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Module - 02
Preliminary Concepts
Lecture - 05
Derivation of boundary layer energy equation

Hello everyone. So, in last class, we discussed about the velocity boundary layer and we
have seen that near to the wall, there is a effect of viscosity and this is a viscous region
and away from the wall, there is a region where there is no effect of viscosity and that is
known as inviscid region and we have discussed about the edge of the boundary layer

and boundary layer thickness.

Today, we will discuss about thermal boundary layer. We can see there is a region near
to the wall, there will be an effect of this temperature gradient, but away from the
surface, it will be at the free stream temperature T co.
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So, we will start with the assumptions. So, we will consider steady state, two-
dimensional and laminar flow with constant properties and neglecting dissipation and
gravity.
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So, in last class, you can see we have derived these boundary layer equations so, this is
your continuity equation and this is the momentum equation in general. So, if you have
any curved surface and over it if there is a velocity boundary layer then obviously, you
can see normal to this surface if you measure the distance from the surface to the edge of
this boundary layer so, that is known as boundary layer thickness and there will be a
change in the pressure along the x direction. So, along the x direction and perpendicular

to this surface this is your vy.

So, in general, we have derived this equation, but as a special case, if you consider flow

. d .
over flat plate, then this d—p becomes O for flow over flat plate. Now, let us discuss about
X

the thermal boundary layer. Let us consider that the wall is maintained at a higher
temperature than the free stream temperature. In this condition, you can see that you
have a wall temperature T,, and free stream temperature is T.. Obviously, we have
considered T, > T... So, wall is hot and obviously, your T ., < Ty.

There will be some region where you can see that there will be change of temperature
and at a certain distance from the plate; you will find that this temperature will become
equal to free stream temperature T,. So, that distance is known as thermal boundary

layer thickness &t. So, we measure normal distance from the surface.

So, obviously, you can see that under certain conditions thermal interactions between
moving fluid and a surface is confined to a thin region near the surface called the thermal
or temperature boundary layer and the distance from the normal from the wall the
distance at which this temperature becomes almost 99 % of the free stream velocity

normal to the surface is known as thermal boundary layer thickness.

So, now we have energy equation, this is your energy equation. Now, under certain
conditions can we drop some term from this equation when we consider external flows
which we consider as the boundary layer flows. So, in this case also we consider that
these are the conditions for thermal boundary layer slender body without flow separation
and it is a high Reynolds and Prandtl numbers flows and we know that Peclet number is
product of Reynolds number and Prandtl number and generally if it is > 100, then

thermal boundary layer is significant.
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So, like earlier class, now we will consider both approaches intuitive approach as well as
scaling approach. First, let us discuss about intuitive approach. Let us consider that one
insect is there at position 0 and it finds very hot at this position so, it wants to move to
some position 1, 2, 3, 4 and we considered that T, > T..

So, under this condition, this insect if it is feeling very hot at this position where it should
move? So, you can see that if it moves to 1 position or 3 position obviously, it will not
find that much change in the temperature, but if it moves to position 2, then obviously, it

will get some relief.

So, from intuitive approach, you can see that obviously, if it is go away from the surface
to position 2, then it will feel somewhat cooler than earlier position. Now, let us consider
that the insect is near to the wall surface. Let us consider that the insect is near to the
wall and it wants to go to a some position where it will feel some significance really,
then obviously, you can see that it will go away from the surface because the temperature
change is more in that direction, but if it travels in the axial direction, then obviously,

there will be not much change in the temperature.

So, now we are considering about the change of temperature right so that means,
gradient. So obviously, from the intuitive approach, you can see that your normal
direction temperature gradient is higher than the axial temperature gradient. So, from
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2 2
there you can see thatg—: <<gy_-£' So, changes in T with respect to y are more
X

pronounced than changes with respect to X. So, under this condition, you can

2
negleth—Z . S0, you neglect this term.

