Fundamentals of Convective Heat Transfer
Prof. Amaresh Dalal
Department of Mechanical Engineering
Indian Institute of Technology, Guwahati

Module - 11
Turbulent Flow and Heat Transfer
Lecture — 38
Integral solution for turbulent boundary layer flow over a flat plate

Hello everyone. So, in today’s class, first we will use momentum integral equation which
we derived for laminar flows and we will find the friction coefficient for turbulent flows,
for flow over flat plate and then, we will find the heat transfer coefficient and Nusselt

number for flow over flat plate.
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So, we can write the momentum integral equation which we derive for the laminar flows.
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for time average velocities, in turbulent flows.

So, this equation also can be used

So, you just replaceu=ﬁ. So, if you replace u=uthen these momentum integral

equation we can use for this turbulent flows.
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Now, you know that to use this integral equation, we need to find or we need to assume
some velocity profile. In turbulent flows, it is very difficult to assume the velocity
profile, so Prandtl and Von-Karman; what they did? They used very crude and simple

method, but it gives very accurate result for flow over flat plate or for external flows.

So, they used the solution of Blasius for circular pipe case and that they used the velocity
profile for the flow over flat plate. So, you can see Prandtl and Von-Karman used the

model from Blasius model which was developed for the shear at the wall of a circular

pipe.

So, Blasius proposed for circular pipe based on the dimensional analysis and

experimental data theC, =0.0781Re . And it is valid in the range 4000 < Rep < 10°.

So, this is for internal flows, pipe flow, where, C, :lT—W, where up IS your mean
Epuri

velocity.

So, based on these empirical relation your Prandtl and Von-Karman developed the

velocity profile inside a pipe as; so, Prandtl and Von-Karman showed the velocity profile

= bl
in the pipei =[X] . In this relation, y is measured from the pipe wall and uc, is your
ucL r0

centerline velocity, and rq is the radius of the pipe.

So, Prandtl and Von-Karman actually using this relation, they use the velocity profile for
flow over flat plate just putting the r naught as 6, that is your boundary layer thickness.
And u C L; u C L in this case ah there is no central line velocity, so u C L is substituted

with the free stream velocity U,,.

So, we will use for flow over flat plate. These velocity profile u by U o, so u, is

%
actually replaced with U, andui =(%j , Where ry is replaced with 6, boundary layer

o0

thickness to the power 1/ 7. So, you can see that it is a well-known one-seventh law of

velocity profile; one-seventh law of velocity profile.
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So, although they propose the velocity profile for the flow over flat plate like this, but it
has some fundamental problem. So, if you calculate the shear stress at the wall, it will
become almost «o. So, to avoid this problem, they used the correlation for the C; from the
pipe flow relation.

(Refer Slide Time: 06:58)
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To avoid this problem Prandtl and Von-Karman adapted Blasius correlation to find an

%
expression for the wall shear stress on a flat plate. So, they used T O.OBBZGLLJ .

> =
pum I’-Oum

: . u. .
So, now you can substitute uc, as U, and rq as 9, but the mean velocity u,. So, —™ it can
u(:L

be found for one-seventh law velocity profile inside a pipe asu—m =0.8167. So, these are
cL

valid for pipe flow. So, now you can use uc_ you can substitute with U,, and rpyou can

substitute with 9.

So, now, if you substitute then you will get the shear stress relation for flow over flat

Tw
2

o0

C .
plate. You can use how 7f = after putting all these values you can rearrange and
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Y%
C
you will get as, O.OZSBB[UL&J . So, you see for flow over flat plate this 7f is given in
terms of the boundary layer thickness 3.

Now, you can use the momentum integral equation and we can substitute the velocity
profile, one-seventh law velocity profit, and this shear stress relation, and we can find

what is the boundary layer thickness.

(Refer Slide Time: 09:47)
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So, we have the momentum integral equations asij -4 Ldy: TWQ . S0, now
dx g U, U, yo ks

o0

»
, Prandtl and Von-Karman proposed as (%) and you have,

Y
fw_—0.02333 — | .
pJ2 Uo

Now, you substitute these two in the momentum integral equation and find the value of

8. And once you know the value of 6 you will be able to find, the skin friction coefficient

because in the skin friction coefficient you have the unknown parameter 5.
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d f(yY _(yY v Y
So, if you substitute it you will get— ||| = | —-| = | |dy=0.02333] — | . So, if you
4 4 g de. (5] (5) y (U 5) 4

0

0

% % %
integrate it what you will get?i 15——15—2 ~0.02333) | . So, this if you do
dx| 8 6% 967 U,s

0

o 7ds v Y
the algebra you will get — — =0.02333| — | .
72 dx U_o

o0

%
So, this & you take in the left hand side, so you will get, 5%*ds = 0.02337><7—72(ULJ dx.

o0

So, now if you integrate it you see v, U, are constant. So, you can integrate this. So, you

%
will getg5% =O.02337><7—72£ULJ x+C. So, we will assume here that you have the

o0

turbulent flow from the leading edge of the flat plate.

