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Module — 11
Turbulent Flow and Heat Transfer
Lecture — 36
Derivation of Reynolds Averaged Navier — Stokes Equations

Hello everyone. So, today we will study convection in turbulent flow most flows in
nature and in industrial applications are turbulent. You will find applications in mixing

of the flows, then in combustion processes as well as in heat exchangers.

(Refer Slide Time: 01:09)

Introduction
# Turbulent flow is 3 complex physical phenomenon.
# Turbulent flow is disordered with random and unsteady velacity fluctuations.

# Still relles on empirical data and rudimentary conceptual drawings.
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Generally turbulent flow occurs relatively at high Reynolds number and in turbulent
flows velocity temperature fluctuate with time. Turbulent flow is a complex physical
phenomena, turbulent flow is disordered with random and unsteady velocity fluctuations.
In laminar flows we already had the exact solution of many flows with certain

assumptions, but in turbulent flows it is very difficult to have the exact solutions.

So, mostly whatever correlations will write that depends on the experimental values and
that is why we will write the empirical correlations. You know about the famous

experiment carried by Reynolds. So, you can see here Reynolds did this experiment say
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the ink is injected here in a tank and this is the pipe, when it passes through this pipe you

can see this dye filament is almost straight line.

You will get this type of flow when you have low velocity, but if you increase the
velocity here then you can see these dye filament will diffuse in other directions. So, it is
due to the fluctuation of the velocities at high Reynolds number and it becomes turbulent

flows.

So, you will get this kind of structure you know that in pipe flow when Reynolds number
based on the diameter is < 2300 then it will be laminar, then it will transform to

transition and turbulent flow.

If you consider flow over flat plate which already we have done the exact solutions in
earlier classes in external flows, you have seen that near to the leading edge of the flat
plate we get laminar flows and we have done the study of this laminar flow.

But if you increase the length then you will find that it will become a transitionism then
turbulent. So, you can see here. So, you have a free stream velocity U,; when it will
come and flow over this flat plate so; obviously, you know due to the viscous effect there
will be formation of boundary layer and near to the leading edge you will get laminar

flows.

You will see that very streamline flow but after that there will be some disturbances near
to the wall and it will propagate away from the wall slowly and after if you go ahead and
you will get a fully turbulent flows and in this case you see if Reynolds number based on

the length of the flat plate if it is > 5 X 10°, then you will get laminar flows.

So, turbulent flow is very complex and chaotic. So, it is very difficult to define turbulent

flows. So, most of the researchers they are given the characteristic of the turbulent flows.
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Characteristics of Turbulent Flows

» Turbulence is comprised of irmegular, chaotic, threa-dimensiona! fluid motion, but containing
coherent structures.,

» Turbulence occurs at high Reynolds numbers, where Instabilities give way to chaotic motion,

» Turbulence is comprised of many scales of eddies, which dissipate energy and momentum
through a series of scale ranges, The largest eddies contain the bulk of the kinetic energy,
and break up by inertial forces, The smallest eddies contain the bulk of the vorticity, and
dissipate by viscosity into heat.

» Turbulent flows are not only dissipative, but also dispersive through the advection
mechanism. ,

Two Common Ideafizations,

Homogeneous Turbulence; A turbulent flow field is homogeneaus if the turbutent fluctuations
have the same structyre everywhere

Isotropic Turbulence; In an isotropic turbulent field, the statistical features of the flow field have
no preference for any particular direction

So, you see turbulence is comprised of irregular chaotic three dimensional fluid motion,
but containing coherent structures. So, you can see that turbulent flow inherently three

dimensional and unsteady.

But with certain assumptions again we may consider as two dimensional flow as well as
steady flow. When we consider the velocity components or temperature as comprised of

mean value, time average mean value and the fluctuating components.

Problems occurs at high Reynolds number where instabilities give way to chaotic motion
we have already seen in external and internal flows; obviously, it is a high Reynolds

number flow then the turbulence occur.

Turbulence is comprised of many scales of eddies which dissipate energy and
momentum through a series of scale ranges. The largest eddies contain the bulk of the
kinetic energy and break up by inertial forces, the smallest eddies contain the bulk of the

vorticity and dissipate by viscosity into heat.

So, you can see that in general you will have a larger eddy which will contain bulk of the
kinetic energy and it will be transported by the velocities and during this transport it will
divide into smaller eddies and it will keep on decreasing the size of the eddies and those

eddies will contain bulk of the vorticity and then it will actually dissipate into heat by the
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viscous effect. Turbulent flows are not only dissipative, but also dispersive through the

advection mechanism.

So, when we study the turbulence we make two common idealizations one is
homogeneous turbulence and another is isotropic turbulence. What is homogeneous

turbulence?