X
So, if you see now the energy equation, we can write as considering only one term in the
right-hand side which is your diffusion term. So, this is known as boundary layer energy

equation and if you divide by p C,, then you can write Ug-FVﬁ:Lthat IS your

OX ox  pC,

2 2
thermal diffusivityaa—T. So, we can see that we have dropped one term or because it
ayZ a 2

] o°T
is much smaller than the?.
y
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Now, let us consider the scaling approach. In scaling approach, we will examine the
order of magnitude of each term and we will see that if some term can be dropped. So,
use scaling to arrive at boundary layer approximation. Assign a scale to each term in an
equation and obviously, we are considering slender body. So, you know that we have a
free stream velocity U,,. Free stream temperature T,, and the plate length is L and we

have thermal boundary layer thickness 5.

0. . . .
Now, let us postulate thatTT <« 1. So, with that assumption, let us go ahead and we will
see that under what condition this is valid. So, now, let us see what terms in the

governing equations can be dropped and under what conditions is %T < lvalid.

So, now let us assign the scales. We will assign the scales temperature
difference AT ~T, —T,_, y ~ &; thermal boundary layer thickness and x in axial direction
it is order of the plate length L. In this particular case, now the scale of u will depend on
the value of Prandtl number and obviously, your scale of v will also depend on the value
of Prandtl number. So, we can see scales for u and v depend on whether o is larger or

smaller than 6.
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So, first let us consider that thermal boundary layer thickness is higher than the velocity
boundary layer thickness. So, you see here. So, this is your thermal boundary layer
thickness and it is higher than the velocity boundary layer thickness 6. If you see the
velocity distribution obviously, the velocity will vary up to the velocity boundary layer
thickness & which is known as also hydro dynamic boundary layer thickness and after

that it will have the same velocity U, right.

So, the scale of u we can consider in this particular case as the order of U., which is your

free stream velocity. When o, > o, we will consider the scale of velocity u as order of
free stream velocity U,, because you can see that atd, , we have the free stream velocity

U.

Now, we will use continuity equation to find the order of velocity v. So, we know the

continuity equation 8_u+@ =050 obviously, you can Write@ ~ 6_u So, the v will be
oX oy oy oX

order of so, what is the order of u? It will be U., order of y~¢6;andx~ L. So, you can

U,s,
seev ~ ——.
L

Now, let us examine the convection terms. We have two convection terms and let us see

that what is the order of magnitude of each term.
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So, if you see the scale of convection term so, we have ua—thls is the first term and
X

what is the order of this? So, u~U_,d; ~ AT so, that we will write ?—Tso, X~L.

X

So, U_AT _
L

Similarly, the other convection term v%. So, this is the order of v so, v is %and

o; ~ AT which is T, —T_and youry ~ &; . So, you can see these J; J; will cancel out so,

L U_AT .
it will have °°L . S0, you can see both the terms are having the same order. So, we

cannot drop any term in the convection. So, both terms are comparable. So, you cannot

drop any term from this convection.
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2
Now, let us consider the diffusion terms. So, first term isg—z. So, what is the order of
X

2
this? So, you can see it is AL—;rand the next term isZ—z. So, what is the order? It isAg—I.
y T

FT AT

o L Gy
So, now, let us see. So, we know that T AT (L) :

E

Now, we have already postulated that%T <« 1. So, what does it mean? From here, you

2 2 2 2
can see thatg < 2 So, as oo 1s0 obviously, you can seeg < 2 So, drop
OX oy L OX oy

2
Z—Efrom diffusion. So, if you drop these term, then obviously, essentially you will get
X

the boundary layer energy equation. So, boundary layer energy equation you can write

ug+v% both are comparable so, we did not drop any term is equal to now you have

OX

2 2
thermal diffusivity « a—z dropping the term 8_12' :
oy OX
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So, now, let us see that under what condition is J; << L valid. So, for that we will take

one convection term, one diffusion term and obviously, as both terms are there in the

boundary layer energy equation so, both will be comparable. So, you can see that the

2

. T . e T
convection termug—, we can compare with the diffusion termagy—z. So, now put the
X

scale. So, what is the scale of u? It isU % ~ a£ :

o
So, if you see, now we can write &7 this side and we will write L*so, we have divided by

L in the left-hand side so, in the right-hand side, we will write ﬁ ,we have divided by

