eP R and you can see that these expressions are valid 
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when you have T  and when it is valid? When you have low Prandtl number fluids; 

that means, Prandtl number < 1. 

So, these expression is valid when you have low Prandtl number fluids; that means, 

Prandtl number  <  1 because we have taken the case when T  so obviously, it is 

valid when Prandtl number < 1 and under this condition your h and Nusselt number x 

will be order of these expressions. 

(Refer Slide Time: 26:22) 

 

Now, let us consider when thermal boundary layer thickness is less than the 

hydrodynamic boundary layer thickness. So, you consider here your thermal boundary 

layer thickness is T and this is less than your hydrodynamic boundary layer thickness δ. 

So, you have free stream velocity U∞. So, these U∞ obviously, you can see that when 

your velocity will develop from 0 to ∞ and at the edge of this velocity boundary layer, it 

will become free stream velocity U∞ right. So, you can see that inside the thermal 

boundary layer thickness at the edge of thermal boundary layer, the velocity will be 

lower than the free stream velocity because it is not same as U∞ right. So, at this position, 

you can see your velocity will be lower than the free stream velocity U∞ and that will be 

the scale for u in case of T < δ. 
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So, in this case, we will have one assumptions. We will assume that your velocity is 

varying inside the thermal boundary layer linearly. So, we can see. So, in this case, we 

are considering that this is your free stream velocity yU   ; at y = δ. So, at y = δT; let us 

say you have velocity u = u1 some scale at the edge of thermal boundary layer. So, let us 

say this is your some scale u1. 

Now, we are assuming that your velocity is varying linearly as you have very small 

velocity boundary layer thickness, if you assume that it is varying linearly, then whatever 

expression we will derive you will find that there is not much error. So, in that condition, 

now you find with the similar triangle what is the velocity at the edge of thermal 

boundary layer assuming the linear velocity profile. 

So, you can see from similarity of triangles so, there are two triangles. So, this is one 

triangle, this is one triangle. So, you can see that 1

T

u U

 
 because that y = δ you have 

U∞. So, 1
Tu U



 . 

So, now when T  , we will consider the scale for velocity u inside the thermal 

boundary layer as u1. So, we will consider 1
Tu U



 . Here, we cannot consider u as U∞ 

because U∞ is becoming at y = δ, but we are considering thermal boundary layer 

thickness so, y = δT. So, inside this, we are assuming that u will be less than the free 

stream velocity U∞ and the order of velocity will be TU



 . 

So, we can see when we consider T  obviously, outside the velocity boundary layer 

thickness you have U∞ everywhere. So, you can we took the scale for u as U∞, but in this 

particular case, we cannot take because at the edge of velocity boundary layer, you have 

U∞, but now T  . So, at the edge of thermal boundary layer, we do not have the 

velocity scale as U∞. So, for that reason we considered the velocity scale in this 

particular case u as u1 and this u1 we have found from similarity of triangles as TU



 . 
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So, now from continuity equation, you can find the scale for v from continuity equation. 

So, from continuity equation, you can see that
v u

y x

 

 
. So, we can see

1T
Tv U

L





 . 

So, you can see
2

Tv U
L




 . 

(Refer Slide Time: 31:26) 

 

Now, with these let us see that if we can drop some term in the energy equation. So, first 

we will consider the convection terms. So, it is
T

u
x




. So, it is order of u is scale 

of TU



 . So, TU




 , δT is δ, x is L. So, and 

T
v

y




as order of so, 

2

T T

T

T T T
v U U

y L L

 

  
 

  


.  

So, you can see this is also TU



 because here 2

T and here T is there so, it will become 

T and T

L


. So, we can see both are having the same order. So, you cannot drop any term 

from the convection. Both terms are comparable. So, you cannot drop any term. 
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Now, let us consider the conduction terms or diffusion terms, So, 
2

2

T

x




so obviously, you 

can see it will be 
2

T

L


and 

2

2 2

T

T T

y 

 


and with similar argument, you can see when is 

T

L


<< 1, 

2

2

T

x




<<

2

2

T

y




. So, drop 

2

2

T

y




from energy equation. 

So, if you drop this term from the energy equation, you can write boundary layer energy 

equation as
2

2

T T T
u v

x y y


  
 

  
. So, this is the same expression when we derived 

for T  . Now, let us see under what condition is T

L


<< 1, valid. 

(Refer Slide Time: 34:05) 

 

So, again we will compare the diffusion term with the convection term. So, you can see 

that 
2

2

T T
u

x y


 

 
,now put the scale. So,

2

T

T

T T
U

L




 


 
. So, here you can see this 

2

T if you take in the left-hand side, then it will be 3

T  and divide by L
2
 both side. So, here 

L is there so, it will become L
3
 will be order of α. 
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Then, we have
L


, L

2
 we have divided right in right-hand side so, 

L


will be there and 

will be 
1

U L

and T T will get cancelled. So, you can see it will be 1
2

3

3

1

L

T

e
L U L R

  

 

. So, 

we can write 1
2

1

Le
L R


. So, you can see 

U L





it is 
1

LeR
and 




as Prandtl number.  

