
 

 

Fundamentals of Convective Heat Transfer 

Prof. Amaresh Dalal 

Department of Mechanical Engineering 

Indian Institute of Technology, Guwahati 

 

Module – 11 

Turbulent Flow and Heat Transfer 

Lecture – 36 

Convection in Turbulent External Flow 

 

Hello everyone, in last class we derived the Reynolds average Navier-Stokes equations 

as well as the time averaged energy equation. Today, we will consider external flows and 

we will derive the turbulent boundary layer equations. Then we will discuss about 

different turbulent layers inside the boundary layer, and we will find the universal 

velocity profile and universal temperature profile.  

(Refer Slide Time: 01:03) 

 

So, you can see that if we consider two-dimensional steady state incompressible flow 

with constant properties. Then you have this continuity equation. This is the x 

component momentum equation. You can see we have additional terms. And in y 

momentum equation, here also we have two additional terms. And in energy equation, 

we have also two additional terms these are coming due to the fluctuations in velocities 

and temperature.  
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So, now in boundary layer approximation, if we assume that δ << L and δT which is your 

thermal boundary layer is much much smaller than the length of the plate, then using 

scale analysis we have already carried out for external flows we can do the similar 

analysis and we can derive the boundary layer equations. Here the other terms will have 

the similar derivation as we did earlier, but the fluctuating terms we will see here 

specially. 

So, you can see if you use the scales of velocity u ~U∞, x ~ L, and y ~δT, then obviously, 

this you can show right that
2 2

2 2

u u

x y

 

 
. So, you can see that these already we have 

derived earlier, and these inner shear terms will be comparable, so we cannot neglect 

this.  

But if you do the similar analysis for the energy equation and the  wT T T  and y as 

you scale of thermal boundary layer thickness δT, then obviously, you can show that 

2 2

2 2

T u
T

x y

 

 
.  

Now, what about these terms. can we neglect any term from these two terms? So, let us 

see that. So, first let us assume that it is a isotropic turbulence. So, for these you know 

that there is no preferred direction of the fluctuation. So, we can write ' 'u v .  

So, now if we multiply 'u  both side, so you can write ' ' ' 'u u u v . And if you take the 

average of this quantity, then you can write ' ' ' 'u u u v . So, this will be same order, but 

now let us see what will be this gradient, the order of these gradients then you can see 

that this first fluctuating term if you write.  

So, 
 ' ' ' 'u u u u

x L




. And this term if you see, then it will be

 ' ' ' 'u v u u

y 




. So, now 

you can see we have already assumed that δ << L. So, obviously, if you compare these 

two terms, so you can say that you have
   ' ' 'v'u u u

x y

 

 
. 
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So, you can see that in the x momentum equation, the last term you can consider because 

it is having a higher order than the this term.  So, you keep this term and this term you 

can neglect. Now, you can also show in the y momentum equation that 0v .  

And from there you can see for this particular case, your y momentum equation keeping 

the 0v , you can also show that
   ' ' ' 'u v v v

x y

 

 
. So, from there, you can reduce this 

y momentum equation as this ok. 

In laminar flow, it was 0
p

y





. But as it is turbulent flows, you will have this term. So, 

you can see p will be if you integrate this equation, so at outside the boundary layer you 

have the free stream pressure p∞. So,  ' 'p p v v  . But it is seen that 'v fluctuations 

are no more than 4 % of the free stream velocity U∞.  

Thus pressure differs from p  by no more than 0.4 % of the p∞. So, you can actually 

neglect this term, and you can write from here that 0
p

y





. So, you can see as laminar 

flow we have derived that pressure does not vary perpendicular to the wall.  

So, 0
p

y





. And say hence you can write that

p d p

x dx





. And you can equate it also with 

the free stream pressure p∞. So, we have written
dpd p

dx dx

 .  

Similarly, now if you do the scale analysis of these two terms. So, you can see from for 

isotropic turbulence ' 'u v . Then you can write 'T' 'T'u v . So, if you take its time 

average, so you can write 'T' 'T 'u v .  

So, now, let us see the derivative , what is the scale. So, 
 ' ' ' 'u T u T

x L




. And here you 

can write, 
 ' ' ' '

T

u T u T

y 




.  
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So, now, we have already assumed that δT << L. Hence, you can 

write
   ' ' ' 'u T v T

x y

 

 
. 

