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Integral solution for turbulent boundary layer flow over a flat plate 

 

Hello everyone. So, in today’s class, first we will use momentum integral equation which 

we derived for laminar flows and we will find the friction coefficient for turbulent flows, 

for flow over flat plate and then, we will find the heat transfer coefficient and Nusselt 

number for flow over flat plate. 
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So, we can write the momentum integral equation which we derive for the laminar flows. 

So, this is 
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 . So, this equation also can be used 

for time average velocities, in turbulent flows.  

So, you just replaceu u . So, if you replace u u then these momentum integral 

equation we can use for this turbulent flows. 
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Now, you know that to use this integral equation, we need to find or we need to assume 

some velocity profile. In turbulent flows, it is very difficult to assume the velocity 

profile, so Prandtl and Von-Karman; what they did? They used very crude and simple 

method, but it gives very accurate result for flow over flat plate or for external flows.  

So, they used the solution of Blasius for circular pipe case and that they used the velocity 

profile for the flow over flat plate. So, you can see Prandtl and Von-Karman used the 

model from Blasius model which was developed for the shear at the wall of a circular 

pipe. 

So, Blasius proposed for circular pipe based on the dimensional analysis and 

experimental data the
1
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5
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So, this is for internal flows, pipe flow, where, 
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 , where um is your mean 

velocity.  

So, based on these empirical relation your Prandtl and Von-Karman developed the 

velocity profile inside a pipe as; so, Prandtl and Von-Karman showed the velocity profile 

in the pipe
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. In this relation, y is measured from the pipe wall and uCL is your 

centerline velocity, and r0 is the radius of the pipe. 

So, Prandtl and Von-Karman actually using this relation, they use the velocity profile for 

flow over flat plate just putting the r naught as δ, that is your boundary layer thickness. 

And u C L; u C L in this case ah there is no central line velocity, so u C L is substituted 

with the free stream velocity U∞.  

So, we will use for flow over flat plate. These velocity profile u by U ∞, so cLu  is 

actually replaced with U∞ and
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, where r0 is replaced with δ, boundary layer 

thickness to the power 1/ 7. So, you can see that it is a well-known one-seventh law of 

velocity profile; one-seventh law of velocity profile. 
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So, although they propose the velocity profile for the flow over flat plate like this, but it 

has some fundamental problem. So, if you calculate the shear stress at the wall, it will 

become almost ∞. So, to avoid this problem, they used the correlation for the Cf from the 

pipe flow relation.  

(Refer Slide Time: 06:58) 

 

To avoid this problem Prandtl and Von-Karman adapted Blasius correlation to find an 

expression for the wall shear stress on a flat plate. So, they used

1
4

2

0

0.03326w

m mu r u

 



 
  

 
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So, now you can substitute uCL as U∞ and r0 as δ, but the mean velocity um. So, m

cL

u

u
it can 

be found for one-seventh law velocity profile inside a pipe as 0.8167m

cL

u

u
 . So, these are 

valid for pipe flow. So, now you can use uCL you can substitute with U∞, and r0you can 

substitute with δ.  

So, now, if you substitute then you will get the shear stress relation for flow over flat 

plate. You can use now 
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 after putting all these values you can rearrange and 

695



you will get as, 

1
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0.02333
U


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. So, you see for flow over flat plate this 
2

fC
is given in 

terms of the boundary layer thickness δ. 

Now, you can use the momentum integral equation and we can substitute the velocity 

profile, one-seventh law velocity profit, and this shear stress relation, and we can find 

what is the boundary layer thickness. 

(Refer Slide Time: 09:47) 

 

So, we have the momentum integral equations as
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we have, 
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and you have, 
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Now, you substitute these two in the momentum integral equation and find the value of 

δ. And once you know the value of δ you will be able to find, the skin friction coefficient 

because in the skin friction coefficient you have the unknown parameter δ.  
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So, if you substitute it you will get
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integrate it what you will get?
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the algebra you will get
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So, this δ you take in the left hand side, so you will get, 
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So, now if you integrate it you see ν, U∞ are constant. So, you can integrate this. So, you 

will get
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. So, we will assume here that you have the 

turbulent flow from the leading edge of the flat plate. 

So, first Prandtl proposed this assumption, so that we can use the condition at x = 0; that 

means, at the leading edge of the flat plate you have boundary layer thickness δ = 0. So, 

these are the assumptions you have to take.  

