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Hello, everyone. So, today we will study Convection in turbulent pipe flow. In last 

classes we have already derived the universal velocity profile for flow over flat plate and 

also we have derived the heat transfer analogy relations or correlations. We will use 

those universal velocity profile for pipe flow with slight modifications. First let us 

discuss about the entry length for turbulent pipe flow. 
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White recommends
1

64.4Re
eD

e

Lh

D
 . So, you know that De is your hydraulic diameter and it 

is obviously, you know how it is defined. It is defined as 
4 f

e

A
D

P
 , where Af is your 

flow area and P is your wetted perimeter wetted perimeter and this Reynolds number is 

defined based on this hydraulic diameter. So, Re
eD
 is defined as Re

e

m e
D

u D


  and in 

this case we are considering internal flow.  
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Another scientist Latzko suggests 
1

40.623Re
eD

e

Lh

D
 . So, L h obviously, it is 

hydrodynamic entry length hydrodynamic entry length. In general, in turbulent flows it is 

very small compared to the laminar flow and open this hydrodynamic entrance length is 

neglected. However, it is very difficult to calculate the thermal entrance length for 

turbulent flows. 

Thermal entry length does not lend itself to a simple, universally-applicable equation, 

since the flow is influenced so much by fluid properties and boundary conditions. The 

hydrodynamic entry length is much shorter for turbulent flow than for laminar. In fact, 

the hydrodynamic entrance region is sometime neglected in the analysis of turbulent 

flow. 

(Refer Slide Time: 03:39) 

 

So, let us write the governing equation for this internal flow with these assumptions: 

two-dimensional, axisymmetric and incompressible flow. And, as we are considering 

boundary layer flows so, you can see this is the pipe of radius r0 and x is measured in 

axial direction; r is measured from the centerline. 

So, this is your C L centerline and y if we tell it is measured from the boundary then it is 

r0 - r. So, obviously, y = r0 - r. So, in this case you can see we will define the velocity u 

in axial direction and v velocity in r direction ; for convenience we are just defining these 

velocities u and v.  
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So, now, you can write the governing equations after Reynolds averaging. So, you will 

get continuity equation. So, we can write as  
1

0
u

rv
x r r

 
 

 
. And, Reynolds averaged 

x momentum equation you can write as  
1 1

t

u v p u
u v r

x r x r r r
 



     
     

     
. So, 

this is boundary layer flow so obviously, 
2

2

u

x




 we can neglect. And, Reynolds average 

energy equation will be  
1 1

t

T T p T
u v r

x r x r r r
 



     
     

     
. So, these equations 

we have already derived for the flow over flat plate.  

These we have written for the circular pipe case and you can see ν is your kinematic 

viscosity and νt is your eddy viscosity, and α is your thermal diffusivity and αt is your 

eddy diffusivity and these are coming due to the turbulent fluctuations.  

(Refer Slide Time: 06:43) 

 

Now, whatever we have derived the apparent stress and apparent heat flux flow over flat 

plate those will be applicable for pipe flow. So, you can write  app

t

u

r


 




 


and 

708



 
''

app

t

p

q T

C r
 




  


. So, you can see for flow over flat plate we have derived it has 

u

y




. 

So, in this case we are writing 
u

r




. 
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So, in pipe flow generally we deal with the mean velocity and bulk temperature. When 

we did find the Nusselt number we write it based on the mean bulk mean temperature, as 

well as when we define the Reynolds number we define based on the mean velocity. So, 

let us write the expression for mean velocity as well as the bulk temperature. 

So, we can write mass flow rate 
.

mm u A . So, in this case you can see; obviously, 

2

0A r . So, it is your flow area. So, this will be  
0

0

2

r

u r dr  .  

So, if you put here 2

0A r . So, you can write the mean velocity, 
0

0 0

2
r

mu urdr
r

  . So, the 

bulk or mean temperature in the pipe is evaluated by integrating the total energy of the 

flow. So, you can write  
0.

0

2

r

p m pmC T C Tu r dr   .  
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So, from here you know that
.

m . So, you can write, 
.