So, now you can see whatever equations we have written for two-dimensional steady 

turbulent flow equations, we can neglect few terms for the boundary layer equations. So, 

you can see, here we can drop this term. We can drop this term from scale analysis we 

have shown. And these you can write as 
d p

dx
and anyway all these term will become 0.  

So, 0
p

y





. And in energy equation, similarly you can neglect this term and also this 

term ok, because its magnitude is very small compared to the other terms. So, if you can 

neglect, then you can write the continuity equation as this. This is the x momentum 

equation and this is the energy equation after dropping low magnitude order terms. 

(Refer Slide Time: 09:32) 

 

But if you consider flow over flat plate, so if you consider a flow over flat plate of length 

L, your u  will be the mean velocity which varies from 0 to U∞, U∞ is the free stream 

velocity, and free stream temperature is T∞, and wall temperature is Tw . So, if you 

consider flow over flat plate, obviously, 
d p

dx
 = 0. 
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Now, let us discuss about the boundary conditions. So, what are the boundary 

conditions? So, obviously, at x = 0, you have U = U∞, and T = T∞ . And y = 0 this is the 

wall, so again u  = 0 and v  = 0, and wT T .  

And y → ∞ ; you have free stream velocity and free stream temperature. So, you can see 

at y =0, you have u  = 0, v  = 0, wT T ; y →∞  u  =  U∞ , T T  , and x →0 ; u  =  U∞ , 

T T .  

Now, if you see these equations, there are three equations. And how many unknowns are 

there? You can see 'u , 'v , then you have 'T . You can see there are three equations, and 

we have how many variables unknown variables u , v ,T . And you have two more 

terms ' 'u v , and ' 'v T . So, you can see these are the five unknowns and we have three 

equations. 

So, this is known as closure problem of turbulence. So, we need to model these two 

terms these ' 'u v and v prime ' 'v T . So, you can see these term in the momentum equation 

is called the turbulent shear stress or the Reynolds stress. And this term in the energy 

equation is called the turbulent heat flux or the Reynolds heat flux. 

Now, these we need to model with the known parameters. Now, you see in the turbulent 

flows in the inside the boundary layer, one particle is here. Now, due to fluctuation it is 

forced to move at this position. So, you will have the 'v will be negative and it will come 

here. So, the particle if you see here it has higher velocity than here. So, your local 

velocity is low and this particle will obviously feel low velocity when it will come, but it 

is having higher velocity than the local velocity. 

So, it will have some fluctuation of plus 'u , so that means, you can see when this particle 

is coming towards the wall, obviously, it is experiencing one velocity fluctuation as plus 

'u . So, obviously, the value of this 'u  will depend on the velocity gradient. So, we can 

model this ' 'u v  with the velocity gradient of the time average velocity. 

Similarly, if particle motion away from the wall, if it is going from here to here, so you 

can see obviously here when it will come, it will experience a higher velocity. So, it will 
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have a minus u prime fluctuation, and it will also depend on the velocity gradient. So, 

you can see this ' 'u v , obviously, will give a negative value.  

Because when 'v  is positive your 'u  is negative, and when 'v  is negative 'u  is positive. 

So, ' 'u v  is a itself a negative quantity because if one is positive other will be negative. 

So, from these analysis, we can say that ' '
u

u v
y


 


, so that means, ' 'u v behaves like a 

shear in the flow. So, this suggestion was first made by Boussinesq, Boussinesq first 

proposed this suggestion. So, now you can see that we can actually write ' 'u v  in terms 

of the velocity gradient.  

(Refer Slide Time: 15:18) 

 

So, based on Boussinesq hypothesis we can model Reynolds stress and Reynolds heat 

flux as follows. So, this is your Reynolds stress. So, ' 'u v that we are relating with the 

velocity gradient 
u

y




and t . So, t is known as momentum eddy diffusivity, and it is 

known as eddy viscosity also.  

And ' 'pc u T , you can model it as p t

T
c

y
 




. And this p tc  is the thermal eddy 

diffusivity or eddy conductivity. So, this is your eddy viscosity commonly known, and 

this is commonly known as eddy diffusivity. 
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Now, you can see still here νt and αt are unknown . So, now, our task is to model these 

eddy viscosity and eddy diffusivity. Now, if you put this in the momentum equation and 

energy equation, what you will get? So, in the right hand side, now this term you are 

replacing with this term.  

