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Hello everyone. So, today we will study convection in turbulent flow most flows in 

nature and in industrial applications are turbulent. You will find applications in mixing 

of the flows, then in combustion processes as well as in heat exchangers. 

(Refer Slide Time: 01:09) 

 

Generally turbulent flow occurs relatively at high Reynolds number and in turbulent 

flows velocity temperature fluctuate with time. Turbulent flow is a complex physical 

phenomena, turbulent flow is disordered with random and unsteady velocity fluctuations. 

In laminar flows we already had the exact solution of many flows with certain 

assumptions, but in turbulent flows it is very difficult to have the exact solutions. 

So, mostly whatever correlations will write that depends on the experimental values and 

that is why we will write the empirical correlations. You know about the famous 

experiment carried by Reynolds. So, you can see here Reynolds did this experiment say 
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the ink is injected here in a tank and this is the pipe, when it passes through this pipe you 

can see this dye filament is almost straight line. 

You will get this type of flow when you have low velocity, but if you increase the 

velocity here then you can see these dye filament will diffuse in other directions. So, it is 

due to the fluctuation of the velocities at high Reynolds number and it becomes turbulent 

flows.  

So, you will get this kind of structure you know that in pipe flow when Reynolds number 

based on the diameter is < 2300 then it will be laminar, then it will transform to 

transition and turbulent flow.  

If you consider flow over flat plate which already we have done the exact solutions in 

earlier classes in external flows, you have seen that near to the leading edge of the flat 

plate we get laminar flows and we have done the study of this laminar flow. 

But if you increase the length then you will find that it will become a transitionism then 

turbulent. So, you can see here. So, you have a free stream velocity U∞; when it will 

come and flow over this flat plate so; obviously, you know due to the viscous effect there 

will be formation of boundary layer and near to the leading edge you will get laminar 

flows. 

You will see that very streamline flow but after that there will be some disturbances near 

to the wall and it will propagate away from the wall slowly and after if you go ahead and 

you will get a fully turbulent flows and in this case you see if Reynolds number based on 

the length of the flat plate if it is > 5 X 10
5
, then you will get laminar flows. 

So, turbulent flow is very complex and chaotic. So, it is very difficult to define turbulent 

flows. So, most of the researchers they are given the characteristic of the turbulent flows. 
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So, you see turbulence is comprised of irregular chaotic three dimensional fluid motion, 

but containing coherent structures. So, you can see that turbulent flow inherently three 

dimensional and unsteady. 

But with certain assumptions again we may consider as two dimensional flow as well as 

steady flow. When we consider the velocity components or temperature as comprised of 

mean value, time average mean value and the fluctuating components.  

Problems occurs at high Reynolds number where instabilities give way to chaotic motion 

we have already seen in external and internal flows; obviously, it is a high Reynolds 

number flow then the turbulence occur. 

Turbulence is comprised of many scales of eddies which dissipate energy and 

momentum through a series of scale ranges. The largest eddies contain the bulk of the 

kinetic energy and break up by inertial forces, the smallest eddies contain the bulk of the 

vorticity and dissipate by viscosity into heat.  

So, you can see that in general you will have a larger eddy which will contain bulk of the 

kinetic energy and it will be transported by the velocities and during this transport it will 

divide into smaller eddies and it will keep on decreasing the size of the eddies and those 

eddies will contain bulk of the vorticity and then it will actually dissipate into heat by the 
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viscous effect. Turbulent flows are not only dissipative, but also dispersive through the 

advection mechanism. 

So, when we study the turbulence we make two common idealizations one is 

homogeneous turbulence and another is isotropic turbulence. What is homogeneous 

turbulence?  

If the turbulence has the same structure quantitatively in all parts of the flow field then 

the turbulence is said to be homogeneous turbulence and in isotropic turbulence, the 

statistical features have no directional preference, then it is called isotropic turbulence. 

So, when we do the numerical simulation of this turbulent flows, we need to have some 

prediction methods. 

(Refer Slide Time: 07:32) 

 

So, here you can see as we discussed you have a large scale eddies let us say its scale is 

of the order of l. So, it contains bulk kinetic energy due to the inertial effect it will be 

transported and due to the during the transport it will divide into smaller eddies. 