2

0mm u r  . So, if you put it here 

and 
pC  are constant. So, you can cancel. So, you will get bulk 

temperature
0

2

0 0

2
r

m

m

T Turdr
u r

  . So, it is same expression as laminar only difference is 

that this velocity and temperature are evaluated as mean value.  

(Refer Slide Time: 10:50) 

 

For flow over flat plate case already we have derived the universal velocity profile, we 

considered very small region near to the wall and we assumed that their shear stress 

remain constant. So, that is your viscous sub-layer and away from the wall you have law 

of the wall. So, the velocity profile in a pipe is very similar to the external flow. 

We even adapted a pipe flow friction factor model to analyze flow over a flat plate using 

the momentum integral method. The characteristic of the flow near the wall of a pipe are 

not influenced greatly by the curvature of the wall of the pipe. Therefore, a reasonable 

start to modeling pipe flow is to invoke the two-layer model that we used to model flow 

over a flat plate. 

So, you can see for viscous sub layer we have derived u
+
 = y

+
 and law of the 

wall
1

lnu y B


   . Here now, the definition of y
+
 will be somewhat different in case 

of pipe flow. 
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So, you can see in case of flat plate this y is measured from the wall. So, in this particular 

case now if you measure the distance from the wall, this is your y then you have to 

replace this y = r0 - r . So, if you see y coordinate pipe flow so, y = r0 - r.  

So, 
 0

0

r r u
y r r





  


   . uτ is your friction velocity and the velocity wall coordinate 

is, 
u

u
u

  . This expression is same. So, your fiction velocity is wu



 .  

And, friction factor based on the mean flow velocity you can write friction factor is 

based on mean flow velocity. So, 
21

2

w
f

m

C

u





 and now you can write 
2

f

m

Cu

u

  . So, if 

you put these expression in this friction velocity then you will get, 
2

f

m

Cu

u

  . Now, let 

us see that in pipe flow how the shear stress varies inside the domain. 
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So, for that let us assume fully developed flow. Let us assume fully developed flow. So, 

if it is a fully developed flow obviously, the velocity 0v   and from continuity equation 

you can write, 0
u

x





. So, if you put these in the boundary layer equation whatever we 

have written so, you can write, 
1 1

0
p r

x r r



 

  
    

   
. 

So,  t

u

r


 




 


. So, τ is your shear stress. So, if you rearrange it you will get and ρ 

is constant. So, you can write  
p

r r
r x


 


 

. So, if you integrate it you will get, 

2

1
2

r p
r C

x



 


. 

Now, you know at r = 0, 
u

r




 = 0, right? Because this is your at the center it is changing 

its gradient. So, obviously, 
u

r




 = 0 and hence shear stress will be 0. So, that means, 

C1=0. So, if you see that  
2

r p
r

x






. 
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So, you can see that shear stress varies linearly inside the flow domain maximum will be 

at the wall and this will be your τw at r = r0, τ will be τw and 0 will be at r = 0. So, at r = 

r0. So, 0

2
w

r p

x






. So, the ratio 

0w

r

r




 . So, local shear is a linear function of radial 

location.  

So, here you can see that shear stress linearly varies with radius. So, it contradicts with 

the assumptions whatever we have taken for the flow over flat plate case. So, here also 

we will assume that wherein close to the wall shear stress remain constant and that is 

equal to τw. So, the assume that τ is approximately constant in the direction normal to the 

wall. 

So, universal velocity profile that resulted from this assumption works well for flat plate 

flow as well as pipe flow. So, in this case we can write   w
t

u

r


 




 


 obviously, it is 

constant. So, this is the assumptions we are taking. 

(Refer Slide Time: 18:52) 

 

So, now, let us discuss about the friction factor for the pipe flow. So, we have already 

seen the Blasius correlation for friction factor right. So, based on dimensional analysis 

and experimental data, Blasius developed a purely empirical coordination for flow 

through a smooth circular pipe.  
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And you know that it is 
1

40.0791Ref DC


 and it is valid in the range 4000 ≤ ReD ≤ 10
5
 

and Cf is defined based on the mean velocity. So, it will be
21

2

w
f

m

C

u





 .  