0

L in the left-hand side so, we will also divide in the right-hand side. So, we can

L a v
write — ~ ———, you see.
L vU_L

What is~ 2 ¥ is nothing but Prandtl number and Reynolds number isU“’L . So, Prandtl
a o 14

number is ~ and Reynolds number based on the characteristic length L in this particular
a

- . UL . . L .
case, it is plate length is —=—where v is your kinematic viscosity. So, you can see, we
14

2
can write % ~ i based on L.

rite

So, you can see that%T ~ . So, from here, you can see when this %«1. So, you

p}/z R}/z

r e

0. .
can see here. So, TT« 1 when you can see your Pr% Re% >> 1. So, from this you can see .

So, %T we have already postulated that it is << 1 when your P%Rf >> 1. So, that

means, this is your Peclet number. So, P/2>> 1; that means, Peclet number also will be

>>1,

So, in this case, if you consider let us say Peclet number is 100. So, if you consider

Peclet number 100, then what will be your%? So, if it is Peclet number 100 so, you can
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see for Peclet number is 100 so, %Tfrom here what will be that value? So, it will
o 1 o .
be+/100 . So, it will be 10, Eso, it will be 0.1. So, you can see that Peclet number is 100

%Twill be 0.1. So, it is very small. So, generally we say that for thermal boundary layer

to exist Peclet number should be greater than 100.

. 0. . . .
Now, you can see that we have written TTas this expression. So, for any x we can write

1 - U_x 0.
23 ~——-50 that means, R, we are defining as—=—. So, for at any x or—, we can
X Pr}/2 Rg/z g 14 X
write L
PZR%

rove

So, from this expression, you can see how your thermal boundary layer thickness varies

with x. So, you can see from this expression, it varies with root x and velocity boundary
layer also varies with Jx .. So, you can see from this expression that J; varies with /X .

You can see that we have already found the hydrodynamic boundary layer

thicknessé ~ R_l}/ . So, u is this expression and or is having this expression. So, you can
X 2 X X

€

0. . 0. . .
see gTwhat you can write? So, gTso, this you can write asy.

r

S0, now, you can seeé—T ~ i}/ So, what does it mean that o; > & when your Pr% <1

r

So, you can see that when you have low Prandtl number fluids, then your thermal
boundary layer thickness will be higher than the hydro dynamic boundary layer
thickness. So, generally you see that liquid metals are having low Prandtl number values.
So, for those cases, you can have the thermal boundary layer thickness, you can have

higher than the hydro dynamic boundary layer thickness.
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Now, let us discuss about the local heat transfer coefficient and local Nusselt number and
what is the order we will find. So, you know local heat transfer coefficient definition

from Newton’s law of cooling, you can write; from Newton’s law of cooling you can

oT
N k 7' =0
: q : : . oy ’
write h= #and what is your heat flux? Heat flux is nothing but T

KAT

. )
Now, let us see what is the order of h. So, now, h ~ ATT . So, that means, you can see

h~ LS and we know what is the value of a3 so, from there, you can write o L1
T X X P*R”

k . -
so, from here, you can see thath ~ — PR . So, this is the local heat transfer coefficient
X X

. : hx
order and if you consider local Nusselt number, then the local Nusselt number N, = P

K . e e
So, now you can seeh~—. So, Nusselt number you can see will be order of h if it is
T

k o X X
order of 5—50, it will be 5—and —from here, you can see N, ~ Pr%ij and from here
T T T

hx . . . .
also you cansee N, = o so, itis P,% Re% and you can see that these expressions are valid
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when you have &; > ¢ and when it is valid? When you have low Prandtl number fluids;

that means, Prandtl number < 1.

So, these expression is valid when you have low Prandtl number fluids; that means,

Prandtl number < 1 because we have taken the case when o&; > ¢ so obviously, it is

valid when Prandtl number < 1 and under this condition your h and Nusselt number x

will be order of these expressions.
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Now, let us consider when thermal boundary layer thickness is less than the
hydrodynamic boundary layer thickness. So, you consider here your thermal boundary

layer thickness is o; and this is less than your hydrodynamic boundary layer thickness .

