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Module — 11
Turbulent Flow and Heat Transfer
Lecture — 36
Convection in Turbulent External Flow

Hello everyone, in last class we derived the Reynolds average Navier-Stokes equations
as well as the time averaged energy equation. Today, we will consider external flows and
we will derive the turbulent boundary layer equations. Then we will discuss about
different turbulent layers inside the boundary layer, and we will find the universal

velocity profile and universal temperature profile.
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Turbulent Boundary Layer Equations

Corsider two-dimensional steady stats, incompressible flow with constant properties.
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So, you can see that if we consider two-dimensional steady state incompressible flow
with constant properties. Then you have this continuity equation. This is the X
component momentum equation. You can see we have additional terms. And in y
momentum equation, here also we have two additional terms. And in energy equation,
we have also two additional terms these are coming due to the fluctuations in velocities

and temperature.
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So, now in boundary layer approximation, if we assume that 6 << L and &t which is your
thermal boundary layer is much much smaller than the length of the plate, then using
scale analysis we have already carried out for external flows we can do the similar
analysis and we can derive the boundary layer equations. Here the other terms will have
the similar derivation as we did earlier, but the fluctuating terms we will see here

specially.

So, you can see if you use the scales of velocity U~U,, X ~ L, and y ~&7, then obviously,

2 2
this you can show right thatg—lzJ <<Zy—l:. So, you can see that these already we have
X

derived earlier, and these inner shear terms will be comparable, so we cannot neglect
this.

But if you do the similar analysis for the energy equation and the AT ~ (TW —Tw)and y as

you scale of thermal boundary layer thickness &r, then obviously, you can show that

Now, what about these terms. can we neglect any term from these two terms? So, let us
see that. So, first let us assume that it is a isotropic turbulence. So, for these you know

that there is no preferred direction of the fluctuation. So, we can writeu'~v".

So, now if we multiply u' both side, so you can write u'u'~u'v'. And if you take the

average of this quantity, then you can writeu'u’ ~u'v'. So, this will be same order, but
now let us see what will be this gradient, the order of these gradients then you can see
that this first fluctuating term if you write.

8(u'u') u'u’ a(U'V') u'u'

So, ~ . And this term if you see, then it will be ~——. S0, now
OX L o

you can see we have already assumed that & << L. So, obviously, if you compare these

o(ud’)  o(uv)
two terms, so you can say that you have < .

OX oy
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So, you can see that in the X momentum equation, the last term you can consider because

it is having a higher order than the this term. So, you keep this term and this term you

can neglect. Now, you can also show in the y momentum equation that v~0.

And from there you can see for this particular case, your y momentum equation keeping
o(uv’)  a(vv)

thev ~ 0, you can also show that 5 < Y So, from there, you can reduce this
X
y momentum equation as this ok.
In laminar flow, it wasg—p=0. But as it is turbulent flows, you will have this term. So,
y

you can see Bwill be if you integrate this equation, so at outside the boundary layer you
have the free stream pressure p... So, p~ p, —p(\/'_\/'). But it is seen that v'fluctuations

are no more than 4 % of the free stream velocity U.,.

Thus pressure differs from E by no more than 0.4 % of the p.. So, you can actually

neglect this term, and you can write from here that@ =0. So, you can see as laminar

flow we have derived that pressure does not vary perpendicular to the wall.

op ~ d_p And you can equate it also with

So, o =0. And say hence you can write that
oy ox  dx

dp _dp,

the free stream pressure p... So, we have written 5 vl
X X

Similarly, now if you do the scale analysis of these two terms. So, you can see from for

isotropic turbulenceu'~v'. Then you can writeuT ~vT'. So, if you take its time

average, S0 you can write u'T' ~v'T".

- | ouT) uT
So, now, let us see the derivative , what is the scale. So, . T And here you
X

can write, ~
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So, now, we have already assumed that oy << L. Hence, you can

ou'T') o(v'T'
write ( )<< ( )

OX oy
So, now you can see whatever equations we have written for two-dimensional steady
turbulent flow equations, we can neglect few terms for the boundary layer equations. So,

you can see, here we can drop this term. We can drop this term from scale analysis we

have shown. And these you can write as ? and anyway all these term will become 0.
X

30,@=o. And in energy equation, similarly you can neglect this term and also this

term ok, because its magnitude is very small compared to the other terms. So, if you can
neglect, then you can write the continuity equation as this. This is the X momentum
equation and this is the energy equation after dropping low magnitude order terms.

