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Module — 11
Turbulent Flow and Heat Transfer
Lecture — 39
Convection in turbulent pipe flow

Hello, everyone. So, today we will study Convection in turbulent pipe flow. In last
classes we have already derived the universal velocity profile for flow over flat plate and
also we have derived the heat transfer analogy relations or correlations. We will use
those universal velocity profile for pipe flow with slight modifications. First let us

discuss about the entry length for turbulent pipe flow.
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Thermat entry length doesn't Jend itself to a simple, universally-applicable eguation, since the flowis
influenced so much by fuid properties and boundary conditions,

The hydrodynamic entry fength is much shorter for turbulent fiow than for laminar.

In fact, the hydrodynamic entrance region is sometimes neglected in the analysis of turbulent flow,

White recommendsIE)—h ~ 4.4 Reé . So, you know that D¢ is your hydraulic diameter and it

4A
is obviously, you know how it is defined. It is defined as D, sz’ where As is your

flow area and P is your wetted perimeter wetted perimeter and this Reynolds number is

PY, D,
U

and in

defined based on this hydraulic diameter. So, Re,, is defined as Re, =

this case we are considering internal flow.
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Another scientist Latzko suggests IE?h=0.623Re§e. So, L h obviously, it is

e
hydrodynamic entry length hydrodynamic entry length. In general, in turbulent flows it is
very small compared to the laminar flow and open this hydrodynamic entrance length is
neglected. However, it is very difficult to calculate the thermal entrance length for

turbulent flows.

Thermal entry length does not lend itself to a simple, universally-applicable equation,
since the flow is influenced so much by fluid properties and boundary conditions. The
hydrodynamic entry length is much shorter for turbulent flow than for laminar. In fact,
the hydrodynamic entrance region is sometime neglected in the analysis of turbulent

flow.
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Governing Equations
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So, let us write the governing equation for this internal flow with these assumptions:
two-dimensional, axisymmetric and incompressible flow. And, as we are considering
boundary layer flows so, you can see this is the pipe of radius ro and x is measured in

axial direction; r is measured from the centerline.

So, this is your C L centerline and y if we tell it is measured from the boundary then it is
ro - r. S0, obviously, y = ry - 1. So, in this case you can see we will define the velocity u
in axial direction and v velocity in r direction ; for convenience we are just defining these

velocities u and v.

707



So, now, you can write the governing equations after Reynolds averaging. So, you will

get continuity equation. So, we can write as g—u+%§(r\_/) =0. And, Reynolds averaged
X

. . —ou -ov  lép 190 ou
X momentum equatlon you can write asu—+vV—=———+—— r(V+Vt)— . So,
ox or pOX ror

2
this is boundary layer flow so obviously, Z—l: we can neglect. And, Reynolds average
X

. —gT -oT lop 10
energy equation will beU —+vV—=-——+-—

r(a+at)a—T . So, these equations
OX or pOX ror or

we have already derived for the flow over flat plate.

These we have written for the circular pipe case and you can see v is your kinematic
viscosity and v is your eddy viscosity, and o is your thermal diffusivity and o is your
eddy diffusivity and these are coming due to the turbulent fluctuations.

(Refer Slide Time: 06:43)

Apparent Shear Stress and Heat Flux
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Now, whatever we have derived the apparent stress and apparent heat flux flow over flat

plate those will be applicable for pipe flow. So, you can write ﬁ=(V+Vt)g_u‘3‘nd
yo, r
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Sow _ —(a+a, )a—T . S0, you can see for flow over flat plate we have derived it has u,
pC, or oy

So, in this case we are writing Z—u :
r

(Refer Slide Time: 07:31)

Mean Velocity and Bulk Temperature

Assumptions: AN
Twe-dimensional, mxisymmetric, incompressible flow {

L
L) Lo B
o N IFESST
R J’p.\q (zma) da AsThy
Meam Velosidy, % -
Y PN :%: :f'u’t

5 X AN
Oha Bulle S "Masm www“‘ mm?"‘R SRS

eradiandad . drdagnakimg the Jobal emingy ¢
L N gl
= A ma) da \

e T A s

e DUy TR

Bulk Tempiisdwnd,

S J'—'r‘u"-d"
L

U e

So, in pipe flow generally we deal with the mean velocity and bulk temperature. When
we did find the Nusselt number we write it based on the mean bulk mean temperature, as
well as when we define the Reynolds number we define based on the mean velocity. So,

let us write the expression for mean velocity as well as the bulk temperature.