So, first Prandtl proposed this assumption, so that we can use the condition at x = 0; that
means, at the leading edge of the flat plate you have boundary layer thickness & = 0. So,

these are the assumptions you have to take.

So, if you take these assumptions, then you can use the boundary condition at x = 0, 6 =
0. So, we are assuming that you have a turbulent flow over this flat plate starting from
the leading edge.

So, we are assuming the entire flow along the plate as being turbulent beginning from the
leading edge. So, this assumption was first proposed by Prandtl. So, if you assume this

then you can putatx =0, 8 = 0.
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So, that means, your constant C = 0. So, if we put C = 0 and if you rearrange it you will

U x R .0 -¥
get5(x)=0.3816| —= x . S0, you can erte; =0.3816Re *.
1%

So, here you can see that your boundary layer thickness varies § ~ x* . So, your, in this

case you can see that your boundary layer thickness 6 ~ x’ for turbulent flows.

For laminar flows, do you remember what was the 8? So, it was , SO that means,

5
w/ReX
3 5
X Re

X

. So, that means, & ~ x’2, for laminar flows.

Y%
C
And now, if you find the Cr;, — = fw_ 002333 | . So, you substitute here this
2 pU U,o

> =

0 o0

%
C
§ value. So, if you substitute it you will get—- = 0.02333 i : — .
2 U,x 0.3816Re *

C
So, this you can write as, — = 0'02968.
2 Re’
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And for laminar flow you knowC, ~Re.%?, and in turbulent flows you can

seeC, ~ Re ”, for turbulent flows.

. : _C . .
So, now whatever expression we have derived for this 7fthat will use to find the heat
transfer coefficient.

(Refer Slide Time: 19:06)
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So, you can see we have already derived these for fully turbulent boundary

+

Iayeru*:lln y"+B. And, T*:ﬂlny—++Pry1*. Now, u_ = /T—W So, now, if you
K K % P

. u
define, — =
uT

|<:I

So, here you can seeu” =—. So, y* = A , plus the constant B. So, at y = §, at the edge
14

o

T

of the boundary layer you have free stream velocity U,,.

S0, X now this u = U.,. So. Y, _1,0u
u u x v

T T

~ + B. So, this is we have derived.
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Now, if you see here, here we will assume that & ~ &, so that our derivation will be

simplified. So, with that we know that at the edge of the boundary layer we have T =T,.

C u
)—p P Py

So, here if you put T =T, ,s0 this you can write, (TW -T,
qw K 1%

+Pry, at
y =0.

So, now these two relations we have. Now, what you do you see in both the equations

you have ou, . Now, eliminate ou, and puti = CL So, if you do that then you will
14 14 u \/

Cfx
h /2

get, =

c U % '
oo Prt+(cf%) [Pryl*—BPrt—(P%jln yf}
So, now, we will define Stanton number. Already we have discussed about this. So,
St, = Nu, . So, St, = h . So, this if you put, then now we will be able to find what
Re, Pr pcU,,

is the heat transfer coefficient and from there we will be able to find what is the Nusselt

number.

(Refer Slide Time: 22:06)
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and Prandti number ranging from about 0.5 to €0.
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So, now we have just expressed Stanton number with this. Now, we will assume
turbulent Pr=1 0.9, y,;” = 13.2 and the B = 5.1. So, these are from empirical values, from

the experiments these values are found.
Now, if you put
Cf X
Nu, /2
Re, Pr Z
" o.9+(cf%j [13.2Pr—10.25]

you will be able to find what is the Nusselt number or also heat transfer coefficient.

all these here then you will get,

. S0, you can see from these expression now

Now, this we have derived using the two layers model because we have used for fully
turbulent flows what is the u* and T* expression and from there we have derived the

expression for Nusselt number here.

You can also use Colburn analogy. So, that already we have discussed. So, the Colburn
analogy is considered to yield acceptable results for including the laminar flow regime

and Prandtl number ranging from about 0.5 to 60.