(Refer Slide Time: 09:32)

Closure Problem
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-;117"1"" 5 called the turbulent shear stress or the Reynolds stress.
—pepv'T" & called the turbulent heat flux or the Reynalds heat fliex

"
Particie motion toward wall  Farticle mation away from wal

But if you consider flow over flat plate, so if you consider a flow over flat plate of length

L, your u will be the mean velocity which varies from 0 to U, U is the free stream

velocity, and free stream temperature is T., and wall temperature is T,, . So, if you

consider flow over flat plate, obviously, c;—f =0.
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Now, let us discuss about the boundary conditions. So, what are the boundary

conditions? So, obviously, at x =0, you have U =U,, and T = T,,. And y = 0 this is the

wall, so again u =0and v =0, andT =T,,.

And y — oo ; you have free stream velocity and free stream temperature. So, you can see
aty=0,youhave u =0, v=0,T=T,;y—o u=U,, T=T, ,andx—0; u = U,,

T=T

0"

Now, if you see these equations, there are three equations. And how many unknowns are

there? You can seeu', v', then you haveT'. You can see there are three equations, and
we have how many variables unknown variablesu, v,T. And you have two more

termsu'v’, and v'T'. So, you can see these are the five unknowns and we have three

equations.

So, this is known as closure problem of turbulence. So, we need to model these two

terms these u'v'and v primev'T '. So, you can see these term in the momentum equation
is called the turbulent shear stress or the Reynolds stress. And this term in the energy
equation is called the turbulent heat flux or the Reynolds heat flux.

Now, these we need to model with the known parameters. Now, you see in the turbulent
flows in the inside the boundary layer, one particle is here. Now, due to fluctuation it is
forced to move at this position. So, you will have the v'will be negative and it will come
here. So, the particle if you see here it has higher velocity than here. So, your local
velocity is low and this particle will obviously feel low velocity when it will come, but it

is having higher velocity than the local velocity.

So, it will have some fluctuation of plus u', so that means, you can see when this particle
is coming towards the wall, obviously, it is experiencing one velocity fluctuation as plus

u'. So, obviously, the value of this u" will depend on the velocity gradient. So, we can

model this u'v' with the velocity gradient of the time average velocity.

Similarly, if particle motion away from the wall, if it is going from here to here, so you

can see obviously here when it will come, it will experience a higher velocity. So, it will
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have a minus u prime fluctuation, and it will also depend on the velocity gradient. So,

you can see thisu'v', obviously, will give a negative value.

Because when v' is positive your u' is negative, and when v' is negative u' is positive.

So, u'v' is a itself a negative quantity because if one is positive other will be negative.

So, from these analysis, we can say that—u'v' o %u so that means, u'v'behaves like a

shear in the flow. So, this suggestion was first made by Boussinesq, Boussinesq first

proposed this suggestion. So, now you can see that we can actually write u'v' in terms

of the velocity gradient.

(Refer Slide Time: 15:18)

Eddy Viscosity and Eddy Diffusivity

Basad on Boussinesn’s hypothesis, we can model Reynolds stress and Reynalds heat Flux as follows,
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So, based on Boussinesq hypothesis we can model Reynolds stress and Reynolds heat

flux as follows. So, this is your Reynolds stress. So, —pu'v'that we are relating with the

velocity gradient Z—uand pv, . S0, pv,is known as momentum eddy diffusivity, and it is
y

known as eddy viscosity also.

And —pc,u'T', you can model it as,ocpat%. And this pc a,is the thermal eddy

diffusivity or eddy conductivity. So, this is your eddy viscosity commonly known, and

this is commonly known as eddy diffusivity.
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Now, you can see still here v and o; are unknown . So, now, our task is to model these
eddy viscosity and eddy diffusivity. Now, if you put this in the momentum equation and
energy equation, what you will get? So, in the right hand side, now this term you are
replacing with this term.