Then again it will become smaller and after that it cannot be smaller than this eddy and 

that time this eddy will contain bulk of the vorticity and these vorticity or this eddy will 

dissipate heat due to the viscous effect and the scale of this eddy is known as 

Kolmogorov scale and η is known as Kolmogorov scale and 3
4Rel

l  . 
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So, you see Re is based on the large scale eddy length and if Reynolds number is very 

high then η which is your Kolmogorov scale will be very low and to actually compute or 

to capture these smaller eddies it is very difficult because you need to have very very 

small grid size to capture the small eddy. 

So, you can see if you solve the Navier stokes equations using direct numerical 

simulation without modelling any of the eddies, then you need to have very fine mesh so, 

that you can capture the smaller eddies in the Kolmogorov scale length scale.  

Now, direct numerical simulation for three dimensional flows and unsteady flows 

obviously, it is very difficult computational time will be huge and generally for industrial 

fluid flow direct numerical simulation is very difficult. 

We can have some smaller scales we can model and rest of the eddies we can compute 

using large eddy simulation. So, we can see in the large eddy simulation up to certain 

eddy size we resolve and rest we model and another simplified way to solve this 

turbulent flow is just using the Reynolds average Navier stokes equation. 

So, whatever velocity and temperature you have you can decompose into two 

components one is time average min component and another is fluctuating component 

and we can solve these governing equations in a average sense. So, here you will model 

only the large scale eddies, but other you need to model it. 

So, in this course we will derive the Reynolds average Navier stokes equations and later 

we learn how to solve for flow over flat plate and the pipe flow. 
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You can see examples of turbulent flows in mixing processes, free shear flows, wall 

bounded flows. So, these are some examples you can see in turbulent jet turbulent wake 

behind a body. 

So, if this circular cylinder is heated then obviously, there will be convection in turbulent 

flow and here obviously, you can see turbulent wake behind smokestack. So, in the 

smokestack you will have high temperature and ambient will be at lower temperature and 

there will be convection and that is your turbulent convection you will get. 

(Refer Slide Time: 11:43) 
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Here you can see the instantaneous velocity profile. So, velocity will vary with time . So, 

these are the velocity profile over a flat plate and if you time average the quantity then 

you will get this dotted line.  

So, you can see this is the time average velocity profile and obviously, you will get a 

smooth curvature of this velocity and here we have compared the velocity profile for 

laminar and turbulent flow. So, this is your laminar flow velocity profile and this is your 

turbulent flow velocity profile. 

So, you can see in turbulent flow near to the wall you have more gradient. So, obviously, 

you can see from this velocity profile now we have discussed that these velocity and 

temperature fluctuate with time and we can decompose into two components one is time 

average mean component and another is your fluctuating component deviating from the 

mean value. 

So, you can see this is some velocity varying with time and we can decompose this 

velocity into two components one is time average mean component. So, we will denote 

with u bar and plus your fluctuating component that is your 'u . So, you can see if we 

take the mean. So, this is your u bar. So, this straight line is u bar and whatever 

fluctuating component you have whatever it is deviating from the mean value. 

So, this is known as steady mean motion because your mean velocity is not varying with 

time, but you can have unsteady mean motion as well. So, here you can see these are 

fluctuating components and if the time period is t 1 of the fluctuation. So, here if you time 

average in this period and you will get that your mean value will also vary with time. 

So, in this case you can see that t2 is the time period of mean velocity variation and t1 is 

the time period for the fluctuating velocity variation and you can see here velocity is also 

varying with mean velocity is varying with time. So, this is your unsteady mean motion. 

So, Reynolds first proposed that we can have this decomposition of this velocity into 

two; one is mean velocity and the fluctuating velocity. 

So, this is known as Reynolds decomposition. So, first we will see that you if you take 

any scalar f and if we decompose into 2, then what are the identities we can have? 
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So, if we consider a scalar property f, then we can have 'f f f   where, f which is 

your time averaged value and 'f  which is your fluctuating component. 

So, you can see this is superposition of this time average and fluctuating components. 

Now if you calculate the mean value; that means, it is if you have a time period τ, then it 

is defined as,
0

1
f fdt




  . So, this way actually you calculate the time average 

component. So, you can see in this case that if you put this 'f f f   then what you 

will get? 

So, now  
0

1
'f f f dt




  then what we can have? So, you can see. So, f  which is 

your average quantity. So, you can bring it outside the integral. So, 
0

1
f dt



 
.So, we 

assume that in that time period f is constant. 

So, you can take it out of the integral and we can have 
0

1
'f dt



 
. So, you can see you can 

write f . So, this 
0

1
f dt



 
will give only f and what does it mean? This actually give the 
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definition of this average quantity; that means, it is 'f . So, you can see this quantity and 

this quantity are same. 