So, we can write mass flow rate m= pu_ A. So, in this case you can see; obviously,

A= zr’. So, it is your flow area. So, this will bejpﬁ(zﬂr)dr .
0

: : : 20—
So, if you put here A= 717 . So, you can write the mean velocity, u,, = r—jurdr. So, the
00
bulk or mean temperature in the pipe is evaluated by integrating the total energy of the

flow. So, you can writemC T, = IpCpfﬁ(Zﬁr)dr :
0
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So, from here you know thatm . So, you can write, m= pu_zr?. So, if you put it here

and pC, are constant. So, you can cancel. So, you will get bulk

1) _
> jTurdr. So, it is same expression as laminar only difference is

temperature T, =
uer 0

that this velocity and temperature are evaluated as mean value.

(Refer Slide Time: 10:50)

Universal Velocity Profile

The velocity profile In a pipe & very similar to that extermal flrm_’

We even adapted a pipe flow friction factor model to analyze flow over a flat plate using the momentum
integral method.

The characteristics of the flow near the wall of a pipe are not mfluenced greatly by the curvature of the
wall of the pipe.

Therefore, a reasonable start to modeling pipe flow is to imvoke the two-layer model that we used to
model flow over 2 flat olate‘

Viscous sublayer:

Law of the wall;

For flow over flat plate case already we have derived the universal velocity profile, we
considered very small region near to the wall and we assumed that their shear stress
remain constant. So, that is your viscous sub-layer and away from the wall you have law

of the wall. So, the velocity profile in a pipe is very similar to the external flow.

We even adapted a pipe flow friction factor model to analyze flow over a flat plate using
the momentum integral method. The characteristic of the flow near the wall of a pipe are
not influenced greatly by the curvature of the wall of the pipe. Therefore, a reasonable
start to modeling pipe flow is to invoke the two-layer model that we used to model flow

over a flat plate.

So, you can see for viscous sub layer we have derived u* = y* and law of the
1 .. . . .
wallu* ==Iny* + B . Here now, the definition of y* will be somewhat different in case

K

of pipe flow.
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Universal Velocity Profile

Viscous sublayer ut =y

1 )
Law of the wall ut =;In"." +8 N ty=g-r

- eoondlmneds e '}\M‘
a= 7.,':% 4 (Re=n) MUa
Ss o = Ng=N = — 37

D vedatig «:Ao\f_m"-“u”\”‘ s
'u.

e =
e o -
Ercekion welousdy, Ve F: , ?
ua-.»b:.»dmm‘j"&m ,
N
& + U~

:"ﬁL..F%--

Uom

Fraeken &

So, you can see in case of flat plate this y is measured from the wall. So, in this particular
case now if you measure the distance from the wall, this is your y then you have to

replace thisy =ro - r. So, if you see y coordinate pipe flow so,y =rp - I.

r,—rju ) . . . .
So, y'=1y—r" = @ u. is your friction velocity and the velocity wall coordinate
14
is, u” Y This expression is same. So, your fiction velocity is u_ = Tw
u_ \/ yo)

And, friction factor based on the mean flow velocity you can write friction factor is

/C

based on mean flow velocity. So, C, —_ " and now you can write L b . So, if
Epuz u, 2
2 m

you put these expression in this friction velocity then you will get,

C
U _ ,/—f . Now, let
u, 2

us see that in pipe flow how the shear stress varies inside the domain.
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Universal Velocity Profile
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So, for that let us assume fully developed flow. Let us assume fully developed flow. So,

if it is a fully developed flow obviously, the velocity v=0 and from continuity equation

you can write, Z—u =0. So, if you put these in the boundary layer equation whatever we
X

have written so, you can write, 0 = ——— +——[Ej .

