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Hello everyone. So, in last class, we derived the energy equation. Now, in today’s class, 

first we will just summarize what we have done in last class, and we will write the 

governing equations in cylindrical and spherical coordinates, then we will simplify these 

equations for Cartesian coordinate for the boundary layer flows.  

(Refer Slide Time: 00:54) 

 

So, we can see we have derived this equation in general, and Φ is the dissipation 

function, and µΦ is the dissipation term, here this is the temporal term, this is the inertia 

term where temperature is convected due to the velocity v, this is the heat generation per 

unit volume, and this is the diffusion term.  

And you can see for laminar incompressible Newtonian fluid flow with constant 

properties, you can write these equations, because constant properties so k you can take 

it outside.  

68



 

 

And you can see for incompressible flow velocity will be low, so you can see these term 

you can neglect, and in general you can write this equation with this assumptions, where 

dissipation function you can see this is the term you can neglect because for 

incompressible flow divergence of v will be 0; that means, 0
u v w

x y z

  
  

  
. So, 

dropping this term, you can write the dissipation function as this. 

(Refer Slide Time: 02:05) 

 

So, in Cartesian coordinate now let us write the governing equations for laminar 

incompressible Newtonian fluid flow with constant properties. So, this is the coordinate 

system Cartesian coordinate x, y, z. So, this is the continuity equation. This is the x 

component of momentum equation, this is the y component of momentum equation, and 

this is the z component of momentum equation, where g x, g y, g z are the gravitational 

acceleration in x, y, z direction respectively. And this is the energy equation, and this is 

the dissipation function. 

And for these equations you can see you can find the components of viscous stress tensor 

like this. So, there will be six components, because this stress tensor is symmetric. So, 

xy yx  , so obviously, we will have total six components in the stress tensor. 
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Now, if you use some suitable transformation function, then you can convert these 

equations in Cartesian coordinate to the equations in cylindrical coordinate. So, if you 

use this as a cylindrical coordinate, so you can see this is the r, and this is the θ, and this 

is the z.  

Then for r, θ, z coordinate in cylindrical coordinate, if you use the transformation 

function as x = r cosθ, y = r sinθ, and z =z, then you can write the continuity equation as 

these; r component of equation as this; θ component of equation as this; and z component 

of momentum equation as this. And corresponding viscous stress tensor will be this. 

(Refer Slide Time: 03:58) 
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And in spherical coordinate, so we are considering r, θ, Φ, so this is the Φ. So, Φ 

obviously, you can see it will vary 0 to 2 π; this is the θ, it will be 0 to π; and this is the r. 

So, if you use this transformation functions x =r sinθ cosΦ; y = r sinθ sinΦ; and z = r cos 

θ. Then you can write the continuity equation in spherical coordinate like these.  

This is the r component of momentum equation; this is the θ component of momentum 

equation; and this is the Φ component of momentum equation, where 2. iv is given by 

this expression. And corresponding components of viscous stress tensor can be written 

like this. 

(Refer Slide Time: 04:48) 

 

And energy equation now in cylindrical and spherical coordinate you can write like this. 

And this is the viscous dissipation function. And similarly in spherical coordinate this is 

the energy equation, and this is the viscous dissipation function. 
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Now, we will discuss about the boundary layer flow. We will consider Cartesian 

coordinate and we will consider external flows. First we will assume that it is a steady, 

two-dimensional and laminar flow with constant properties and neglecting dissipation 

and gravity.  

So, invoking these assumptions, you can write the governing equations as this. This is 

the continuity equation it is a two-dimensional flow. So, this is the continuity equation. 

This is the xu component of momentum equation, and this is the y component of 

momentum equation, and this is the energy equation. And obviously, you can see u is the 

velocity in x direction; v is the velocity in y direction.  

So, in today’s class, we will use boundary layer concept, and we will see that if you can 

drop some term from these equations for boundary layer flows. So, scientist Prandtl 

actually used scaling analysis, and showed that few terms in the governing equation can 

be dropped because those terms are very small compared to the others.  