So, if you take these assumptions, then you can use the boundary condition at x = 0, δ = 

0. So, we are assuming that you have a turbulent flow over this flat plate starting from 

the leading edge. 

So, we are assuming the entire flow along the plate as being turbulent beginning from the 

leading edge. So, this assumption was first proposed by Prandtl. So, if you assume this 

then you can put at x = 0, δ = 0. 
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So, that means, your constant C = 0. So, if we put C = 0 and if you rearrange it you will 

get  
1

5

0.3816
U x

x x




 
  
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. So, you can write

1
50.3816 Rex

x

 
 .  

So, here you can see that your boundary layer thickness varies
4

5x . So, your, in this 

case you can see that your boundary layer thickness
4

5x  for turbulent flows.  

For laminar flows, do you remember what was the δ? So, it was
5

Rex

, so that means, 

5

Rex
x


 . So, that means, 

1
2x , for laminar flows. 

And now, if you find the Cf; 
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. So, you substitute here this 

δ value. So, if you substitute it you will get
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So, this you can write as, 
1
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0.02968
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x

C
 .  
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And for laminar flow you know
1

2Ref xC


, and in turbulent flows you can 

see
1

5Ref xC


, for turbulent flows.  

So, now whatever expression we have derived for this 
2

fC
that will use to find the heat 

transfer coefficient. 
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So, you can see we have already derived these for fully turbulent boundary 

layer
1

lnu y B


   . And, 
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 . So, now, if you 
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,

2
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 .  

So, here you can see
u

u
u

  . So, 
yu

y 



  , plus the constant B. So, at y = δ, at the edge 

of the boundary layer you have free stream velocity U∞.  

So, 
u

u
 now this u = U∞. So, 

1
ln

uU
B

u







 
   . So, this is we have derived. 
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Now, if you see here, here we will assume that δ ≈ δT, so that our derivation will be 

simplified. So, with that we know that at the edge of the boundary layer we haveT T .  

So, here if you put  T T  ,so this you can write,   1''

Pr
ln Pr

p t
w

w

C u u
T T y

q

 
 

 



    at 

y = δ. 

So, now these two relations we have. Now, what you do you see in both the equations 

you have
u


. Now, eliminate 

u


and put

,

2

f x

u

u C

 . So, if you do that then you will 

get, 1
2

,

,
1 1
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Pr Pr Pr ln
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p f x t
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c U C
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
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
              

. 

So, now, we will define Stanton number. Already we have discussed about this. So, 

Re Pr

x
x

x

Nu
St  . So, x

p

h
St

c U 

 . So, this if you put, then now we will be able to find what 

is the heat transfer coefficient and from there we will be able to find what is the Nusselt 

number.  

(Refer Slide Time: 22:06) 
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So, now we have just expressed Stanton number with this. Now, we will assume 

turbulent Pr= t 0.9, 
1y
  = 13.2 and the B = 5.1. So, these are from empirical values, from 

the experiments these values are found. 

Now, if you put all these here then you will get, 

 
1

2

,

,

2

Re Pr
0.9 13.2 Pr 10.25

2

f x

x

x f x

C
Nu

C


 
  
 

. So, you can see from these expression now 

you will be able to find what is the Nusselt number or also heat transfer coefficient. 

Now, this we have derived using the two layers model because we have used for fully 

turbulent flows what is the u
+
 and T

+
 expression and from there we have derived the 

expression for Nusselt number here.  

You can also use Colburn analogy. So, that already we have discussed. So, the Colburn 

analogy is considered to yield acceptable results for including the laminar flow regime 

and Prandtl number ranging from about 0.5 to 60.  

So, this ah Colburn analogy if you use, so you know that, 
2

3 ,Pr
2

f x
x

C
St  . And, 

Re Pr

x
x

x

Nu
St  .  

And from the integral solution, just in this class we have derived,
1

5
,

0.0296Re
2

f x

x

C


 . 

So, you can see in the Colburn analogy we will use this integra
,

2

f xC
l solution of

,

2

f xC
, 

and if you put it here and if you find what is the Nusselt number you will get Nux in 

terms of Reynolds number and Prandtl number. So, you can see
4 1

5 30.0296Re Prx xNu  . 