So, you can write  t

u u u
u v

x y y y
  
      

     
      

. So, you can see we have written 

in terms of some shear stress. And similarly you can see in the energy equation if we 

take this term, then we can write  p p t

T T T
c u v k c

x y y y
  

      
     

      
. So, this also 

represents some heat flux.  

So, if you rearrange it. So, after rearranging you can write, 

 t

u u u
u v

x y y y
 

    
   

    
. And in energy equation,  t

T T T
u v

x y y y
 

    
   

    
 

where terms νt and αt are unknown.  

So, these now together you can say that this is the apparent shear stress, 

 app

t

u

y


 




 


. And this you can say that it is apparent heat flux it 

is  app

t

p

q T

c y
 




  


. So, you can see here we have put negative sign, because it 

assigns the correct direction to the heat transfer. 

So, now we can see now νt and αt are properties of the flow. You remember not the fluid.  

So, this eddy viscosity and eddy diffusivity are properties of flow, because νt depends on 

the velocity field and αt depends on the temperature field. Now, the question is that how 

to model this νt and αt? So, first let us discuss how to model νt. 
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So, first Boussinesq postulated that νt was constant . If νt is constant, then you can see 

near to the wall it will have some constant value, but there your it should be 0 right the 

fluctuation velocity fluctuation should be 0.  

So, this model will give problem when you go closer to the wall. So, constant νt does not 

allow ' 'u v  to approach zero at the wall. So, Prandtl defined the mixing-length L as the 

distance the particle travels as the result of a fluctuation.  

So, the velocity fluctuation u prime that results can be approximated from a Taylor series 

as. So, you can see now this particle is forced to move here. So, as we discussed earlier, 

so obviously, it will have negative v velocity and due to that it will have some fluctuation 

in u, and that will be 'u . And whatever distance it travels, so that is known as mixing 

length L.  

So, now if you see if you tell that velocity here is ufinal and it is uinitial using Taylor series, 

you can write final initial

u
u u dy

y


 


 and neglect the higher order terms. So, the difference 

between ufinal and uinitial will be your velocity fluctuation. So, ' final initial

u
u u u dy

y


  


. 

So, this distance now whatever it travelled that we are telling mixing length, so '
u

u l
y




.  
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So, now, for isotropic turbulence, you know that for isotropic turbulence you know 

that ' 'u v . So, obviously, '
u

v l
y




. So, you can see this minus

2

2' ' ' ' l
u

u v u v
y

 
  

 
.  

So, now if you write νt, so you can write 2' '
lt

u v u

yu

y


 






. So, these modulus we are 

giving or absolute value is imposed on the derivative to ensure that the eddy diffusivity 

remains positive because this is a positive quantity. So, it remains positive. 

So, this is the way we can model using Prandtl’s mixing-length theory. It is the simplest 

model we can have. And Prandtl propose the following model for the mixing-

length l y , and κ is constant. And it differs for different types of flows. And leading 

to Prandtl mixing length model now νt, you can write Prandtl proposed the following 

model for the mixing-length l y .  

So, this κ value depends on different types of flow. And leading to Prandtl’s mixing-

length model now eddy diffusivity, you can model as
2 2

t

u
y

y
 





. So, you can see this 

is the simplest model for to determine the eddy diffusivity or eddy viscosity. 

So, now, we have found the eddy viscosity νt using the Prandtl’s mixing-length 

hypothesis. Inside the boundary layer close to the wall, you can see you can neglect the 

fluctuating velocities ' 'u v . And if you are away from the wall, then the effect of 

molecular viscosity can be neglected. So, in based on that, you can differentiate two 

different layers inside the boundary layer. 
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So, you can see if this is the flat plate and you can have one layer very close to the wall 

where you can neglect the velocity fluctuations, and you can have the viscous sub layer. 

And away from the wall where you can have fully turbulent layer, where you can neglect 

the effect of this molecular viscosity. And in between this zone is known as buffer layer 

or buffer zone.  