So, we will ask these questions now. What are the conditions under which terms in the 

governing equations can be dropped, and what terms can be dropped? So, these questions 

now we will answer one by one. 
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First let us understand what is boundary layer. Let us consider that you have a external 

flow over a flat plate. If you see that there will be some region close to the wall, where 

viscous effect is significant, and some other region away from the surface you will find 

that there is no effect of viscosity.  

So, you can see here you have a flat plate let us say of length L, and you have a uniform 

flow U∞, and temperature T∞. This velocity is known as free stream velocity and this 

temperature is known as free stream temperature; x is measured in the axial direction, 

and y is measured perpendicular to the plate. 

Now, if you see that the velocity boundary layer, so there is some region where you have 

effect of viscosity, and this is known as viscous region. And some region away from the 

surface, there will be no effect of viscosity and that is known as inviscid region.  

And if you see the velocity profile obviously to invoke the no slip condition at the wall 

velocity will be 0. So, the fluid flow which is residing on the top of this flat plate, the 

velocity will be 0. And gradually this velocity will increase from 0 to U∞, where U∞ is 

the free stream velocity. 

Now, we can see that there is a some region which is known as boundary layer; inside 

that you have viscous region, and outside that you will have inviscid region. So, if you 

consider that this is the edge of the boundary layer, then you can see this distance from 
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the normal distance from the flat plate is known as hydrodynamic boundary layer 

thickness that is denoted by δ. 

δ is the normal distance from the plate at which these velocity U becomes almost 99 % 

of U∞, so that is known as hydro dynamic boundary layer thickness and this fictitious 

line where at every distance, we have the hydro dynamic boundary layer thickness, so 

that is known as edge of boundary layer.  

So, the inside of this edge of boundary layer you can see there is a viscous region, and 

outside it is inviscid region. So, you can see under certain conditions the action of 

viscosity is confined to a thin region near the surface is called the hydrodynamic or 

velocity boundary layer. 

Now, if you consider the thermal part, so you can see you have free stream temperature 

T∞ and let us say wall temperature is T w, and T w > T∞. Then you can see that there will 

be some region where thermal effect will be there, and temperature gradient will exist. 

And this temperature will vary inside this layer from T w to T∞.  

And outside this region you can see it will maintain the free stream temperature T∞. So, 

the normal distance from the plate up to which you have the effect of this temperature 

gradient, so that is known as thermal boundary layer thickness and denoted as δT.  

So, you can see that these fictitious line inside, there is a temperature gradient, but 

outside you have free stream temperature T∞. So, this is the edge of thermal boundary 

layer. So, you can see under certain conditions, thermal interactions between moving 

fluid and a surface is confined to a thin region near the surface called the thermal or 

temperature boundary layer. 

So, here we have to consider two important assumptions, one is that there is no flow 

separation. Then under that condition we can derive the boundary layer equations and 

you have a slender body that means thickness of the body is much, much smaller than the 

length of the body.  

So, you can see conditions for hydro dynamic boundary layer, we have slender body 

without flow separation, and we have to consider high Reynolds number flows. And 

Reynolds number should be >100. Conditions for thermal boundary layer, slender body 
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without flow separation and high Reynolds and Prandtl numbers flow that means, the 

Peclet number which is the product of Reynolds number and Prandtl number should be 

>100. 

And you can see Peclet number you can write in this expression. So, you can see that 

Peclet number is the ratio of the heat transferred by the convection to the heat transferred 

by conduction. So, let us list down the observations of these boundary layer flow. Fluid 

velocity at surface vanishes rapid changes across boundary layer to U∞.  

So, from 0 to U∞, these changes occurring inside the boundary layer. Rapid change 

temperature across boundary layer from Tw to T∞. So we can see it is changing from Tw 

to T∞ inside the thermal boundary layer. 

Another observation is that boundary layers are thin. From the experiment it is seen that 

for air at 10 m/s parallel to 1 m long plate this boundary layer thickness will be of the 

order of 6 mm at the end; at x equal to 1 m, you will get 6 mm.  

So, you can see that you have the length of the plate as 1 m and the boundary layer 

thickness is 6 mm, so it is very very small compared to the length of the plate. So, you 

can see boundary layers are very thin. Viscosity plays negligible role outside the viscous 

boundary layer which is your inviscid region; and boundary layer exist in both forced 

and free convection flows. 