—ou -éu) 0

So, you can writep(u a—+v—] = —{(,u+pvt)%'l} . S0, you can see we have written
X

) o

in terms of some shear stress. And similarly you can see in the energy equation if we

take this term, then we can write pc, (Ggﬂ_/ﬁ] :i[(k +pcpat)ﬂ} . S0, this also
ox oy) oy oy

represents some heat flux.

So, if you rearrange it. So, after rearranging you can write,

—ou -ou 0
U—+v—-=

ox oy oy

where terms vt and a; are unknown.

au : =0T =T 0 a1
v+v,)— |. And in energy equation, u—+v—:—[ a+a —}
2| T T2 ara)T

So, these now together you can say that this is the apparent shear stress,

T

ﬂ:(v+vt)a—u. And this you can say that it is apparent heat flux it

P oy

G aT o .

|s——=(a+at)5. So, you can see here we have put negative sign, because it
PC,

assigns the correct direction to the heat transfer.

So, now we can see now v; and a; are properties of the flow. You remember not the fluid.
So, this eddy viscosity and eddy diffusivity are properties of flow, because v; depends on
the velocity field and a; depends on the temperature field. Now, the question is that how

to model this v¢ and o4? So, first let us discuss how to model v.
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Prandtl’s Mixing Length Theory
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So, first Boussinesq postulated that v; was constant . If v; is constant, then you can see
near to the wall it will have some constant value, but there your it should be 0 right the

fluctuation velocity fluctuation should be 0.

So, this model will give problem when you go closer to the wall. So, constant v; does not

allow u'v' to approach zero at the wall. So, Prandtl defined the mixing-length L as the

distance the particle travels as the result of a fluctuation.

So, the velocity fluctuation u prime that results can be approximated from a Taylor series
as. So, you can see now this particle is forced to move here. So, as we discussed earlier,
so obviously, it will have negative v velocity and due to that it will have some fluctuation
in u, and that will beu'. And whatever distance it travels, so that is known as mixing
length L.

So, now if you see if you tell that velocity here is Using and it is Uinitiar USING Taylor series,

you can write u

final

~U +dya—u and neglect the higher order terms. So, the difference
initial 8y

ou
initial ~ dY5 .

between Usinai and Uinisiar Will be your velocity fluctuation. So, u'=uy,, —u

- . . . ou
So, this distance now whatever it travelled that we are telling mixing length, sou' ~ IE'
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So, now, for isotropic turbulence, you know that for isotropic turbulence you know

— —\2
thatu'~v'. So, obviously, v'~ Ig—u. So, you can see this minus—u'v' ~u'v' ~ I2 (a_u] .
Yy

. . . -u'vt
So, now if you write v¢, SO you can writev, = P |
u

Y

giving or absolute value is imposed on the derivative to ensure that the eddy diffusivity

au

. So, these modulus we are

remains positive because this is a positive quantity. So, it remains positive.

So, this is the way we can model using Prandtl’s mixing-length theory. It is the simplest
model we can have. And Prandtl propose the following model for the mixing-

lengthl = xy, and « is constant. And it differs for different types of flows. And leading

to Prandtl mixing length model now v;, you can write Prandtl proposed the following

model for the mixing-lengthl = «y .

So, this k value depends on different types of flow. And leading to Prandtl’s mixing-

ou

length model now eddy diffusivity, you can model asv, = x°y® 5‘ So, you can see this

is the simplest model for to determine the eddy diffusivity or eddy viscosity.

So, now, we have found the eddy viscosity v; using the Prandtl’s mixing-length
hypothesis. Inside the boundary layer close to the wall, you can see you can neglect the
fluctuating velocities u'v'. And if you are away from the wall, then the effect of
molecular viscosity can be neglected. So, in based on that, you can differentiate two
different layers inside the boundary layer.
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Universal Turbulent Velocity Profile
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So, you can see if this is the flat plate and you can have one layer very close to the wall
where you can neglect the velocity fluctuations, and you can have the viscous sub layer.
And away from the wall where you can have fully turbulent layer, where you can neglect
the effect of this molecular viscosity. And in between this zone is known as buffer layer

or buffer zone.