If the turbulence has the same structure quantitatively in all parts of the flow field then
the turbulence is said to be homogeneous turbulence and in isotropic turbulence, the
statistical features have no directional preference, then it is called isotropic turbulence.
So, when we do the numerical simulation of this turbulent flows, we need to have some

prediction methods.

(Refer Slide Time: 07:32)

Prediction Methods by Numerical Technique
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So, here you can see as we discussed you have a large scale eddies let us say its scale is
of the order of I. So, it contains bulk kinetic energy due to the inertial effect it will be

transported and due to the during the transport it will divide into smaller eddies.

Then again it will become smaller and after that it cannot be smaller than this eddy and
that time this eddy will contain bulk of the vorticity and these vorticity or this eddy will

dissipate heat due to the viscous effect and the scale of this eddy is known as

Kolmogorov scale and n is known as Kolmogorov scale and 7 = %?e% .
|
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So, you see Re is based on the large scale eddy length and if Reynolds number is very
high then n which is your Kolmogorov scale will be very low and to actually compute or
to capture these smaller eddies it is very difficult because you need to have very very
small grid size to capture the small eddy.

So, you can see if you solve the Navier stokes equations using direct numerical
simulation without modelling any of the eddies, then you need to have very fine mesh so,

that you can capture the smaller eddies in the Kolmogorov scale length scale.

Now, direct numerical simulation for three dimensional flows and unsteady flows
obviously, it is very difficult computational time will be huge and generally for industrial

fluid flow direct numerical simulation is very difficult.

We can have some smaller scales we can model and rest of the eddies we can compute
using large eddy simulation. So, we can see in the large eddy simulation up to certain
eddy size we resolve and rest we model and another simplified way to solve this

turbulent flow is just using the Reynolds average Navier stokes equation.

So, whatever velocity and temperature you have you can decompose into two
components one is time average min component and another is fluctuating component
and we can solve these governing equations in a average sense. So, here you will model

only the large scale eddies, but other you need to model it.

So, in this course we will derive the Reynolds average Navier stokes equations and later
we learn how to solve for flow over flat plate and the pipe flow.
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Examples of Turbulent Flows
Mixing Processes.

Free Shear Flows »
Wail-Bounded Flows
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You can see examples of turbulent flows in mixing processes, free shear flows, wall

bounded flows. So, these are some examples you can see in turbulent jet turbulent wake

behind a body.

So, if this circular cylinder is heated then obviously, there will be convection in turbulent
flow and here obviously, you can see turbulent wake behind smokestack. So, in the

smokestack you will have high temperature and ambient will be at lower temperature and
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there will be convection and that is your turbulent convection you will get.

(Refer Slide Time: 11:43)

Instantaneous Velocity Profile
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Here you can see the instantaneous velocity profile. So, velocity will vary with time . So,
these are the velocity profile over a flat plate and if you time average the quantity then

you will get this dotted line.

So, you can see this is the time average velocity profile and obviously, you will get a
smooth curvature of this velocity and here we have compared the velocity profile for
laminar and turbulent flow. So, this is your laminar flow velocity profile and this is your

turbulent flow velocity profile.

So, you can see in turbulent flow near to the wall you have more gradient. So, obviously,
you can see from this velocity profile now we have discussed that these velocity and
temperature fluctuate with time and we can decompose into two components one is time
average mean component and another is your fluctuating component deviating from the

mean value.

So, you can see this is some velocity varying with time and we can decompose this
velocity into two components one is time average mean component. So, we will denote
with u bar and plus your fluctuating component that is your u'. So, you can see if we
take the mean. So, this is your u bar. So, this straight line is u bar and whatever

fluctuating component you have whatever it is deviating from the mean value.

So, this is known as steady mean motion because your mean velocity is not varying with
time, but you can have unsteady mean motion as well. So, here you can see these are
fluctuating components and if the time period is t; of the fluctuation. So, here if you time

average in this period and you will get that your mean value will also vary with time.

So, in this case you can see that t; is the time period of mean velocity variation and t; is
the time period for the fluctuating velocity variation and you can see here velocity is also
varying with mean velocity is varying with time. So, this is your unsteady mean motion.
So, Reynolds first proposed that we can have this decomposition of this velocity into

two; one is mean velocity and the fluctuating velocity.

So, this is known as Reynolds decomposition. So, first we will see that you if you take

any scalar f and if we decompose into 2, then what are the identities we can have?
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General Properties of Turbulent Quantities

Each flow property can be presented a5 a mean value plus a suparimposed random fluctuation.
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So, if we consider a scalar property f, then we can have f = f + f' where, f which is

your time averaged value and f ' which is your fluctuating component.

So, you can see this is superposition of this time average and fluctuating components.