(Refer Slide Time: 14:17) 
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Now, we will use two different approaches to see that which term we can drop from the 

governing equations. So, first let us use the intuitive arguments. So, you can see that in 

the right hand side of the momentum equations, we have viscous terms. Let us see that if 

you can drop one term. So, there are two viscous terms,
2 2

2 2

u u

x y

 


 
. So, this is not 

conduction. This is diffusion or viscous. So, these are the two terms.  

Now, let us consider one small insect which is sitting inside the boundary layer, and it is 

not disturbing the flow. And let us say that it is flying at this position 0. Now, it is 

experiencing a high velocity and it wants to shift to a lower velocity region. So, by 

intuitive arguments what can you say that where it will go 1, 2, 3 or 4 positions.  

So, you can see obviously that it will travel to position 4, because it will have less 

velocity right, because if it is travels from 0 to 4, then it will have less velocity. And if it 

is ultimately goes to the surface, then it will not feel any velocity. 

So, you can see that changes in u with respect to y are more pronounced than changes 

with respect to x. So, it does not answer that the change of these gradient 
u

x




is which 

one is smaller than the other. Now, you see that the insect is just one step away from the 

surface. So, you can see that if it goes to the surface, then obviously, the velocity will 

become 0, and the changes in the velocity gradient will be more.  

If you consider that insect is at the edge of the boundary layer and if it goes away from 

the surface, then you will find that there will be not much variation in the velocity or 

velocity gradient. And if you consider in the axial direction, if it moves then obviously 

there will be not much change in the velocity gradient. So, that means, that your velocity 

gradient with respect to y is much higher than the velocity gradient with respect to x.  

So, considering that you can see that 
2

2

u

x




will be much less than

2

2

u

y




, and you can drop 

the term from the momentum equation. So, now, what about the pressure terms. So, if 

you consider slender body, so obviously, streamlines are nearly parallel and you will 

have very small particle velocity.  
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So, if you have very small vertical velocity and if you consider the y momentum 

equations, then all the inertia terms and viscous terms will become 0. So, you can 

consider that the pressure gradient 
p

y




will be almost 0 very small. 

So, obviously, 
p

y




will be close to 0. So, you can write p is only function of x, and 

p

x




you can write as

dp

dx
. And as pressure gradient along the y direction almost 0, 

whatever pressure is there outside the boundary layer p∞ so that will also be impressed 

inside the boundary layer because there is no change in the pressure in y direction.  

So, whatever pressure is there p∞ here so inside also at this x location will be same 

pressure everywhere. So, you can see that you can write 
dp

dx
=

dp

dx

 . And since p∞ is the 

pressure at the edge of the boundary layer that means at y=δ, it can be independently 

obtained from the solution to the governing equation for inviscid flow outside the 

boundary layer. 

So, you can see that in the momentum equation, then we can write 
dp

dx
= 

dp

dx

 . So, we 

have these boundary layer equations, this is the continuity equation. And 
dp

dx
we have 

written
dp

dx

 , and dropping the term 
2

2

u

x




this is the term we have written. So, now you 

can see that if you divide by ρ, then you can write in right hand side 
1 dp

dx
 and 




is 

your kinematic viscosity. So, 
2

2

u

y




. 

Now, let use another approach which is your mathematical approach that is your scale 

analysis. So, here we will use the order of magnitude analysis. And we will see the order 

of magnitude of each term in the governing equations and which term is having less 

order of magnitude compared to the other, we will drop from the governing equations. 
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So, use scaling to arrive at boundary layer approximations, assign a scale to each term in 

the equation. So, obviously, you have free stream velocity U∞, length of the plate as L, 

and hydrodynamic boundary layer thickness δ. Now, we will postulate that 
L


 is much, 

much smaller than 1, because we have already seen that for air at 10 m/s parallel to 1 m 

long plate δ is of the order of 6 mm at the end. So, obviously, we can assume that 
L


<< 

1. 

Now, let us answer these questions. What terms in the governing equation can be 

dropped? Is normal pressure gradient negligible compared to the axial pressure gradient? 