So, you can see 
3

2

3

3

1 1

L

T

r e
L P R


. So, you can see

1 1
3 2

1

L

T

r e
L P R


. 

So, if you observe the expression of this and the term which we derive for T  , you 

can see Prandtl number,
1

3

rP and in case of T  , it is Prandtl number
1

2

rP .  

So, you can see so, T

L


<< 1 when you have 

1 1
3 2

Lr eP R >> 1. So, generally, you can see that 

if Peclet number >>1, then T << L. 

So, now for any x also you can write 
1 1

3 2

1

x

T

r e
x P R


and

1
3

1T

rP




. So, now, from this 

expression you see when you consider T  that means, your thermal boundary layer 

thickness is less than the hydrodynamic boundary layer thickness when it will happen? 

When your 
1

3

rP > 1 that means, it is high Prandtl number fluids. 

So, you can see that. So, T


will be so, we have consider T


< 1 so obviously, your 

1
3

rP > 1. So, if you consider fluid like oils, it will have high Prandtl number. So, for that 

the hydrodynamic boundary layer thickness will be greater than the thermal boundary 

layer thickness that means, T  for oils and you can see that
1

3

1T

rP




. 
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Now, under this condition, let us consider what is the local heat transfer coefficient and 

local Nusselt number. So,  again 
T

k
h


. So, we have already derived it. So that means, 

you can see it will be 
T

k x

x 
and T

x


 already we have found. So, it will be 

T

k x

x 
is just 

1 1
3 2

xr eP R and local Nusselt number 
xu

T

x
N


and so, 

1 1
3 2

x xu r eN P R . 

So, you can see the difference when T  is in the power of Prandtl number. So, if 

Prandtl number is 1 so, most of the gases will have the Prandtl number as 1 say let say 

air, air Prandtl number is almost 0.71 right.  

So, it is of the order of 1 and so, for most of the gases, you have Prandtl number is order 

of 1. So, like air you have Prandtl number as 0.71. So, if Prandtl number is 1 so, we can 

see for both the cases, we have derived 
1

2

1T

rP




and another case we have 

consider
1

3

1T

rP




. 
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So, if you consider Prandtl number = 1, then obviously, T


so, because your thermal 

boundary layer thickness will be equal to hydrodynamic boundary layer thickness and in 

that particular case, you can see your 
1

2

xe

k
h R

x
and

1
2

x xu eN R . 

(Refer Slide Time: 41:06) 

 

So, let us summarize what we have done today. So, we started with the energy equation 

and using order of magnitude analysis, we have derived the boundary layer energy 

equation and then, we considered two different cases: first case is when thermal 

boundary layer is larger than the hydrodynamic boundary layer and next we considered 

that hydrodynamic boundary layer is greater than thermal boundary layer. 

So, we can see. So, finally, we have derived these boundary layer equations, this is the 

continuity equation, this is the u momentum equation where we have dropped the term 

2

2

u

x




and this is the energy equation dropping the term

2

2

T

x




. 

You can see here that we have considered two different cases. In this particular case, we 

have considered T  and in this case, we have considered T  . So, from here we 

have derived 
1

x

T

m n

r ex P R


where m = 1/2 and n = 1/2 when T  so, from here, you will 
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get this expression and when you consider T  , then you can put m = 1/3 and n =1/2, 

then you will get this expression. 

From the velocity boundary layer equation also we have derived
1

2

1

x

T

e
x R


. So, if you 

now divide the thermal boundary layer to the hydrodynamic boundary layer, then you 

can find
1T

m

rP




. So obviously, you can see m =1/2 when T  and m =1/3 when you 

have T  and from here, you can see δT will be δ for Prandtl number <1 that means, 

low Prandtl number fluids and T  for high Prandtl number fluids. Also, we have seen 

that δ << l when Reynolds number is very high and δT << L when Peclet number will be 

very high. 

Then, we considered the local heat transfer coefficient and local Nusselt number and you 

can see that we have derived each of the order of 
T

k


and this is the expression for two 

different cases and 
xu

T

x
N


you can see from here you can write

x x

m n

u r eN P R . So 

obviously, m =1/2, n =1/2 when T  and you will get this expression and for T  , 

you will get m =1/3 and n =1/2 and you will get this expression. 

So, today we will just stop here and in the next class, we will start with the solution of 

these energy equation analytically and also using your approximate solution that means, 

integral approach. 

Thank you. 
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