So, you can see that we have these equations. This is the continuity equation and this is
the momentum equation. Now, we are assuming that the flow is nearly parallel close to
the wall. So, if close to the wall if we assume nearly parallel, that means, v bar will be 0

ok. And if v = 0, then from the continuity equation, you can say that Z—u ~0.
X

So, now, you can see if this is 0, then in the momentum equation you can see this term is

0and v = 0. So; obviously, inertia terms you can neglect. So, if you neglect the inertia

term, so very near to the wall you can say that%{(v +v, )%u} ~0.

. Tap  Tw ou
So, now we have already defined apparent shear stress as — =% =(v+vt)—. And
P P

obviously, t for steady state flow, t,, will be constant, density of the fluid is constant. So,

this term will be constant.
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So, now, if we define this non-dimensional quantities u™ =— where u, is known as
u

T

friction velocity which is defined as u_= Tw and t, IS the shear stress at the wall.
o

u . -
Andy” =L. So, this term you can see it is related to Reynolds number, because
14

theRe = .t . So, similarly it is known as local Reynolds number.
|4

So, if you define it and this equation whatever we got because this if you integrate then

: u . : . .
you will get(v +v, )8_ = 2w And these if you use these non dimensional quantities, you
Y2

+

dy

)

Now, we are actually dividing the boundary into two near wall regions, a region very

+ y'
can write as(1+ ﬁjg; =1. So, you can see thatu™ = J. , then you will be able
0

v o

to find the velocity.

close to the wall where viscous force dominant, and a region where turbulent fluctuation
dominate. So, you can see away from the surface, it will be fully turbulent zone. And
effect of molecular viscosity, you can neglect and turbulent fluctuation will dominate.
And generally you can see this y* if you take in this way which is your non-dimensional
coordinate.

So, here near to the wall , it is around y* = 7, you can say that it is viscous sub layer.
Then away from 70 if y* > 70, then it is fully turbulent layer. And between 7 and 70, you
will get buffer layer. Now, let us consider the near wall region which is your known as
viscous sub layer. So, in the viscous sub layer, we can neglect the fluctuating

components. So, generally your viscous effect will dominate the flow.
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Viscous Sublayer
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So, in this equation, now you can say that v >> . If v >> v;, then this equation you can

write as 8u+ =1, because L So, you can neglect this term. So, you will get,

oy 1%

So, now if you integrate it as and put the boundary condition as y* = 0, obviously, your
u* = 0. So, if you integrate it, you will get u* = y*. So, it is valid in the viscous sub layer

inthe range of 0 <y*<7.

And you can see it is a linear profile in terms of non-dimensional quantities. So, you can
see here this varies linearly in the viscous sub layer, because if it is u* and this is your
y*, then it varies linearly inside the viscous sub layer. Now, if you go further away from

the wall, then your fluctuations will dominate, fluctuating velocities will dominate.
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Fully Turbulent Layer: Law of the wall
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The constant & is called von Karman's constant, and experimental measurements show that i = 0,-1_1.
The constant of integration £ can be estimated by nating that the viscous sublayer and the Law of the
Wall region appear to intersect atroughly v' = u'~ l(L.H. Using this as @ boundary condition, the
integration constant is found to be C=

Thus, an sapraximation for the Law of the Wall region is ut =244Iny+5 -

So, in that case, you can say that v; >>v. So, if it is so, then you can write that “oss 1,

14

+

So, this equation we can write asﬁ%zl. Now, v we know from the Prandtl’s
1%

+

ou

mixing-layer hypothesis. What is that? v, = x*y?

: . i . u u .
So, now if you use the non dimensional quantities, y* = YU, , andu” Y Then this,
v u,

u’ .
vi=x(y" )2 va—+ . So, this v; value now you put .

N 2
So, Y will be this quantity. So, you can write it as Kz(y+)2 (%J =1. And you can
14

.. ou’ 1
write, — =
oy

T

Ky

. . . . 1 .
Now, if you integrate it, you will getu™ ==Iny" +C . So, this is known as law of the
K

wall. Now, how to find this k« and C? So, this you need to find empirically you need to
find it from the experimental conditions. So, you can see that in this equation you need to

know the value of k as well as the constant C.
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The constant « is called von Karman’s constant and experimental measurements, so that
k = 0.41. And the constant of integration C can be estimated by noting that the viscous

sub layer and the Law of the Wall region appear to intersect at roughly y* = u* ~10.8 .