And under what conditions is 
L


<< 1 valid? So, we will answer these questions one by 

one. 
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So, first assign the scales. So, velocity scale you can see the free stream velocity is U∞. 

So, we can assign the scale for these velocity u as U∞. We have hydro dynamic boundary 

layer thickness δ. So, in y direction, so obviously, y we can write as order of δ. And 

length of the plate is L, so the order of x, we can write as L. Now, let us consider the 

continuity equation, and find what is the order of velocity v. So, this is the continuity 

equation. So, you can see
v

y




, you can write as order of 

u

x




.  

So, you can write the order of v as this is the 
u

x




, what is the order of u? It is U∞. What 

is the order of
y , this is δ and divided by x. So, you can see the order of velocity v 

is
U

L

 . So, here you can see we have already assume that 
L


is much smaller than 1. So, 

we can see v will be much smaller than U∞. So, the velocity in y direction v is very small 

compared to U∞. And we got the scale for v velocity as this. 
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Now, let us answer this question what terms in the governing equations can be dropped. 

So, we have already assigned the scales, and we have found the scale for velocity v. So, 

you can see this is the u scale, this is the v scale, this is the y scale which is δ, and this is 

the x scale L. 

Now, let us consider the convection terms. So,
u u

u v
x y

 


 
. So, first term is

u
u

x




. So, 

what is the order? u is U∞, this is your U∞ and this is L, so that means,
2U

L

 . Now, 

consider the other convection term
u

v
y




.  

So, what is the order of v you see this is yourU
L


 , and u is U∞ and y is δ. So, you see 

this is
2U

L

 . So, you can see both are of same order. So, you cannot drop any terms. So, 

the two inertia terms are of the same magnitude. So, we cannot drop any term in the 

convection terms. 

Now, let us consider the viscous terms. So, we have
2

2

u

x




. So, you can see this is the order 

of
2

U

L

 , and you have 
2

2

u

y




 is order of

2

U


 . So, now you can see that we can write

2

2

2

2

u

x

u

y









.  
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So, this ratio will be order of
2

2

U

L
U







. So, you can see you can write these as order of 2( )
L


. 

So, we have already assume that 
L


is much smaller than 1.  

So, from here you can see that 
2

2

u

x




is much smaller than 

2

2

u

y




. So, as 

L


<< 1. So, 

2

2

u

x




<<

2

2

u

y




. So, 

2

2

u

x




can be neglected from the viscous terms.  

(Refer Slide Time: 25:43) 

 

So, you can see that if 
L


<< 1, then you can drop the term

2

2

u

x




. So, dropping the 

2

2

u

x




term, you can write the x component momentum equation as this. And following the 

same procedure you can drop 
2

2

v

y




from the y momentum equation and you can write like 

this. 

Now, the next question is that is normal pressure gradient negligible compared to the 

pressure gradient? So, next question is that is normal pressure gradient negligible 

compared to axial pressure gradient? So, now, you can see that in the u momentum 
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equation we have the term
p

x




, and in the v momentum equation we have

p

y




. Now, let 

us consider these each pressure gradient term with corresponding inertia term. 

So, in the u momentum equation compare these term with the inertia term and v 

momentum equation compare this pressure gradient term with the inertia term, because 

both terms are of the same order. So, we have already seen. So, you can take any one 

term. So, we can see that 
p

x




will be order of

u
u

x





. So, you can see 

p

x




will be U  , 

this is U∞ divided by x length is L. So, this is
2U

L
  . 

Now, if you see the pressure gradient term in the y component of momentum equation, 

so you can write 
p

y




will be order of

v
u

x





. So, 

p

y




will be U  , and v is the order 

ofU
L


 , so U

L


 and

1

L
. So, 

p

y




you can write order of

2

2

U

L

  .  

So, now see the ratio

p

y

p

x









. So, this is the order of so 
p

y




is this one 

2

2

U

L

   and divided 

by
p

x




. So, it is

2U

L

  . So, you can see this will be order of
L


.  

So, from here you can see that
L


, we have assumed as much smaller than 1, so 

obviously, your 
p

y




will be much smaller than

p

x




. So, you can see as 

L


is much smaller 

than 1.  