So, you can see that we have these equations. This is the continuity equation and this is 

the momentum equation. Now, we are assuming that the flow is nearly parallel close to 

the wall. So, if close to the wall if we assume nearly parallel, that means, v bar will be 0 

ok. And if v  = 0, then from the continuity equation, you can say that 
u

x




 ~ 0.  

So, now, you can see if this is 0, then in the momentum equation you can see this term is 

0 and v  = 0. So; obviously, inertia terms you can neglect. So, if you neglect the inertia 

term, so very near to the wall you can say that   0t

u

y y
 

  
  

  
.  

So, now we have already defined apparent shear stress as  app w
t

u

y

 
 

 


  


. And 

obviously, τ for steady state flow, τw will be constant, density of the fluid is constant. So, 

this term will be constant.  
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So, now, if we define this non-dimensional quantities 
u

u
u

  where uτ is known as 

friction velocity which is defined as wu



  and w is the shear stress at the wall. 

And
yu

y 



  . So, this term you can see it is related to Reynolds number, because 

the Re
U L


 . So, similarly it is known as local Reynolds number. 

So, if you define it and this equation whatever we got because this if you integrate then 

you will get   w
t

u

y


 




 


. And these if you use these non dimensional quantities, you 

can write as 1 1t u

y









 
  

 
. So, you can see that

0 1

y

t

dy
u








 
 
 

 

 , then you will be able 

to find the velocity. 

Now, we are actually dividing the boundary into two near wall regions, a region very 

close to the wall where viscous force dominant, and a region where turbulent fluctuation 

dominate. So, you can see away from the surface, it will be fully turbulent zone. And 

effect of molecular viscosity, you can neglect and turbulent fluctuation will dominate. 

And generally you can see this y
+
 if you take in this way which is your non-dimensional 

coordinate.  

So, here near to the wall , it is around y
+
 = 7, you can say that it is viscous sub layer. 

Then away from 70 if y
+ 

> 70, then it is fully turbulent layer. And between 7 and 70, you 

will get buffer layer. Now, let us consider the near wall region which is your known as 

viscous sub layer. So, in the viscous sub layer, we can neglect the fluctuating 

components. So, generally your viscous effect will dominate the flow. 
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So, in this equation, now you can say that ν >> νt. If ν >> νt, then this equation you can 

write as 1
u

y









, because t


 << 1. So, you can neglect this term. So, you will get, 

1
u

y









.  

So, now if you integrate it as and put the boundary condition as y
+
 = 0, obviously, your 

u
+
 = 0. So, if you integrate it, you will get u

+ 
=  y

+ 
. So, it is valid in the viscous sub layer 

in the range of 0 ≤ y
+ 

≤ 7 .  

And you can see it is a linear profile in terms of non-dimensional quantities. So, you can 

see here this varies linearly in the viscous sub layer, because if it is u
+
   and this is your 

y
+
, then it varies linearly inside the viscous sub layer. Now, if you go further away from 

the wall, then your fluctuations will dominate, fluctuating velocities will dominate. 
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So, in that case, you can say that νt >> ν. So, if it is so, then you can write that t


 >> 1. 

So, this equation we can write as 1t u

y













. Now, νt we know from the Prandtl’s 

mixing-layer hypothesis. What is that?
2 2

t

u
y

y
 









. 

So, now if you use the non dimensional quantities, 
yu

y 



  , and
u

u
u

  . Then this, 

 
2

2

t

u
y

y
  










. So, this νt value now you put .  

So, t


 will be this quantity. So, you can write it as  

2
2

2 1
u

y
y








 
 

 
. And you can 

write, 
1u

y y



 





.  

Now, if you integrate it, you will get
1

lnu y C


   . So, this is known as law of the 

wall. Now, how to find this κ and C? So, this you need to find empirically you need to 

find it from the experimental conditions. So, you can see that in this equation you need to 

know the value of κ as well as the constant C.  
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The constant κ is called von Karman’s constant and experimental measurements, so that 

κ = 0.41. And the constant of integration C can be estimated by noting that the viscous 

sub layer and the Law of the Wall region appear to intersect at roughly y
+
  = u

+
 ~10.8 .  