So, you can see 'f =0 ; that means, time average of the fluctuating component is 0. So, 

time average of the fluctuating components is 0. Now, let us consider another scalar 

property 'g g g  . So, if you calculate 'f g what does it mean? 

So,  'f g f g g f g f g    . So, if you take the time average of this quantity left hand 

side then what you will get? So, you will get 'f g f g f g  . So, you can show that this 

quantity will be f g f g . 

So, this is equal to 0. So, you can see 'f g =0 and now if you calculate f g; that means, 

  ' 'fg f f g g   . So, what you will get? ' ' ' 'f g f g f g f g   . Now, you take the 

time average of this quantity. 

So, if you take the time average of this quantity. So, this will 

give ' ' ' 'fg f g f g f g f g    . So, you can see this quantity already we have shown 

that it is 0. 

So, this is 0 and this is 0. So, you will get, ' 'fg f g f g  and if you write f
2
. So, from 

here you can write  
2

2 2'f f f  and 2'f ≠0, the time average of the fluctuating 

component is 0 that we have already shown. 

That means, ' 0f  , but 2'f ≠0 why? Because this is a fluctuating component. So, it is 

the deviation from the mean value. So, it is having the positive value as well as negative 

value so, but 2'f where when you are making. So, it is always positive. So, 2'f ≠0. 
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So, now you can see the general properties of turbulent quantities. So, if we have two 

scalars f and g and we have 'f f f  , 'g g g  . So, you can see f f , ' 0f  that 

we have already shown then    
2 2

f f . 

But 2'f ≠0 and ' 0f f   that we have already shown    
2 22 'f f f  . So, that also we 

have shown now if you take f g f g , f g f g   , ' 'f g ≠0. 

And ' 'fg f g f g  and if you take the derivative s is any special direction, then 

f f

s s

 


 
, 

2

2

'
0

f f

s s

 
 

 
 and

'g'
0

f

s





. 

660



(Refer Slide Time: 22:05) 

 

So, now these properties we can use for the when we will decompose the velocities and 

temperature into mean quantity and the fluctuating component. So, first we will start 

with the Navier stokes equations, we will write the Navier stokes equation in weak 

conservative form. So, you can see if you consider two dimensional steady state 

incompressible flow with constant properties. 

So, in Cartesian coordinate you can write continuity equation as 0
u v w

x y z

  
  

  
, x 

component momentum equation 
     uu uv uwu

t x y z

  
  

   
. So, this is your 

convection terms and you can see we have written in weak conservative form. 

So, if you invoke continuity equation you can put from non-conservative form to this 

weak conservative form and in right hand side you will get 

2 2 2

2 2 2

1 p u u u

x x y z




    
    

    
. So, this is the diffusion term. So, this last term actually 

you can write also
2u . 

So, in the bracket whatever quantities there. So, we can write 
2u because you know, 

2 2 2
2

2 2 2

u u u

x y z

   
    

   
.  
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Similarly y momentum equation you can write in conservative form. So, this you can 

write in conservative form u v w. 

So, this is 
      2 2 2

2 2 2

1vu vv vwv p v v v
u v w

t x y z y x y z




        
        

        
 and this is 

the energy equation in weak conservative form.  

So, right hand side is your diffusion term we have neglected the viscous dissipation and 

α is the thermal diffusivity and obviously, ν is your kinematic viscosity and ρ is the 

density. 

Now, we will use the Reynolds decomposition. So, we will write the velocities u v w and 

temperature t as superposition of mean quantity as well as the fluctuating quantity. 

(Refer Slide Time: 24:36) 

 

So, we can use 'u u u  , 'v v v  , 'w w w   you have pressure. So, 'P P P  and 

temperature 'T T T  . 

So, first let us consider only x momentum equation and we will do the derivation and 

similar way you can do for the y and z momentum equations. 
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So, we have the continuity equation. So, continuity equation is 0
u v w

x y z

  
  

  
. 

So, if you substitute you get, 
     ' ' '

0
u u v v w w

x y z

     
  

  
. So, you can write it 

as 
' ' '

0
u v w u v w

x y z x y z

     
     

     
now you take the time average.  

So, taking the time average we get. So, you can see if you take the time average 

' ' '
0

u v w u v w

x y z x y z

     
     

     
and if you take the time average, then you can write, 

' ' '
0

u v w

x y z

  
  

  
. 