So, you have free stream velocity U.. So, these U,, obviously, you can see that when
your velocity will develop from 0 to o and at the edge of this velocity boundary layer, it
will become free stream velocity U, right. So, you can see that inside the thermal
boundary layer thickness at the edge of thermal boundary layer, the velocity will be
lower than the free stream velocity because it is not same as U, right. So, at this position,
you can see your velocity will be lower than the free stream velocity U., and that will be

the scale for u in case of J; <3d.
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So, in this case, we will have one assumptions. We will assume that your velocity is

varying inside the thermal boundary layer linearly. So, we can see. So, in this case, we
are considering that this is your free stream velocityU |y=6 ;aty =90. So, aty = dr; let us

say you have velocity u = u; some scale at the edge of thermal boundary layer. So, let us

say this is your some scale uj.

Now, we are assuming that your velocity is varying linearly as you have very small
velocity boundary layer thickness, if you assume that it is varying linearly, then whatever
expression we will derive you will find that there is not much error. So, in that condition,
now you find with the similar triangle what is the velocity at the edge of thermal

boundary layer assuming the linear velocity profile.

So, you can see from similarity of triangles so, there are two triangles. So, this is one

triangle, this is one triangle. So, you can see that %:%" because that y = 6 you have
T

U... So, u, =Uw§—T.
o

So, now whengd; <&, we will consider the scale for velocity u inside the thermal

. . 0, .
boundary layer as u;. So, we will consideru, ~U ET Here, we cannot consider u as U,

because U, is becoming at y = &, but we are considering thermal boundary layer
thickness so, y = dr. So, inside this, we are assuming that u will be less than the free

: L )
stream velocity U, and the order of velocity will beU XT :
So, we can see when we consider o; > o obviously, outside the velocity boundary layer

thickness you have U, everywhere. So, you can we took the scale for u as U, but in this
particular case, we cannot take because at the edge of velocity boundary layer, you have

U, but nowd; <&. So, at the edge of thermal boundary layer, we do not have the

velocity scale as U,. So, for that reason we considered the velocity scale in this

: . N . 0.
particular case u as u; and this u; we have found from similarity of triangles asU ET
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So, now from continuity equation, you can find the scale for v from continuity equation.

- . 1
So, from continuity equation, you can see that@ ~ a_u So, we can seev~U_ §—T—5T.
oy oX oL

2

So, you can seev~U 5—T.
oL
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Now, with these let us see that if we can drop some term in the energy equation. So, first

] ] ) .. oT . )
we will consider the convection terms. So, it |sua—. So, it is order of u is scale
X

, or iIs o, x is L. So, and vﬂas order of so,

ofU o 5—T
o

oog'

2
VT _y SLAT | 5 AT
oy "L S, 5 L

.. 0. . L
So, you can see this is also U, FT because here 57 and here &, is there so, it will become

0. :
O; andTT. So, we can see both are having the same order. So, you cannot drop any term

from the convection. Both terms are comparable. So, you cannot drop any term.
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2
Now, let us consider the conduction terms or diffusion terms, So, 8_250 obviously, you
X

- AT T AT S :
can see it will be —-and a—2~—2and with similar argument, you can see when is

T

2 2 2
%T« 1, 8_12'«8_12'. So, drop gTEfrom energy equation.

So, if you drop this term from the energy equation, you can write boundary layer energy

. T T T L. . .
equation asua—+va—:aa—2. So, this is the same expression when we derived

OX

foro;, > o . Now, let us see under what condition is %T« 1, valid.
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So, again we will compare the diffusion term with the convection term. So, you can see

2
that uﬂ~ ag,now put the scale. So,Uwé—T£~ag. So, here you can see this
OX oy o L fo

57 if you take in the left-hand side, then it will be &7 and divide by L? both side. So, here

L is there so, it will become L3 will be order of a.
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Then, we have%, L? we have divided right in right-hand side so, %Will be there and

. 1 . oo S a v 1
will be ——and ¢, o; will get cancelled. So, you can see it will be — ~ ————. So,
UL v U, LR

0 © e,

.o 1 .1
we can write — ~ —- . S0, you can see Y _itis — and L as Prandtl number.
L R~ UL a

e © e

S0, you can see 5—T3 N So, you can seeé—T L
’ L PR: L P*RE

So, if you observe the expression of this and the term which we derive ford; >, you

can see Prandtl number, P’ and in case of 5, > & , it is Prandtl number P

0
So, you can see So, TT« 1 when you have P%Re% >> 1. So, generally, you can see that

if Peclet number >>1, then &, << L.