So, this is from Colburn analogy, just using the integral solution from, integral solution 

of 
,

2

f xC
you can find the Nusselt number. This is your local Nusselt number and it is 

valid for Pr ≥ 0.5.  
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And if you find the average Nusselt number just integrating from 0 to L, you will get 

average 
4 1

5 30.037Re PrL xNu  . So, this actually gives reasonable good results. This is 

simple simplified expression, but you can also use these expression as well. 

So, now, if you have laminar region in the beginning then you have turbulent region. 

And you know that critical Re
cx
= 10

5
, so in this region if you find the what is the 

average Nusselt number, considering both laminar and turbulent regime that now we will 

find.  
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So, determine the average Nusselt number for heat transfer along a flat plate of length L 

with constant surface temperature. Use White’s model for turbulent friction factor, and 

assume a laminar region exist along the initial portion of the plate. 

So, if you consider a flat plate. So, we are considering that initial region you have 

laminar flow, and then you have turbulent. So, if you see the, so this is your boundary 

layer thickness and this is your y, this is your x. 

Now, we will use White’s model. So, if you see what is White’s model, White’s model 

we have found, 1
7

0.0135

2 Re

f

x

C
 . And from Colburn analogy, Colburn analogy and you can 

find the Nusselt number in turbulent flow regime. So, 
2

3

1
7

0.0135
Pr

2 Re

f

x

x

C
St   .  
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So, 
Re Pr

x
x

x

Nu
St  and thus, 

2
3

1
7

0.0135
Pr

Re Pr Re

x

x x

Nu
 . So, Nusselt number you can find. For 

turbulent flows as, 
61

3 7

, 0.0135Pr Rex turb xNu  . 

So, using White’s model, we found the Nusselt number in the turbulent regime as this. 

And you know for laminar region, we have already derived this Nusselt number, 

1 1
3 2

,lam 0.332 Pr Rex xNu  . So, this we will use and we will find the average heat transfer 

coefficient for both laminar and turbulent regime. 
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So, how to calculate average Nusselt number? Average Nusselt number we calculate as, 

0

1
L

h hdx
L

  . And now, x

hx
Nu

K
 .  

So, you can find xNu K
h

x
 . You substitute it here. So, you will get

0

L

xNuK
h dx

L x
  . 

Now, if you find the Nusselt number, average Nusselt number, if you find the average, 

L
L

h L
Nu

K
 . So, you can simply see this will be, 

0

L

xNu
dx

x .  
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Now, considering the laminar and turbulent region, for laminar and turbulent region, so, 

, ,

0

1 1c

c

x L

L x lam x turb

x

Nu Nu dx Nu dx
x x

   . So, we have already found the expression that you 

substitute it here.  

So, you will get, 

61
2 7

1 1 11
3 3 72
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x L

L

x

U U
Nu x dx x dx

 

    
    

   
  . 

So, if you perform the integration you will get, 

 
6 61 11

3 3 7 72
7

0.664 Pr Re 0.0135Pr Re Re
6c c

L x L xNu     .  

If you consider, 5Re 5 10
cx    and substitute it here and you will get, 

 
6 1

7 30.0158Re 739 PrL LNu   . 

And if you neglect the laminar length, if laminar length had been neglected the resulting 

correlation would be,  
6 1

7 30.0158Re PrL LNu  . So, it is for fully turbulent flow 

considering the turbulent flow from the beginning of the flat plate. 

So, in today’s class we started with the momentum integral equation which we derived 

for laminar flows and we substituted u as time average velocityu . From there with the 

correlation of pipe flow, we could find the velocity distribution

1
7u y

U 

 
  
 

. So, this is 

known as one-seventh velocity profile.  

And also, we saw that the problem is finding the tau w, because if you use these velocity 

profile as well y = 0 you will get infinite shear stress. So, to avoid that again from 

Blasius relation of Cf, we use the turbulent friction factor for the flow over flat plate.  

Now, that we expressed in terms of the unknown parameter boundary layer thickness δ, 

now we substituted this velocity profile as well as the turbulent friction factor in the 

momentum integral equation and we found the value of turbulent boundary layer 

thickness δ. And once you know the δ, so you could find the value of Cf, x. 
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Then, using the relation for fully turbulent layer this u
+
 and T

+
 values, we found using 

the Colburn analogy the expression for Nusselt number. And also, for using this integral 

solution whatever we found the value of Cf, x that we used and use the Colburn analogy 

and we found the simplified expression for the Nusselt number, local Nusselt number as 

well as the average Nusselt number. 

Thank you. 
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