We have already shown that the time average of the fluctuating components are 0. So; 

that means, ' 0u  , ' 0v  , ' 0w  so; that means, these quantities will be 0. So, this will 

be 0, this will be 0 and this will be also 0. So, you can have 0
u v w

x y z

  
  

  
. 

So, you can see the time average velocities satisfy the continuity equation. So, this is the 

continuity equation you need to solve when you are using Reynolds average Navier 

stokes equations.  
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So, here you can see if you invoke these in this equation what you will get. So, let us say 

this is your (a) and this is your (b). So, from equation (a) and equation (b) we can write. 

So, if you put this equal to 0. 

So, first three terms will become 0. So, you will get 
' ' '

0
u v w

x y z

  
  

  
what does it 

mean? It means that the fluctuating component satisfy the continuity equation now let us 

consider x momentum equation. 
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So, let us write the x component momentum equation, 

      21uu uv uwu p
u

t x y z x




   
      

    
. 

So, now you invoke 'u u u  , 'v v v  , 'w w w  , 'P P P  . So, if you put it here. 

So, you will get, 

                 21
' ' ' ' ' ' ' ' 'u u u u u u u u v v u u w w P P u u

t x y z x




    
               

    

So, now, you take the time average of this equation and invoke some properties which 

we have already derived. So, taking the time average of the above equation and putting, 

2
2 2'f f f  . 
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And also you write ' 'fg f g f g  and ' 0f  . So, we will use these properties and we 

will simplify the above equation. So, if you put it. So, you will get this as, 

      
2

2 2 2' 1 1 '
' ' ' ' ' '

u u P P
u u uv u v uw u w u u

t t x y z x x
 

 

      
             

      

 

So, here you can see this will be 0 because time average of the fluctuating components 

will be 0, this will be 0 and this will be 0. 
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So, now you can write this equation as, 

           
2

2 21
' ' ' ' '

u P
u uv uw u u u v u w

t x y z x x y z




        
          

        
. 

So, you can see these are the new unknowns. So, these three terms are not zero because 

we have already shown that your ' 'f g  ≠ 0. 

So, as these are not zero. So, these three unknowns are appearing during the Reynolds 

decomposition due to the fluctuating components of the velocities. So, you can see these 

are known as Reynolds apparent stress later we will discuss in detail Reynolds apparent 

stress from the momentum transfer from the fluctuating components. 

So, now these we can write in nonconservative form. So, you can write, 
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     
2 2 2

2

2 2 2

1
' ' ' ' '

u u u u P u u u
u v w u u v u w

t x y z x x y z x y z




             
             

            

Now, let us consider the energy equation and we will use the Reynolds decomposition in 

similar way whatever we have done for the x momentum equation. 
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So, your energy equation is       2T
uT vT wT T

t x y z


   
    

   
. So, now, you use 

'u u u  , 'v v v  , 'w w w  and 'T T T  . 

So, if you invoke and do the similar way if you take the time average of these quantities. 

So, you can write, 

 
             2

'
' ' ' ' ' ' '

T T
u u T T v v T T w w T T T T

t x y z


    
           

   

 

So, taking the time average and using the properties you can write, 

     
     21

' ' ' ' ' '
uT uT uTT P

T u T v T w T
t x y z x x y z




        
          

        
. 

So, these are again unknown terms. So, you have additional heat flux due to turbulent 

motion. 
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So, now if you carry out the time averaging of y momentum and z momentum equation 

similar way then we can write the Reynolds average Navier stokes equation as. So, this is 

your continuity equation this is the x component momentum equation and these are the 

three additional terms in y component momentum equation these are the three additional 

terms, in z component momentum equation these are the three additional terms.  

So, now, these three equations you can write in tensor form 

as  
2

' '

2

i ji i
i j

j i j j

u uu up
u u

t x x x x
  
   

     
      

. So, you can see this is the additional 

term and energy equation also you can see these are the additional terms. 

667



(Refer Slide Time: 40:31) 

 

So, if you see you can rewrite the momentum equation in tensor form as these where 

jx




we have taken. So,  ' 'i

i j

j

u
u u

x
 





. 

So, these right hand side quantity if we put as the total stress
ij

jx




, then this stress term 

this is known as Reynolds stress or turbulent stress. So, we can 

write  ' '

' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' '

t i j

u u u v u w

u u u v v u v w

u w v w w w

  

 
 

     
 
 
 

. So, this is the Reynolds stress tensor and 

here you can see how many unknowns are there because it is a symmetric tensor. 