So, z :(v+vt)g—u. So, T is your shear stress. So, if you rearrange it you will get and p
0 r

is constant. So, you can writeg(rr)ﬂa—f. So, if you integrate it you will get,
) =

rr=r—a—p+C1
2 OX

Now, you know at r = 0, Z—l: = 0, right? Because this is your at the center it is changing

its gradient. So, obviously, Z—u = 0 and hence shear stress will be 0. So, that means,
r

rop

C1=0. So, if you see thatz(r) = 5o
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So, you can see that shear stress varies linearly inside the flow domain maximum will be

at the wall and this will be your t,, at r = ro, T will be t,, and 0 will be at r = 0. So, at r =

r . . . . :
ro. So, 7, ZEOZ_p So, the ratio r_r So, local shear is a linear function of radial
X

Tw r0

location.

So, here you can see that shear stress linearly varies with radius. So, it contradicts with
the assumptions whatever we have taken for the flow over flat plate case. So, here also
we will assume that wherein close to the wall shear stress remain constant and that is
equal to 1. So, the assume that t is approximately constant in the direction normal to the

wall.

So, universal velocity profile that resulted from this assumption works well for flat plate

. . . . ou . -
flow as well as pipe flow. So, in this case we can wrlte(v+vt)8— =2 obviously, it is
rp

constant. So, this is the assumptions we are taking.

(Refer Slide Time: 18:52)

Friction Factor for Pipe Flow

8ased on dimensional anafysis and experimenta! data, Blasius developed
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Later correlations have proven 1o be more accurate and verzatile, but this carrelation led to the
development of the 1/7th Power Law velocity profile.

So, now, let us discuss about the friction factor for the pipe flow. So, we have already
seen the Blasius correlation for friction factor right. So, based on dimensional analysis
and experimental data, Blasius developed a purely empirical coordination for flow

through a smooth circular pipe.
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And you know that it is C, =0.0791Re_ yand it is valid in the range 4000 < Rep < 10°

Tw

1 5
—pu
2,0m

and Cy is defined based on the mean velocity. So, it will beC, =

So, now if you use the 1/7th velocity profile then you can write the expression for the
shear stress. So, later correlations have proven to be more accurate and versatile, but this

correlation lead to a development of the 1/7th power law velocity profile.

(Refer Slide Time: 20:07)

The 1/7th Power Law Velocity Profile

Discovered independently by Prardt] and von Karman,
Begin with the Blasius correlation, which can be recast in terms of wall shear stress
-Vq

R
cs - 00%9) Kep 4 Rap= zn;‘u...
Te = 0% %)\ Rep 4
L Pu
Iw __ e ° CR A LM) V2
P U 'wh. »
5 T, = 00BBZE P o X q)ﬂ
Asaume . powts Lo velowi i Va5 W )“
U s C Mom = cnitard cvm;%' T
- - et % (%)
v
Twu= C‘ P L &) ] @_ AT x‘

nc.em‘&

: . . L u ' :
So, let us assume that velocity profile mean velocity profile — :(lj and let us find
uCL rO

what is the value of this exponent n. So, we have already seen that C, = 0.0791Re’D% and

=0.0791Re.*. So, this,

if you put the expression of Cs, then you will write 1TW

- u2
me

2r.u
Re, =—*0
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2r,u,, %
—&m . So, you can rearrange

So, you can see that you can write as, fw_ 0.0791(
14

and you can writez,, = 0.03326pu§r0‘%v% . Now, assume a power law velocity profile ok.

- n
So, we will assume that — = [lj . S0, let us find the value of this exponent n.

uCL I’-O
You put this velocity profile in the expression of shear stress and find the value of n. So,

your centerline velocity will be uc. =C uy . So, now, you can see your C is your

: u o .
constant. So, what is u m? So, u, = % So, you can see it will be. So, here if you put

u ' 1-(y)" .
then, U1 Y| and u, =—u AN So, some constant. So, these constant will be
Cu r, C \n

m

involved here.

n TV
So, 7, =C,p G[lj r%v% . So, now, if you simplify, 7, =C,ou 'y *1," ‘v

0

7n.
)

(Refer Slide Time: 24:21)

The 1/7th Power Law Velocity Profile

Both Prandt! and von Karman argued that the wall shear stress is not a function of the size of the pipe,
Then the expanent on 1, should be equal to zero,

Setting the exponent to zer9, the value of n must be equal to 1/7, leading to the classic 1/7th power
law velacity profile,

Experimental data show that this profile adequately models the velocty profile through a large partion
of the pipe, and is frequently used in models for momentum and heat transfer.