So, obviously, 
p

y




<<

p

x




. So, you can see that 

p

y




will be order of 0, because it is very 

small. You can see that we have done the balance between the pressure gradient and the 

inertia term you can also balance the pressure gradient with the viscous term and you 

will get the same result. 
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So, now, you can see for the two-dimensional flow p is function of x and y. So, for 2D 

flow we know that p is function of x and y. So, you can write. Now, you can write
p

x




. 

So, we have divided by d x. So, you can write
p

x




.  

And if you take common then you will get1

p

dyy

p dx

x









. So, now, you can see what is the 

order of
dy

dx
; 

dy

dx
is order of y is δ, and x is L. And

p

y




, and the 

p

y

p

x









 that is also we have 

derived in the last slide as
L


. 

So, you can see
2[1 ( ) ]

dp p

dx x L


 


, because 
dy

dx
is order of 

L


 and

p

y




. So, it will be

L


. 

So, you can write this as order of this. So, as 
L


 is much smaller than 1, so you can 

write
dp p

dx x





. So, now you can see that in this as 
p

y




is negligible. So, ( )p p x . 
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So, now, at a given location x the pressure ( )p x inside the boundary layer is the same as 

the pressure p∞ at the edge of the boundary layer y = δ. So, if you can see that outside the 

velocity boundary layer, if you have a pressure gradient p∞ which is function of x, 

then ( ) ( )p x p x , and
dpdp

dx dx

 .  

And in the u momentum equation, you can see that it will become 

2

2

1 dpu u u
u v v

x y dx y
  

   
  

. So, this is the boundary layer equation.  

What about the v momentum equations? So, we have seen that v is much smaller than 

U∞ right, and it is having very small value. And from there we have derived the 
p

y




also 

is very small value. So, in the y momentum equation, if you see all the terms will be 

order of δ.  

So, you can neglect the y momentum equation. So, in y momentum equation, each term 

is of order δ. So, all terms in this equation are neglected leading to the important 

boundary layer simplifications of negligible pressure gradient in the y direction. 

So, now we can see that this equation we have derived in general, where p may be 

function of x, and as 0
p

y





. So, obviously the pressure at the outside the boundary layer 
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will be also function of x. So, you can see that p∞ (x), so that can be impressed inside the 

boundary layer and we will have at a certain x location it will have the same pressure.  

Now, this pressure gradient if you consider for a let us say you have a in general curved 

surface, and you can have the boundary layer like these where this is the boundary layer 

thickness delta, and x is measured along the surface, and y is measured perpendicular to 

the surface. In this particular case, actually you will get that outside pressure p∞ (x). And 

for that reason your velocity free stream velocity ∞ will be function of x. 

So, you can see that for this particular case from this equation if you apply outside the 

boundary layer, then what will happen? So, obviously, you can see that from here you 

can write U∞ and 
u

x




so it will be u(x), so you can write

dU

dx

 .  

And v is very small negligible, so you can drop this term as  
1 dp

dx
 . And obviously, 

outside the boundary layer u is function of x only, so 
2

2

u

y




will be 0. So, you will get this 

equation. So,
1dU dp

U
dx dx

 
   . 

So, if you write it here then you can get, so you can write it 

here
2

2

dUu u u
u v U

x y dx y




  
  

  
, where U∞(x). And if you integrate this equation what 

you will get? If you integrate this situation you can see you will get 

21

2
p U   constant. And it is valid in the inviscid region outside the boundary layer. 

Now, if you consider a special case that flow over flat plate. So, in case of flow over flat 

plate, this U∞ will be constant; it is not function of x. So, for flow over flat plate, U∞ is 

constant. So, here you can see that if U∞ is constant, then
dU

dx

 = 0, because U∞ is 

constant.  
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So, 
dU

dx

 will be 0. So, if you have a flow over flat plate where U∞ is constant, then you 

can write your boundary layer equation as
2

2

u u u
u v

x y y


  
 

  
, so that means, your 

dp

dx

 =0.  

So, you can write this equation as a special case for flow over flat plate. But if it is a 

curved surface like wedge or flow over a cylinder, then you have a curved surface, then 

in that case your U∞ is function of x, and you have to consider the pressure gradient term 

dp

dx

 in the momentum equation. 