So, there are six unknowns there are six unknowns. So, 1, 2, 3, 4, 5 then 6. So, these six 

unknowns now we have to model to find these unknowns. So, we can use Boussinesq 

eddy viscosity approximation where this Reynolds stress is written in this way 

' ' 2

3

ji
i j ij t

j i

uu
u u k

x x
   

 
     

   

where k is the turbulent kinetic energy and 
ij is the 

Kronecker delta. 

Kronecker delta you know that if i = j then its value is 1 otherwise 0 +μt which is your 

turbulent viscosity or eddy viscosity it is known as eddy viscosity it is known as eddy 
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viscosity and in terms of your the gradient of the mean velocity. So, you can write these 

Reynolds stress in terms of the gradient of the mean velocity with a unknown parameter 

eddy viscosity. 

So, you can see now this μt is unknown. So, that you need to model. So, here turbulent 

kinetic energy is given by this expression and if you see the total stress, then total stress 

will be your laminar stress plus the turbulent stress we already know from the 

constitutive relation and this is the additional stress. So, that is your turbulent stress. 

So, this expression if you put it here and rearrange, then you will get in terms of the time 

average velocity gradient and mu t is unknown. 

(Refer Slide Time: 43:28) 

 

So, if you rearrange it. So, you can see  
2

3

ji
ij ij t

j i

uu
p k

x x
    

  
             

. 

So, you can see here only unknown is μt. So, we have expressed the Reynolds stress in 

terms of the gradient of a time average velocity. So, this 
2

3
eff

p p k  you can write as 

and 
eff which is your dynamic viscosity molecular viscosity and this is your turbulent 

viscosity. 
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So, these two together you can write as 
eff . So, if you invoke in the tensor equation. So, 

you will get in this form where 
eff t    and this μt is unknown. So, this μt is to be 

modelled in this regard we will discuss about the turbulence intensity. 

(Refer Slide Time: 44:45) 

 

So, it is a some measure about the turbulence and you can see it is defined as the 

intensity of turbulence in a flow is described by the relative magnitude of the root mean 

square value of the fluctuating components with respect to the time average mean 

velocity. So, if I is the turbulent intensity, then it is root mean square value of this 

fluctuating component. 

So,

      2 2 21
' ' '

3
u v w

I
U

 

 . So, if you have a flow over flat plate then it will 

become u∞ and if you consider isotropic turbulent flow. So, it is not having any 

directional preference. So, ' ' 'u v w  . 

So, you will get this intensity
 

2
'u

I
U

 . So, you can see if this intensity is between 5 

and 20, then you can say that it is a high turbulent case if it is in between 1 and 5, then it 

is medium turbulence case and if it is > 1 then it is low turbulence case and; obviously, 
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you can see for laminar flow these fluctuating components will be 0 then your turbulent 

intensity will be 0.  

So, when you numerically solve this Reynolds average Navier stokes equations then you 

need to give the turbulence intensity at the inlet so, that you can impose some turbulence 

at the entry. 

So, in today’s class we started with the characteristic of the turbulent flows then we have 

discussed about two main characteristic of the turbulent flows one is a homogeneous 

turbulence, another is isotropic turbulence, then we discuss about the Reynolds 

decomposition and we started with the continuity equation and using the Reynolds 

decomposition we have shown that mean velocity satisfy the continuity equation as well 

as the fluctuating components also satisfy the continuity equation.  

When we used the Reynolds decomposition for x momentum equation and taking the 

time average of this equation there are three additional unknowns appear. 

So, these three unknowns are coming from the fluctuating components of the velocity 

and if you have these three momentum equations u, v and w momentum equations then 

obviously, you will get nine additional terms out of which six are unknowns and you can 

write in as a Reynolds stress or the apparent stress. 

We have also cut out the time averaging of the energy equation and using Reynolds 

decomposition we have written the time average energy equation there also we have seen 

there are additional three unknowns.  

Later we use the constitutive relation and the Boussinesq approximation for the Reynolds 

stress and we have written the Reynolds average Navier stokes equation in tensor form in 

terms of the eddy viscosity. So, you can see that here it resembles with the laminar flow 

Navier stokes equations except one additional term in the viscous term. 

So, that is your Reynold stress and from the Reynold stress using this Boussinesq 

approximation and the constitutive relation we have shown that you will get the effective 

viscosity as the as a summation of molecular viscosity and the turbulent or eddy 

viscosity and here you can see only one unknown term is there that is your eddy 

viscosity μt. So, in later classes we will try to find these unknown eddy viscosity. 

Thank you. 

671