So, now if you use the 1/7th velocity profile then you can write the expression for the 

shear stress. So, later correlations have proven to be more accurate and versatile, but this 

correlation lead to a development of the 1/7th power law velocity profile. 

(Refer Slide Time: 20:07) 

 

So, let us assume that velocity profile mean velocity profile 
0

n

CL

u y

u r

 
  
 

and let us find 

what is the value of this exponent n. So, we have already seen that 
1

40.0791Ref DC


  and 

if you put the expression of Cf, then you will write
1

4

2

0.0791Re
1

2

w
D

mu






 . So, this, 

02
Re m

D

r u


 . 
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So, you can see that you can write as, 

1
4

0

2

2
0.0791

1

2

w m

m

r u

u







 
  

 
. So, you can rearrange 

and you can write
7 1 1

4 4 4

00.03326w mu r  


 . Now, assume a power law velocity profile ok. 

So, we will assume that
0

n

CL

u y

u r

 
  
 

. So, let us find the value of this exponent n.  

You put this velocity profile in the expression of shear stress and find the value of n. So, 

your centerline velocity will be uCL =C um . So, now, you can see your C is your 

constant. So, what is u m? So, CL
m

u
u

C
 . So, you can see it will be. So, here if you put 

then, 
0

n

m

u y

Cu r

 
  
 

and
0

1
n

m

y
u u

C r



 
  

 
. So, some constant. So, these constant will be 

involved here. 

So, 

7
4

1 1
4 4

1 0

0

n

w

y
C u r

r
  




  
   
   

. So, now, if you simplify, 
7 17 7 14 44

4 4

1 0

n
n

w C u y r  



 . 

(Refer Slide Time: 24:21) 

 

Now, we need to find the value of exponent n both Prandtl and von Karman argued that 

the wall shear stress is not a function of the size of the pipe then the exponent on r0 = 0.  
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So, you can see in this relation whatever we have written it should not depend on the 

shear stress should not depend on the size of the pipe. So, here you can see only r0  is 

there which is your radius of the pipe. So, we will put its exponent as 0. So,
7 1

0
4 4

n
  . 

So, setting the exponent to 0 the value of 
1

7
n   leading to the classic 1/ 7th power law 

velocity profile. 
7 1

0
4 4

n
  . So, you can see 7n = 1. So, 

1

7
n  . So, you can see the 

velocity profile 

1
7

0CL

u y

u r

 
  
 

and this is known as 1/7th power law velocity profile. 

Experimental data show that this profile adequately models the velocity profile through a 

large portion of the pipe and is frequently used in models for momentum and heat 

transfer. But, it has some limitations. You can see that if you use this velocity profile the 

velocity gradient at r = 0 will not be 0. So, you cannot find the shear stress directly from 

these velocity profile.  

So, the limitations are accurate for only a narrow range of Reynolds number roughly 10
4
 

to 10
6
 yields an infinite velocity gradient at the wall and does not yield a gradient of 0 at 

the centerline . So, these are the limitations. 

(Refer Slide Time: 26:52) 

 

716



Now, let us discuss about the momentum and heat transfer analogies. So, we have 

already written the expression for apparent shear stress and apparent heat flux and, let us 

see that both are analogous to each other or not. Development is applied to the case of 

constant heat flux boundary conditions.  

So, whatever we will be discussing, so, it is directly applicable for the thermal condition 

with uniform heat flux boundary condition. Strictly speaking, an analogy cannot be made 

in pipe flow for the case of constant surface temperature. But resulting models 

approximately hold for this case as well. 

So, you can see that your x momentum equation whatever we have written we can write 

the inertia terms as 0. So,  
1 1

t

p u
r

x r r r
 



   
  

   
. And, if you write the energy 

equation, so, it is,  
1

t

T T
u r

x r r r
 

   
  

   
.  

So, you can see as we have assumed that it is fully developed flow so, obviously, 0v  . 

So, for that reason the second term in the energy equation is 0. So, now, the question is 

that are these left hand sides analogous the question is that are the left hand sides 

analogous? So, now, let us see if you consider pipe flow so, obviously, you see that 

pressure varies linearly in the axial direction. So, that means, your
p

x




 = 0. 