Limitations:

Accurate for only & narrow range of Reynolds numbers {roughly, 10¢ 1o 1(_)‘;!

Yields an infinite velocity gracient at the walL

Does not yield a gradient of zero at the :cnterlme_

Now, we need to find the value of exponent n both Prandtl and von Karman argued that
the wall shear stress is not a function of the size of the pipe then the exponent on ro = 0.
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So, you can see in this relation whatever we have written it should not depend on the
shear stress should not depend on the size of the pipe. So, here you can see only ry is

there which is your radius of the pipe. So, we will put its exponent as 0. So,%n—% =0.

So, setting the exponent to 0 the value of n :% leading to the classic 1/ 7th power law

velocity profile. %“—%:o. So, you can see 7n = 1. So, n :%. So, you can see the

- %
velocity profile L (lj and this is known as 1/7th power law velocity profile.

uCL

Experimental data show that this profile adequately models the velocity profile through a
large portion of the pipe and is frequently used in models for momentum and heat
transfer. But, it has some limitations. You can see that if you use this velocity profile the
velocity gradient at r = 0 will not be 0. So, you cannot find the shear stress directly from

these velocity profile.

So, the limitations are accurate for only a narrow range of Reynolds number roughly 10*
to 10° yields an infinite velocity gradient at the wall and does not yield a gradient of 0 at
the centerline . So, these are the limitations.

(Refer Slide Time: 26:52)

Momentum-Heat Transfer Analogies

Development is applied to the case of a constant heat flux boundary condition.
Strictly speaking, an analogy cannot be made in pipe flow for the case of 2 constant surface
temperature. But resulting models approximately hold for this case as well._
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Now, let us discuss about the momentum and heat transfer analogies. So, we have
already written the expression for apparent shear stress and apparent heat flux and, let us
see that both are analogous to each other or not. Development is applied to the case of
constant heat flux boundary conditions.

So, whatever we will be discussing, so, it is directly applicable for the thermal condition
with uniform heat flux boundary condition. Strictly speaking, an analogy cannot be made
in pipe flow for the case of constant surface temperature. But resulting models
approximately hold for this case as well.

So, you can see that your x momentum equation whatever we have written we can write

the inertia terms as 0. So, ——=——[r(v+vt)g—ﬂ. And, if you write the energy

: =T 10 T
equation, so, itis, u—==—|r(a+a,)—|.
ox ror or

So, you can see as we have assumed that it is fully developed flow so, obviously, v=0.
So, for that reason the second term in the energy equation is 0. So, now, the question is
that are these left hand sides analogous the question is that are the left hand sides

analogous? So, now, let us see if you consider pipe flow so, obviously, you see that

. . o op
pressure varies linearly in the axial direction. So, that means, youra—IO =0.
X

So, in the momentum equation left hand side is constant because % is constant. So, in
X

X momentum equation left hand side is constant. Now, if you come to the energy

equation we have derived while discussing about laminar internal flows that for a

.. OT.
constant wall heat flux boundary condition a—IS constant.
X

op . oT . . .
So, you can see a—p is constant and r is constant for uniform wall heat flux condition
X X

and now, let us check about the boundary conditions. So, boundary conditions if you
check. So, boundary condition at r = 0, Z_:’J = % =0atr=ry,u =0.
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And, T =T, as well as you have shear stress yg—: =17, and we have, kZ—T =q,. Then
X

we can show that the both the governing equation and boundary conditions are identical

in form.

=T X =Xand R="we can show

So, if we normalize as follows, U =1;0: :
up, T.-T, L r

that both governing equations and boundary conditions are identical in form.

So, we can use the analogy whatever we are writing for momentum equation that also
you can use for energy equation. Using these normalized variables, we can show that
both governing equations and boundary conditions are identical in form. So, momentum

heat transfer analogy is possible and we can apply analogy method for pipe flow.