Now if you calculate the mean value; that means, it is if you have a time period t, then it

is defined as,?:ljfdt. So, this way actually you calculate the time average
TO

component. So, you can see in this case that if you put this f = f + f ' then what you

will get?

T

So, now ?:lj(?+ f ')dt then what we can have? So, you can see. So, f which is
T 0

your average quantity. So, you can bring it outside the integral. So, YEIdt .So, we
T 0

assume that in that time period f is constant.
: . 17
So, you can take it out of the integral and we can have —j f 'dt. So, you can see you can
4 0

write . So, this ledt will give only f and what does it mean? This actually give the
T 0
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definition of this average quantity; that means, itis f'. So, you can see this quantity and

this quantity are same.

So, you can see f'=0 ; that means, time average of the fluctuating component is 0. So,
time average of the fluctuating components is 0. Now, let us consider another scalar

property g =g+g". So, if you calculate fg'what does it mean?

So, fg' :?(g —5) = fg—fg. So, if you take the time average of this quantity left hand

side then what you will get? So, you will get fg'= fg— fg. So, you can show that this

quantity willbe fg—fg.

So, this is equal to 0. So, you can see ?_g':o and now if you calculate f g; that means,
fg =(?+ f ')(§+g ) So, what you will get? fg+ fg'+ f'g+ f 'g'. Now, you take the

time average of this quantity.

So, if you take the time average of this quantity. So, this will

givef_g =fg+fg '+f_'§+ f'g". So, you can see this quantity already we have shown

that it is O.

So, this is 0 and this is 0. So, you will get, fg=fg+ f 'g'and if you write f2. So, from
here you can write F:(T)2+Fand F#O, the time average of the fluctuating

component is 0 that we have already shown.

That means, f'=0, but F;éo why? Because this is a fluctuating component. So, it is

the deviation from the mean value. So, it is having the positive value as well as negative

value so, but f “where when you are making. So, it is always positive. So, ?;&o_
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General Properties of Turbulent Quantities
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So, now you can see the general properties of turbulent quantities. So, if we have two

scalars f and g and we have f=f+f',g=g+g". So, you cansee f =T, f'=0that

we have already shown then (?)2 = (?)2 .

But f2#0and ff'=0 that we have already shown 2 = (T)2 +(f')". So, that also we

have shown now if you take ?_Ez?a, f+g=f+g, f'g'#0.

And fg=fg+f'g'and if you take the derivative s is any special direction, then

AF T Af 2 ¢ AF 11
ﬂ:ﬂ, af_=6 : =0 and—éf g #0.
oS O0s 05 O0S 0S
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Reynolds Averaging of Conservation Equations
Consider two-dimensional steady state, Incompressible fiow with constarnit properties.
In Cartesinn coordinates (x. ¥, 2) )

Continuity equation: J
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So, now these properties we can use for the when we will decompose the velocities and
temperature into mean quantity and the fluctuating component. So, first we will start
with the Navier stokes equations, we will write the Navier stokes equation in weak
conservative form. So, you can see if you consider two dimensional steady state
incompressible flow with constant properties.

So, in Cartesian coordinate you can write continuity equation as a—+@+@:O, X

ox oy oz

8(uu)+6(uv)+6(uw) |
OX oy oz

convection terms and you can see we have written in weak conservative form.

: u .
component momentum equation %+ So, this is your

So, if you invoke continuity equation you can put from non-conservative form to this

weak conservative form and in  right hand side you will get

_ia_pw(azu o’u  du

> +—+— |. So, this is the diffusion term. So, this last term actually
P OX ox® oy° oz

you can write also V?u .

So, in the bracket whatever quantities there. So, we can write V?u because you know,

2 2 2
V?= 8[;I+8l:+8l21 .
ox® oy° oz
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Similarly y momentum equation you can write in conservative form. So, this you can

write in conservative form u v w.

o(vw 2 2 2
So, this is %+u (W) __1dp [5V ov oV

6(Vu)+va(w)+w = FV| =t —+—
ox oy 0z p oy ox*  oy* oz’

the energy equation in weak conservative form.

j and this is

So, right hand side is your diffusion term we have neglected the viscous dissipation and
a is the thermal diffusivity and obviously, v is your kinematic viscosity and p is the
density.

Now, we will use the Reynolds decomposition. So, we will write the velocities u v w and

temperature t as superposition of mean quantity as well as the fluctuating quantity.

(Refer Slide Time: 24:36)

Reynolds Decomposition
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So, we can use U=U+U"', V=V+V', W=w-+Ww' you have pressure. So, P =P+ P'and

temperature T =T +T".