So, if you put y
+
  = 10.8, then you will be able to find the constant C ≈ 5, so that is an 

approximation for the Law of the Wall region is putting the values of κ and see you can 

get 2.44ln 5u y   . So, now, you can see that these two layers viscous sub layer as well 

as fully turbulent layer will intersect through the buffer layer. 

(Refer Slide Time: 31:56) 

 

So, you can see in this curve u
+
 verses y

+
. So, here you can see that this is your viscous 

sub layer where y
+ 

 < 7, and here u
+ 

= y
+
. And you have fully turbulent layer, so that is 

already we have derived as 2.44ln 5u y   . So, you can see that these two model 

meets here in the buffer layer right.  

So, in the buffer layer because this is valid in the range of y
+  

> 70. So, in between 7 and 

70, we have buffer layer. And in the buffer layer, you can use 5ln 3.05u y    in the 

range of7 ≤ y
+ 

≤ 70.  

So, this is actually connecting your viscous sub layer as well as fully turbulent layer 

model. Now, we have discussed about the universal velocity profile. Now, let us discuss 

about the universal temperature profile. So, now, we need to find the eddy diffusivity 

which is your αt.  
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So, you can see this is the equation we have derived. So, this is your t  . And 

similarly in near wall region, we can have this v  = 0 , because nearly flow is parallel 

flow is nearly parallel. So, v  =  0. And your axial heat conduction you can neglect. And 

you see the variation of T along x is very small, so 
T

x




 ~0. 

So, if this is 0 and this is 0, then you can write  t

T

y y
 

  
 

  
≈ 0 near to the wall. So, 

obviously, you can write in terms of apparent heat flux 

'' ''
app w

p p

q q

c c 
   which is your wall 

heat flux, and obviously  t

T

y
 


 


constant. 

Now, similarly you define y
+
, and   ''

p

w

w

c u
T T T

q


   . So, using these non-dimensional 

quantities if you put it here, you are going to get
t

T

y



 








 
. So, you can see here αt is 

unknown . So,
0

y

t

dy
T



 




 
 .  

686



 

 

Now, similarly we can have the conduction layer which is very very near to the wall, 

where you can neglect the fluctuating components. And away from the wall, you can 

have fully turbulent region the fluctuating components will dominate. 

(Refer Slide Time: 35:29) 

 

So, with this you can see the conduction sub layer which is very near to the wall. So, this 

is the equation. So, we are telling that molecular effects dominate the heat transfer very 

close to the wall. So, fluctuating components you can neglect, that means, here α >> αt . 

So, from here you can see that if α >> αt, then you can write
T

y













.  

And what is 



you know, Prandtl number right? So, Pr= 




. So, you can write this is 

equal to Prandtl number. Now, if you integrate it and put the boundary condition at y
+
 =0 

T
+
 = 0 because T

+ 
is having one quantity wT T . So, at y = 0, you have T = Tw. So, T

+ 

will become 0. 

So, if you integrate it, you will get T
+ 

= Pr y
+
. And let us say that it is valid in the range 

of
1y y  , where 

1y
 is the dividing point between the conduction layer and outer layer. 

So, now let us consider the outer layer. So, in the outer layer, obviously, your it is a fully 

turbulent flow and fluctuating components dominate. 
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(Refer Slide Time: 37:25) 

 

So, in this case you can see this is the equation. So, turbulent effects dominate the heat 

transfer further away from the wall. So, you can see that t  . So, you can see you can 

write
t

T

y



 








 
. So, t is unknown. So, now, we will write t in terms of turbulent 

Prandtl number. And we will use the Prandtl mixing-length model and we will substitute 

this νt. 

So, we can see here turbulent Prandtl number we are defining as general Pr



 . So, 

turbulent Pr t
t

t




 . So, you can see here

t




. You can write as t

t t t

 

  
 . So, you can 

write Prt
t




. So, and this νt in non-dimensional form if you write it will be, 

 
2

2

t

u
y

y
  










.  

So, now if you write this equation, Prt
t

T

y













. If you take in the left hand side you get, 

Prt
t

T

y













. So, now you see,  

2
2 Prt

u T
y

y y


 


 

 


 
. 
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Now, from universal velocity profile for the fully turbulent layer, 
1u

y y



 





. So, we 

will use
1u

y y



 





. So, if you put it here, so you are going to get as, 

PrtT

y y



 





.  