So, if you put y* = 10.8, then you will be able to find the constant C = 5, so that is an

approximation for the Law of the Wall region is putting the values of k and see you can
getu” =2.44Iny+5. So, now, you can see that these two layers viscous sub layer as well

as fully turbulent layer will intersect through the buffer layer.

(Refer Slide Time: 31:56)

Universal Turbulent Velocity Profile
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So, you can see in this curve u® verses y*. So, here you can see that this is your viscous

sub layer where y* < 7, and here u” = y*. And you have fully turbulent layer, so that is
already we have derived as u® =2.44Iny+5. So, you can see that these two model

meets here in the buffer layer right.

So, in the buffer layer because this is valid in the range of y* > 70. So, in between 7 and
70, we have buffer layer. And in the buffer layer, you can use u” =5Iny* —3.05 in the

range of7 < y* < 70.

So, this is actually connecting your viscous sub layer as well as fully turbulent layer
model. Now, we have discussed about the universal velocity profile. Now, let us discuss
about the universal temperature profile. So, now, we need to find the eddy diffusivity

which is your o.
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Universal Turbulent Temperature Profile
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So, you can see this is the equation we have derived. So, this is youra +¢«,. And

similarly in near wall region, we can have this v = 0 , because nearly flow is parallel

flow is nearly parallel. So, v = 0. And your axial heat conduction you can neglect. And

. = . T
you see the variation of T along x is very small, so a ~0.
X

So, if this is 0 and this is 0, then you can write %{(a +at)%} 0 near to the wall. So,

obviously, you can write in terms of apparent heat flux S G which is your wall

pe, PG,

heat flux, and obviously (a +¢, )% ~constant.

—\ pCc.u
Now, similarly you define y*, andT* :(TW —T)’O—'f’. So, using these non-dimensional
Qw
o . . oT" 1% .
quantities if you put it here, you are going to get — = . S0, you can see here q is
a+ta,

+

<

vay”

unknown . So, T =

a+a,

O ey
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Now, similarly we can have the conduction layer which is very very near to the wall,
where you can neglect the fluctuating components. And away from the wall, you can

have fully turbulent region the fluctuating components will dominate.

(Refer Slide Time: 35:29)
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So, with this you can see the conduction sub layer which is very near to the wall. So, this
is the equation. So, we are telling that molecular effects dominate the heat transfer very

close to the wall. So, fluctuating components you can neglect, that means, here o >> o .

+

So, from here you can see that if o >> a;, then you can write

+_

And what is Lyou know, Prandtl number right? So, Pr= . So, you can write this is
o o

equal to Prandtl number. Now, if you integrate it and put the boundary condition at y* =0
T* = 0 because T is having one quantityT —T,. So, at y = 0, you have T = T. So, T

will become 0.

So, if you integrate it, you will get T" = Pr y*. And let us say that it is valid in the range
of y" <y, where vy, is the dividing point between the conduction layer and outer layer.

So, now let us consider the outer layer. So, in the outer layer, obviously, your it is a fully

turbulent flow and fluctuating components dominate.
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(Refer Slide Time: 37:25)
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So, in this case you can see this is the equation. So, turbulent effects dominate the heat

transfer further away from the wall. So, you can see that e, > o . So, you can see you can

ot v

write

. S0, «a,is unknown. So, now, we will write ¢, in terms of turbulent
a+ta,

Prandtl number. And we will use the Prandtl mixing-length model and we will substitute

this Vt.

So, we can see here turbulent Prandtl number we are defining as general pr=2. So,
(24

V, 14 . v vV V
turbulentPr, =—-. So, you can see here—. You can write as— =——-. So, you can
at at at Vt at

WriteLPrt. So, and this v in non-dimensional form if you write it will be,

2 ou*

+

So, now if you write this equation, or - Pr,. If you take in the left hand side you get,
V,

+
t

20Ut OT"
—— =Pr,.
oy oy

war Pr.. So, now you see, x° (y*)

+_
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Now, from universal velocity profile for the fully turbulent layer, a%: 1+ . S0, we

o Ky
. i TP
will use au+ :L . So, if you put it here, so you are going to get as, aT r‘+ :
Ky Ky
or" _ Pr, . . : :
So, now we have— —. Now, if you integrate it, so you will
oy Ky
YPr
getT" -T° oy T j— . So, you see if we assume Pr, and k as constant, then you
v
Y1

will be able to integrate it.