So, this ah Colburn analogy if you use, so you know that, St, Pr* :Cf%. And,

St =%
Re, Pr

C
And from the integral solution, just in this class we have derived, ;X =0.0296 Re;%.

f,x

i i . C
So, you can see in the Colburn analogy we will use this integra 5

f,x

. C
| solution of =

and if you put it here and if you find what is the Nusselt number you will get Nuy in

terms of Reynolds number and Prandtl number. So, you can see Nu, =0.0296 Re’* Pr” ,

So, this is from Colburn analogy, just using the integral solution from, integral solution

f,x

of

you can find the Nusselt number. This is your local Nusselt number and it is

valid for Pr > 0.5.
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And if you find the average Nusselt number just integrating from 0 to L, you will get
average Nu, =0.037Re’ Pr. So, this actually gives reasonable good results. This is

simple simplified expression, but you can also use these expression as well.

So, now, if you have laminar region in the beginning then you have turbulent region.

And you know that critical Re, = 10°, so in this region if you find the what is the

average Nusselt number, considering both laminar and turbulent regime that now we will
find.

(Refer Slide Time: 25:21)
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So, determine the average Nusselt number for heat transfer along a flat plate of length L
with constant surface temperature. Use White’s model for turbulent friction factor, and

assume a laminar region exist along the initial portion of the plate.

So, if you consider a flat plate. So, we are considering that initial region you have
laminar flow, and then you have turbulent. So, if you see the, so this is your boundary

layer thickness and this is your y, this is your Xx.

Now, we will use White’s model. So, if you see what is White’s model, White’s model

C
we have found, —- = 0.0135
Re/

X

. And from Colburn analogy, Colburn analogy and you can

C
find the Nusselt number in turbulent flow regime. So, St, Prs = ?f = 0':135 .
e
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U and thus, St py# — 20135
Re. Pr Re. Pr Re/

X X

So, St = . S0, Nusselt number you can find. For

turbulent flows as, Nu,,,, =0.0135Pr”* Re’".

So, using White’s model, we found the Nusselt number in the turbulent regime as this.

And you know for laminar region, we have already derived this Nusselt number,

Nu, .., = 0.332Pr% Re%. So, this we will use and we will find the average heat transfer

X,lam

coefficient for both laminar and turbulent regime.

(Refer Slide Time: 28:12)
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So, how to calculate average Nusselt number? Average Nusselt number we calculate as,

1 hx

L
—_[ dx. And now, Nu,
0

I_

L

Nu, K . . . =
Y . You substitute it here. So, you will geth :%
X 0

So, you can find h=

Now, if you find the Nusselt number, average Nusselt number, if you find the average,

Nu, = h L
K
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Now, considering the laminar and turbulent region, for laminar and turbulent region, so,

dx. So, we have already found the expression that you

X,lam X,turb

Nu. :I%Nu dx+XJL:%Nu

substitute it here.

6,

— u, Y : u, Y
So, you will get, Nu, = _[0.332 Pr (—wj x‘%dx+_[0.0135 Pr’ (—*) X dx.
d v " v

So, if you perform the integration you will get,

Nuc =0.664Pr” Re/* +%><0.0135 Pr* (Re{'—Re).

If you consider, Rexc=5><105 and substitute it here and you will get,

Nu. =(0.0158Re{'—739) Pr”.

And if you neglect the laminar length, if laminar length had been neglected the resulting
correlation would be, Nu.=0.0158Re/ Pr*. So, it is for fully turbulent flow

considering the turbulent flow from the beginning of the flat plate.

So, in today’s class we started with the momentum integral equation which we derived

for laminar flows and we substituted u as time average velocityu . From there with the

b
correlation of pipe flow, we could find the velocity distributionul:(%j . So, this is

0

known as one-seventh velocity profile.

And also, we saw that the problem is finding the tau w, because if you use these velocity
profile as well y = 0 you will get infinite shear stress. So, to avoid that again from

Blasius relation of Cs, we use the turbulent friction factor for the flow over flat plate.

Now, that we expressed in terms of the unknown parameter boundary layer thickness 6,
now we substituted this velocity profile as well as the turbulent friction factor in the
momentum integral equation and we found the value of turbulent boundary layer

thickness 6. And once you know the &, so you could find the value of Cs .
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Then, using the relation for fully turbulent layer this u* and T* values, we found using
the Colburn analogy the expression for Nusselt number. And also, for using this integral
solution whatever we found the value of C; « that we used and use the Colburn analogy
and we found the simplified expression for the Nusselt number, local Nusselt number as

well as the average Nusselt number.

Thank you.
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