So, now for any x also you can write 5—T~La o 1 . So, now, from this
X PFRE S5 PA

r

expression you see when you consider o, < o'that means, your thermal boundary layer
thickness is less than the hydrodynamic boundary layer thickness when it will happen?

When your Pr% > 1 that means, it is high Prandtl number fluids.

So, you can see that. So, %Twill be so, we have consider %T< 1 so obviously, your

Pr%> 1. So, if you consider fluid like oils, it will have high Prandtl number. So, for that

the hydrodynamic boundary layer thickness will be greater than the thermal boundary

layer thickness that means, o > ¢o; for oils and you can see that%T ~ P_l}/

r
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Now, under this condition, let us consider what is the local heat transfer coefficient and
) k . ]
local Nusselt number. So, again h e So, we have already derived it. So that means,
T

you can see it will be Eiand U3 already we have found. So, it will be Eiis just

X O; X X &;

X
P/*R;%and local Nusselt number N, ~—andso, N, ~P/R’.

T

So, you can see the difference when &, > J'is in the power of Prandtl number. So, if

Prandtl number is 1 so, most of the gases will have the Prandtl number as 1 say let say

air, air Prandtl number is almost 0.71 right.

So, it is of the order of 1 and so, for most of the gases, you have Prandtl number is order

of 1. So, like air you have Prandtl number as 0.71. So, if Prandtl number is 1 so, we can

. 1
see for both the cases, we have derived %T~ o7 and another case we have

r

consider&—T ~ i
s P*

r
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So, if you consider Prandtl number = 1, then obviously, %Tso, because your thermal
boundary layer thickness will be equal to hydrodynamic boundary layer thickness and in

. k
that particular case, you can see your h ~ —R/2and N, ~ R/,
X X X X
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So, let us summarize what we have done today. So, we started with the energy equation
and using order of magnitude analysis, we have derived the boundary layer energy
equation and then, we considered two different cases: first case is when thermal
boundary layer is larger than the hydrodynamic boundary layer and next we considered

that hydrodynamic boundary layer is greater than thermal boundary layer.

So, we can see. So, finally, we have derived these boundary layer equations, this is the

continuity equation, this is the u momentum equation where we have dropped the term

o%u . . . o°T
a7&1nd this is the energy equation dropping the term v

You can see here that we have considered two different cases. In this particular case, we
have considered o; > ¢ and in this case, we have considered 5, <¢J. So, from here we

have derived 5—T ~
X

where m = 1/2 and n = 1/2 when &, > ¢ so, from here, you will
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get this expression and when you consider §; < J, then you can put m = 1/3 and n =1/2,
then you will get this expression.
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From the velocity boundary layer equation also we have derived — ~
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So, if you

now divide the thermal boundary layer to the hydrodynamic boundary layer, then you

can find%T ~ % So obviously, you can see m =1/2 when &, > ¢ and m =1/3 when you

r

have o; <dand from here, you can see 6t will be & for Prandtl number <1 that means,
low Prandtl number fluids and o; < ¢ for high Prandtl number fluids. Also, we have seen

that 6 << | when Reynolds number is very high and &t << L when Peclet number will be

very high.

Then, we considered the local heat transfer coefficient and local Nusselt number and you

can see that we have derived each of the order of Land this is the expression for two
T
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different cases and N, ~5—you can see from here you can writeN, ~P"R}. So
T

obviously, m =1/2, n =1/2 when &, > & and you will get this expression and foro; <,

you will get m =1/3 and n =1/2 and you will get this expression.

So, today we will just stop here and in the next class, we will start with the solution of
these energy equation analytically and also using your approximate solution that means,

integral approach.

Thank you.
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