(Refer Slide Time: 41:00)
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So, let us assume Pr, and « as constants. And you can see we have in the conduction

layerT* =Pry”.So,aty =y, , you can write T" oy = Pry, .
So, if you put all these values and if you integrate keeping Pr, and k constant, then you

—rtlny—+ and itis valid fory” > y;".

will get T" =Pry, +
Y1

So, you can see that your temperature profile depends on this fluid that means for Prandtl

number, and also it depends on Pr, and k. So, Kays et al. assumed this Pr; = 0.85 and « =
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0.41, but found that the thickness of the conduction sub layer vy, varies by fluid. So, if

you have different fluid, this y," varies. So, depending on the value of y,, you can use

these conduction layer model as well as fully turbulent layer model.

Why it reports a correlation that can be used for any fluid with Pr> 0.7, and Pr; =~ 0.9 or

. : P 2
1. So, if you put all these values, you will getT " = T y"+13Pr*—7.
K

So, you can see here in this curve T* versus y*. So, in viscous sub layer region or in
conduction sub layer, you haveT* =Pry"; and in fully turbulent region, you can have

this model.

So, for different Prandtl number, you can see for here 0.7. So, these are the solid line you
can see for different Prandtl number Prandtl number 0.7, 0.3, and what are Prandtl
number 5.9. So, this is the model for fully turbulent layer. And the results of kays et al.
also here it is shown for air as well as water, and this is the Kays et al. model. So;

obviously, you can see with increase of Prandtl number, your value of T* increases.

(Refer Slide Time: 44:03)
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So, you can see in today’s class we have derived these boundary layer equations for
turbulent flows, where v is your kinematic viscosity, v; is your eddy viscosity, and o is

your thermal diffusivity, and o is your eddy diffusivity, and v; is your eddy viscosity.
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So, you can see in viscous sub layer we have derived u* = y* and in fully turbulent layer;

—\ pc.u
u =2 y*+Bwhere y* = A U+=£andur=1fr—w, andT*:(Tw—T)p—ET- And
K v u P qw

in conduction sub layer, we have derived thisT " =Pry"; and in fully turbulent layer, you

Pr i
have, T~ :—‘Iny—++Pryl*.
K Y
In today’s class, we considered a steady state two-dimensional in incompressible fluid
flow equations and for turbulent flows, and we used the scale analysis and we have

written the boundary layer equations for turbulent flow. When we write these boundary
layer equations, we have seen that you have the fluctuating componentsu'_v'; and in

energy equation we haveu'T'. So, these are the unknowns and that we need to model

some way.

So, from the Prandtl mixing-length hypothesis, we have seen that your eddy viscosity v;
you can write in terms of the mixing length. And this mixing length also you can write as

kY, where « is constant for any fluid flow and you need to determine experimentally.

Now, we have seen that to solve these equations, you need to know the eddy viscosity as
well as the eddy diffusivity which are unknown. And these unknowns you need to find
with some assumptions as well as from the experimental conditions. When we
considered the velocity profile, we have taken two different layers; one region is very

near to the wall where you can neglect the effect of the fluctuating components.

And that is known as a viscous sub layer. And one is away from the wall where your
fluctuating components dominate and you can neglect the effect of viscosity or effect of

wall in those region and in between you have you will have the buffer zone.

So, in these two different zones in viscous sub layer and fully turbulent layer, we have
derived the non-dimensional velocity profile u*. And similarly for the energy equation,
we considered two layers one is very near to the wall that is your conduction layer and

away from the wall that is your fully turbulent layer.
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So, in these layers also we have derived the non-dimensional temperature profile T*. And
these velocity profile and temperature profiles are known as universal velocity profile

and universal temperature profile.

Thank you.
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