So, now we have
PrtT

y y



 





. Now, if you integrate it, so you will 

get
1

1

Pr
y

t

y y
y

dy
T T

y



 




 


   . So, you see if we assume Prt  and κ as constant, then you 

will be able to integrate it. 

(Refer Slide Time: 41:00) 

 

So, let us assume Prt  and κ as constants. And you can see we have in the conduction 

layer PrT y  . So, at
1y y , you can write 

1
1Pr

y y
T y

 

 


 .  

So, if you put all these values and if you integrate keeping Prt  and κ constant, then you 

will get 
1

1

Pr
Pr lnt y

T y
y


 


   and it is valid for

1y y  . 

So, you can see that your temperature profile depends on this fluid that means for Prandtl 

number, and also it depends on Prt  and κ. So, Kays et al. assumed this Prt = 0.85 and κ = 

689



 

 

0.41, but found that the thickness of the conduction sub layer 
1y
 varies by fluid. So, if 

you have different fluid, this 
1y
  varies. So, depending on the value of

1y
 , you can use 

these conduction layer model as well as fully turbulent layer model.  

Why it reports a correlation that can be used for any fluid with Pr ≥ 0.7, and Prt ≈ 0.9 or 

1. So, if you put all these values, you will get
2

3
Pr

ln 13Pr 7tT y


    .  

So, you can see here in this curve T
+
 versus y

+
. So, in viscous sub layer region or in 

conduction sub layer, you have PrT y  ; and in fully turbulent region, you can have 

this model. 

So, for different Prandtl number, you can see for here 0.7. So, these are the solid line you 

can see for different Prandtl number Prandtl number 0.7, 0.3, and what are Prandtl 

number 5.9. So, this is the model for fully turbulent layer. And the results of kays et al. 

also here it is shown for air as well as water, and this is the Kays et al. model.  So; 

obviously, you can see with increase of Prandtl number, your value of T
+ 

increases.  

(Refer Slide Time: 44:03) 

 

So, you can see in today’s class we have derived these boundary layer equations for 

turbulent flows, where ν is your kinematic viscosity, νt is your eddy viscosity, and α is 

your thermal diffusivity, and αt is your eddy diffusivity, and νt is your eddy viscosity.  
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So, you can see in viscous sub layer we have derived u
+
 = y

+
 and in fully turbulent layer; 

1
lnu y B



   where 
yu

y 



   , 
u

u
u

  and wu



 , and   ''

p

w

w

c u
T T T

q


   . And 

in conduction sub layer, we have derived this PrT y  ; and in fully turbulent layer, you 

have, 
1

1

Pr
ln Prt y

T y
y


 


  . 

In today’s class, we considered a steady state two-dimensional in incompressible fluid 

flow equations and for turbulent flows, and we used the scale analysis and we have 

written the boundary layer equations for turbulent flow. When we write these boundary 

layer equations, we have seen that you have the fluctuating components ' 'u v ; and in 

energy equation we have ' 'u T . So, these are the unknowns and that we need to model 

some way. 

So, from the Prandtl mixing-length hypothesis, we have seen that your eddy viscosity νt 

you can write in terms of the mixing length. And this mixing length also you can write as 

κy, where κ is constant for any fluid flow and you need to determine experimentally. 

Now, we have seen that to solve these equations, you need to know the eddy viscosity as 

well as the eddy diffusivity which are unknown. And these unknowns you need to find 

with some assumptions as well as from the experimental conditions. When we 

considered the velocity profile, we have taken two different layers; one region is very 

near to the wall where you can neglect the effect of the fluctuating components.  

And that is known as a viscous sub layer. And one is away from the wall where your 

fluctuating components dominate and you can neglect the effect of viscosity or effect of 

wall in those region and in between you have you will have the buffer zone.  

So, in these two different zones in viscous sub layer and fully turbulent layer, we have 

derived the non-dimensional velocity profile u
+
. And similarly for the energy equation, 

we considered two layers one is very near to the wall that is your conduction layer and 

away from the wall that is your fully turbulent layer.  
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So, in these layers also we have derived the non-dimensional temperature profile T
+
. And 

these velocity profile and temperature profiles are known as universal velocity profile 

and universal temperature profile. 

Thank you. 
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