So, in the momentum equation left hand side is constant because 
p

x




 is constant. So, in 

x momentum equation left hand side is constant. Now, if you come to the energy 

equation we have derived while discussing about laminar internal flows that for a 

constant wall heat flux boundary condition 
T

x




is constant. 

So, you can see 
p

x




 is constant and 

T

x




 is constant for uniform wall heat flux condition 

and now, let us check about the boundary conditions. So, boundary conditions if you 

check. So, boundary condition at r = 0, 
u

r




 = 

T

r




 = 0 at r = r0 , u  = 0 . 
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And, T  = Tw as well as you have shear stress w

u

r
 





and we have, ''

w

T
k q

x





. Then 

we can show that the both the governing equation and boundary conditions are identical 

in form.  

So, if we normalize as follows, 
m

u
U

u
 ; w

m w

T T

T T






; 

x
X

L
 and 

0

r
R

r
 we can show 

that both governing equations and boundary conditions are identical in form. 

So, we can use the analogy whatever we are writing for momentum equation that also 

you can use for energy equation. Using these normalized variables, we can show that 

both governing equations and boundary conditions are identical in form. So, momentum 

heat transfer analogy is possible and we can apply analogy method for pipe flow. 

(Refer Slide Time: 32:56) 

 

Now, let us solve two problems. A square plate maintained at 95 
0
C experiences a force 

of 10.5 N when forced air at 25 
0
C flows over it at a velocity of 30 m/s. Assuming the 

flow to be turbulent and using Colburn analogy, calculate (a) the heat transfer coefficient 

and (b) the heat loss from the plate surface. 

Properties of air are given – you can see cp, ρ, ν and Pr. So, what we can do you can see 

the force is given. So, from here you will be able to calculate what is the friction 
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coefficient. So, you can see that the force is given 10.5 N. So, you can write 

21

2
fF C Au and this Cf you know from the analogy that, 

 
0.2

0.072

Re
f

L

C  . 

So, this is average friction coefficient
0.2

0.072

30
fC

L




 
 
 

. So, if you substitute it here from 

here you will be able to calculate the L. So, you can 

see  
22

0.2

0.072 1
10.5 1.06 30

230
L

L



    
 
 
 

. So, if you evaluate it you will get length as 

2.53 m. So, once you know L then you will be able to calculate Reynolds number 

and fC . So, from here you can see your fC you can calculate from here fC  average 

friction coefficient if you put the value of L=2.53m, you will get, fC =3.443   10
-3

.  

So, now you use the Colburn analogy. So, Colburn analogy if you use then you will be 

able to calculate the average heat transfer coefficient. So, this is your
2

3Pr
2

fC
St  .  

So, this Stanton number you can write as
2

3Pr
2

f

p

h C

c u
 . Now, you put the values ρ cp u 

Pr and fC are known so, you will be able to calculate the heat transfer coefficient.  
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So, 
2

3Pr
2

f

p

C
h c u . So, you can calculate  

2
333.443

1.06 1.005 10 30 0.696
2

h       .  

So, if you calculate you will get h 70.07 W/m
2
K. So, this first part we have already 

calculated. So, this is you’re (a)  heat transfer coefficient. Now, you have to calculate the 

heat loss from the plate surface. So, heat loss  wq hA T T  . 

So, what is your temperature difference?    
2

70.07 2.53 95 25q    . You will get as 

30117 W or 30.117 kW. 
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Now, let us discuss about the next problem. Water flows at a velocity of 12 m/ in a 

straight tube of 60 mm diameter. The tube surface temperature is maintained at 70 
0
C 

and the flowing water is heated from the inlet temperature of 15 
0
C to an outlet 

temperature of 45 
0
C. 

Calculate (a) the heat transfer coefficient from the tube surface to the water. Calculate 

the heat transfer coefficient from the tube surface to the water, the heat transfer rate and 

the length of the tube. Properties of water at bulk mean temperature of 30 
0
C are given. 