(Refer Slide Time: 37:19) 

 

Now, the last question is that under what conditions is 
L


much small than 1 valid? So, 

let us answer this question. So, what will do now? Now, you can see in the left hand side 

the inertia terms are of the same order. So, we will take one inertia term, and we will 

compare it with the viscous term because we have only one viscous term right
2

2

u

y




. So, 

this we will compare. 
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So, you can see 
u

u
x




one inertia term we will compare with the viscous term

2

2

u

y




. So, 

what is the scale? So, 
U

U
L


 2

U



 .  

So, if you take delta square in the left hand side, if you divide both side by L, then you 

will get L
2
, then you can see here you will get

U L





. And we can define Reynolds 

number based on free stream velocity ∞ and plate length L, then we can write
Le

U L
R


 . 

So, you can see from here it will be
1

LeR
, and

1

Le
L R


.  

Now, we will answer this. So, if 
L


delta by L is much smaller than 1, so what will be 

this term. So, if 
L


 is much smaller than 1 then, 

1

LeR
will be much greater than 1. So, 

you can see that it is a high Reynolds number flow. So, if you have high Reynolds 

number flow, but not in the range of turbulent, then you will get the hydro dynamic 

boundary layer thickness is very small compared to the length of the plate. 

So, if you consider Reynolds number 100, then let us see that what is the 
L


 order. So, if 

consider 
LeR as 100, then you can see from here 

L


will be order of, so it will be 100, 

so 100 10 . So, it will be 0.1.  

So, you can see that it is very small. So, generally we say that these equations are valid 

when Reynolds number is greater than 100. Now, for any length x, this expression you 

can write as
1

xe
x R


, where the Reynolds number

xe

U x
R


 .  
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Now let us find what is the wall shear stress and the friction coefficient. So, what is the 

order of these terms? So, now, we know that for two-dimensional flow, wall shear 

stress w

u

y
 





.  

So, for 2D flow we know w

u

y
 





. So, you can see that w

U
 


 . And we know 

that
1

xe
x R


. So,

1
2

xw e

U Ux
R

x x
  


  .  

And we know that friction coefficient
21

2

w
fC

U



 

 . So, you can see that friction 

coefficient Cf will be generally
21

2

w

U



 

. So, if you see
2

w
fC

U



 

, we will not consider 

half because we are doing the order of magnitude analysis. 

So, you can see that
1

2
2

1
xf e

U
C R

x U








. So, if you see from here that if 

you
1

2

xf eC R
U x



 

. And C f will be
1

2
1

x

x

f e

e

C R
R

.  
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So, if you see that
1

x

f

e

C
R

. So, if 
1

xeR
and 

x


is also

1

xeR
. So, obviously, you can 

see
1

x

f

e

C
x R


.  

(Refer Slide Time: 42:43) 

 

So, let us summarize what we have studied in today’s class. So, first we have just written 

the governing equations in Cartesian, cylindrical and spherical coordinates. Then we 

considered external flow, and we have discussed about boundary layer.  

So, we have seen that near to the wall, we have a small region where you have an effect 

of viscous region. So, that is known as viscous region then outside this and away from 

the surface there is a region that is known as inviscid region where there is no effect of 

viscosity. Then we used intuitive arguments and scale analysis, and we have derived the 

boundary layer equations. 

So, you can see this is the continuity equation and this is the momentum equation. We 

have derived expressing the term p as p∞ because from y momentum equation we have 

seen that 0
p

y




.  

89



 

 

So, this is the equation we have seen. And as a special case also we have discussed that if 

you have a flow over flat plate, then U∞ is constant and there will be no axial pressure 

gradient. So, there will be 0
p

x





. So, this term you can drop for flow over flat plate. 

Then we have derived this relation
1

2

1

Le
L R


. And if 

L


is much smaller than 1, obviously, 

it has to be a high Reynolds number flow. And for any x we have written 
x


as this 

expression and from here we have written the shear stress w

U
 


 , and we got this 

expression. And then we have seen that your friction coefficient fC
x


and

1
2

1

x

f

e

C
R

. 

Thank you.  
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