(Refer Slide Time: 32:56)

Solution of example problems
A square plate maintained at 95°C experiences a foece of 10.5 N when forced air at 25 °C flows aver it
at a velocity of 30 m/s. Assuning the flow to be turbulent and using Colburn analogy, calculate
{3) the heat transfer coefficient and {b) the heat loss from the piate surface,
Properties of air
€= 1005 kifkg."C, p = 1.06 kg/m', v = 189710 s, Pr=0.696

g, Lpat | T, « 2072
Fs S =< P Ci (Res)
3 0072 L whtat st 0072
105 = L avoerl »i30) P, A LS
> ‘—""]OL)oL z Sow )ol
= =

2 L o=283 wm
= =3
Cs = 37443 x\0

Now, let us solve two problems. A square plate maintained at 95 °C experiences a force
of 10.5 N when forced air at 25 °C flows over it at a velocity of 30 m/s. Assuming the
flow to be turbulent and using Colburn analogy, calculate (a) the heat transfer coefficient
and (b) the heat loss from the plate surface.

Properties of air are given — you can see cp, p, v and Pr. So, what we can do you can see
the force is given. So, from here you will be able to calculate what is the friction
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coefficient. So, you can see that the force is given 10.5 N. So, you can write

F=Cq l,1)Au2and this C you know from the analogy that, C =%.
2 (Re )"
. . I 0.072 i . .
So, this is average friction coefficientC =W. So, if you substitute it here from
v
here you will be able to calculate the L. So, you can
seelO.Sz%x%xl.%x L2><(30)2. So, if you evaluate it you will get length as

)
|4
2.53 m. So, once you know L then you will be able to calculate Reynolds number

andC . So, from here you can see your C;you can calculate from here C: average

friction coefficient if you put the value of L=2.53m, you will get, C =3.443 x 107,

So, now you use the Colburn analogy. So, Colburn analogy if you use then you will be

- _ ,; C
able to calculate the average heat transfer coefficient. So, this is your St Pr’ = 7f

: : h ., C
So, this Stanton number you can write as—— Pr’ = 7f Now, you put the values p c, u
pc,u

Prand C; are known so, you will be able to calculate the heat transfer coefficient.
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Solution of example problems
W
(~) = S-.j. Pe. P..‘s .
3'443 ,\05:(005:(103130!(0656)
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= 7007 Wimk

) ~
o BA (To-Te)
-
< 2007 % (2°53) (98-25)

> FONF w
= 20T KW

‘.D

3443 1,061,005 x10° x 30 (0.696)

So, h= C—zfpcpu Prs. So, you can calculateh =

So, if you calculate you will get h =70.07 W/m?K. So, this first part we have already

calculated. So, this is you’re (a) heat transfer coefficient. Now, you have to calculate the

heat loss from the plate surface. So, heat loss q=hA(T, -T,).

So, what is your temperature difference?q :70.07><(2.53)2 (95-25). You will get as
30117 W or 30.117 kW.
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Solution of example problems
Water flows at a velocity of 12 m/s in a straight tube of 60 mm diameter, The tube surface temperature
Is maintained at 70 *C and the flowing water is heated from the mlet temperature of 15 °C to an outlet
temperature of 45 °C. Caleulate (a) the heat ransder coefficient from the tube surface to the water,
(b} the heat transfer rate (c) the length of the tube

Praperties of water at bulk mean temperature of 30 %C
;= 4,174 W/kg°C, &k =0.61718 W/m. *C, p = 995.7 kg/m’, v = 0.805x10° mfs, Pr=542
Reg = UnD = 122006 _ . ounq i
2 P " Taoswd
Rep D2300 | afe Flow An crondentamd
Dltiun - Boadhan aqpedien, v8 04
Nup = BR. 0023 (Rea) (i)
=
RX006  _oo2a (onsex )
o' e\TIR
9 T 2683232 W/imik

g4
(542)

Now, let us discuss about the next problem. Water flows at a velocity of 12 m/ in a
straight tube of 60 mm diameter. The tube surface temperature is maintained at 70 °C
and the flowing water is heated from the inlet temperature of 15 °C to an outlet
temperature of 45 °C.

Calculate (a) the heat transfer coefficient from the tube surface to the water. Calculate
the heat transfer coefficient from the tube surface to the water, the heat transfer rate and
the length of the tube. Properties of water at bulk mean temperature of 30 °C are given.