So, you can see bulk mean temperature is 30 
0
C. So, cp, k, ρ, ν, Pr are given.  

So, from here now first you calculate the Reynolds number. So, Re m
D

u D


 . So, based 

on mean velocity so, it will be 12 m/s, D= 60 mm. So, 
6

12 0.06

0.805 10




; so, it will be 

around
60.894 10 . So, you can see your ReD > 2300.  

So, obviously, the flow is turbulent. So, we discuss about Dittus-Boelter equation so, that 

we can use and find the heat transfer coefficient. So, Dittus-Boelter equation so, here you 

can see it is a heating case because Tw is higher. So, you can use 

D

hD
Nu

K
    

0.8 0.4
0.023 Re PrD .  
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So,    
0.8 0.460.06

0.023 0.894 10 5.42
0.61718

h
  . So, if you calculate 226832.32 /h W m K . 

(Refer Slide Time: 41:56) 

 

So, next you need to calculate the heat transfer rate. So, heat transfer rate you can 

calculate  
.

p o iq mc T T  . So,  2

4
m p o iq D u c T T


  . So, you put all these values 

density as,    
2 3995.7 0.06 12 4.174 10 45 15

4


       . So, if you calculate then you 

will get as 4230355 W.  

Now, you need to calculate the length of the tube. So, we will use now the Newton’s law 

of cooling. So,  w mq hA T T  because Tm is your bulk mean temperature it is given. 

So,    4230355 26832.32 0.06 70 30L      . So, if you calculate from here you 

will get length as 20.91 m. 
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Now, first let us discuss about the Reynolds analogy because we have already derived for 

laminar flows and for a special case when Pr =1 and turbulent Prt =1; that means, your 

kinetic viscosity is equal to turbulent viscosity and also your thermal diffusivity is equal 

to your eddy diffusivity. 

So, in that case you can use the Reynolds analogy. So, follow exactly the same process 

that we followed for the original derivation we find that the Reynolds analogy is 

essentially identical for pipe flow and you assume Pr =1; that means, your ν = α and Prt 

=1; that means, your νt = αt . 

So, the, 
 

''

w
D

m p w m

q
St

u c T T


 2

fC
  for Pr =1. So, 

Re Pr

D
D

D

Nu
St  . So, 

2

fC
And, you 

know that tau w we have already found. So,
21

2
m f mC u  . So, from here you will be 

able to find what is the Nusselt number in case of pipe flow. For Pr =1, you can use 

Colburn analogy that also we have discussed in detail when we considered laminar 

internal flow. 

723



(Refer Slide Time: 46:24) 

 

So, in this case you can write the, 
1 2

5 3

0.023Re PrD DSt
 

 and
4 1

5 3

0.023Re PrD DNu  .  

So, this is your Colburn analogy and you can use this relations when Pr ≠ 1. Another 

analogy you can write it is a popular correlation 
4

5

0.023Re Pr
n

D DNu  where n = 0.4 for 

heating.  

So, when Tw > Tm and n = 0.3 for cooling. So, this you can write as Tw < Tm. So, means 

depending on the whether wall temperature is greater than Tm that means, it is a heating 

case and if it is a cooling case Tw < Tm. So, you can use different value of n and it gives a 

reasonably good results using this correlation. 

So, today we discussed about the convection in a turbulent pipe flow. We started with the 

universal velocity profile for the flow over flat plate case, and those are also applicable 

for the pipe flow. Then, we use the Blasius correlation for the friction factor and from 

there we have derive the exponent for the power law velocity profile. So, n = 1/ 7. 

Then, we also we have seen the shear stress varies linearly inside the flow domain, but 

when we use the universal velocity profile we near to the wall we need to assume tau w 

as constant. After that we have discuss about the momentum and heat transfer analogy. 

So, we have seen that the equations governing equations and the boundary conditions in 

non-dimensional form both are identical. 
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So, we have used the Reynolds analogy for Pr =1 and we have found the Nusselt number 

expression; as well as for Pr ≠ 1, we use Colburn analogy and also we have written the 

expression for Nusselt number. 

Thank you. 
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