So, you can see bulk mean temperature is 30 °C. So, ¢,, k, p, v, Pr are given.

So, from here now first you calculate the Reynolds number. So,Re, = Uy, D . So, based
14
on mean velocity so, it will be 12 m/s, D= 60 mm. So, &Oi so, it will be
0.805x10

around 0.894 x10°. So, you can see your Rep > 2300.

So, obviously, the flow is turbulent. So, we discuss about Dittus-Boelter equation so, that
we can use and find the heat transfer coefficient. So, Dittus-Boelter equation so, here you

can see it is a heating case because T, is higher. So, you can use

Nup = h?D =0.023(Re, )™ (Pr)™*.
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o hx0.06
' 0.61718

=0.023(0.894x10°) " (5.42)"*. So, if you calculate h = 26832.32W / m*K .

(Refer Slide Time: 41:56)

Solution of example problems

Head brampin nods,
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A
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Q= AA (Ta-Tw)

4230355 = 26832 32 T % (0'06)~L L?o'ao)

e 209\ m

So, next you need to calculate the heat transfer rate. So, heat transfer rate you can

calculateq=mc, (T, ~T;). So,q =p%D2ume(To ~T,). So, you put all these values

density as, 995.7><%><(0.06)2 x12x4.174x10° x(45-15). So, if you calculate then you

will get as 4230355 W.

Now, you need to calculate the length of the tube. So, we will use now the Newton’s law

of cooling. So, g :HA(TW —Tm)because Tm IS your bulk mean temperature it is given.

So, 4230355 = 26832.32x 7 x(0.06)x Lx(70—30). So, if you calculate from here you

will get length as 20.91 m.
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Reynolds Analogy for Pipe Flow

Follow sxactly the same process that we followed for the ariginal derivation, we find that the
Reynolds anzlogy is essentially identical far pipe flow
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Now, first let us discuss about the Reynolds analogy because we have already derived for
laminar flows and for a special case when Pr =1 and turbulent Pr; =1; that means, your
kinetic viscosity is equal to turbulent viscosity and also your thermal diffusivity is equal

to your eddy diffusivity.

So, in that case you can use the Reynolds analogy. So, follow exactly the same process
that we followed for the original derivation we find that the Reynolds analogy is
essentially identical for pipe flow and you assume Pr =1; that means, your v = a and Pr;

=1; that means, your v; = a; .

) C
So, the, St, = % =—_ for Pr =1. So, St, = Nup
puC, (T, -T,) 2 Re, Pr

Cf
. So, 7And, you

know that tau w we have already found. So,z,, =%Cfpufn. So, from here you will be

able to find what is the Nusselt number in case of pipe flow. For Pr =1, you can use
Colburn analogy that also we have discussed in detail when we considered laminar

internal flow.
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(Refer Slide Time: 46:24)

Colburn Analogy for Pipe Flow
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So, in this case you can write the, St, =0.023Re," Pr - and Nu, = 0.023Re.. Pr " .

So, this is your Colburn analogy and you can use this relations when Pr # 1. Another

analogy you can write it is a popular correlation Nu, =0.023 Ref Pr’ where n = 0.4 for

heating.

So, when T, > T, and n = 0.3 for cooling. So, this you can write as T,y < Tr,. SO, means
depending on the whether wall temperature is greater than T, that means, it is a heating
case and if it is a cooling case T,, < Trm. S0, you can use different value of n and it gives a

reasonably good results using this correlation.

So, today we discussed about the convection in a turbulent pipe flow. We started with the
universal velocity profile for the flow over flat plate case, and those are also applicable
for the pipe flow. Then, we use the Blasius correlation for the friction factor and from

there we have derive the exponent for the power law velocity profile. So,n=1/7.

Then, we also we have seen the shear stress varies linearly inside the flow domain, but
when we use the universal velocity profile we near to the wall we need to assume tau w
as constant. After that we have discuss about the momentum and heat transfer analogy.
So, we have seen that the equations governing equations and the boundary conditions in

non-dimensional form both are identical.
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So, we have used the Reynolds analogy for Pr =1 and we have found the Nusselt number
expression; as well as for Pr # 1, we use Colburn analogy and also we have written the

expression for Nusselt number.

Thank you.
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