So, first let us consider only x momentum equation and we will do the derivation and

similar way you can do for the y and z momentum equations.
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Reynolds Averaging of Conservation Equations
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So, we have the continuity equation. So, continuity equation is —+— +6_ =0.
74

: i 8(a+u') 6(\_/+v') 6(v_v+w')
So, if you substitute you get, . + y + p.

ou ov ow au' v ow'

as — +—+—+—+—+——=0now you take the time average.
OX o0y 07 oOx oy oz

=0. So, you can write it

So, taking the time average we get. So, you can see if you take the time average
6_u+@+6_w+a_u+a_v+6ﬂ =0and if you take the time average, then you can write,
OXx oy oL ox oy oz

u' v ow'
—+—+—=0.
ox oy oz

We have already shown that the time average of the fluctuating components are 0. So;

that means, u'=0,v'=0, w'=0s0; that means, these quantities will be 0. So, this will

be 0, this will be 0 and this will be also 0. So, you can have@+@+ ow _ 0.

ox oy oz

So, you can see the time average velocities satisfy the continuity equation. So, this is the

continuity equation you need to solve when you are using Reynolds average Navier
stokes equations.

663



So, here you can see if you invoke these in this equation what you will get. So, let us say
this is your (a) and this is your (b). So, from equation (a) and equation (b) we can write.
So, if you put this equal to 0.

ou' ov' ow'

So, first three terms will become 0. So, you will get — +—+—=0what does it
ox oy oz

mean? It means that the fluctuating component satisfy the continuity equation now let us

consider x momentum equation.

(Refer Slide Time: 28:47)

Reynolds Averaging of Conservation Equations
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So, let us write the X component momentum equation,

a_u+6(uu)+8(uv)+a(uw): 10p
& x oy . pox

+Wa.

So, now you invokeu=u-+u', v=v+Vv', w=w+w',P =P+P". So, if you put it here.

So, you will get,

Or= N Of(= = N (= = N O(= A= N 10
5ﬁu+u)+5;Ku+u)OLHJ»+5§KU+U)@+N)}+52«u+u)ON+W)}=—;5;UD+P)
So, now, you take the time average of this equation and invoke some properties which

we have already derived. So, taking the time average of the above equation and putting,
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And also you write fg=fg+f'g'and f'=0. So, we will use these properties and we

will simplify the above equation. So, if you put it. So, you will get this as,

5_5+5_‘7'+3{(a)2+u_-2}+ﬁ{av+u—'v‘-}+ﬁ{av‘vm7}=_1@_£5_5'+vvza+vvza-
ot ot ox oy oz ox

So, here you can see this will be 0 because time average of the fluctuating components
will be 0, this will be 0 and this will be 0.

(Refer Slide Time: 33:11)

Reynolds Averaging of Conservation Equations
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So, now you can write this equation as,

M2 @) +2 @)+ 2 (ow) = -~ Z i - g(u_'2)+i(u'_v')+g(u'_w') |

ot ox oy oz L OX X oy oz

So, you can see these are the new unknowns. So, these three terms are not zero because

we have already shown that your f'g"' #0.

So, as these are not zero. So, these three unknowns are appearing during the Reynolds
decomposition due to the fluctuating components of the velocities. So, you can see these
are known as Reynolds apparent stress later we will discuss in detail Reynolds apparent

stress from the momentum transfer from the fluctuating components.

So, now these we can write in nonconservative form. So, you can write,
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du -ou -ou —ou 1P (d*u u du) [ o=\ 0=\ O [
— U —+V—AW—=——+V| S+ —+— |- —(u )+—(uv)+—(u w)
ot ox oy oz L OX ox® oy oz OX oy 0z

Now, let us consider the energy equation and we will use the Reynolds decomposition in

similar way whatever we have done for the x momentum equation.

(Refer Slide Time: 36:46)

Reynolds Averaging of Conservation Equations
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So, your energy equation is—+—(uT )+—(VT )+—(WT)=aV°T . So, now, you use

ot ox oy oz

U=u+U', Vv=v+Vv', w=w+w'andT =T +T".

So, if you invoke and do the similar way if you take the time average of these quantities.

So, you can write,

—a(f;')+a_ax{(a+u')(m-)}%{(m)(m-)}%{(V—Hw-)(m-)}:avz(m-)

So, taking the time average and wusing the properties you can write,

if(“T)f(”T)f(“T):_lfwﬁ{ﬁ(u-—r)i(v-—r)&(w-—r)}.
. x oy . pox ox oy oz

So, these are again unknown terms. So, you have additional heat flux due to turbulent

motion.
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Reynolds Averaged Navier-Stokes Equations

Confinuity equation:
du dv OW
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(01’ _37’ _dT 171')' t(ﬂzT T J’T) Au'T) ﬂtv’T'D dw'T’)
Py

atint ﬂyH’waz &_x’_+$"'++ﬁ TR TP Ty P TR

So, now if you carry out the time averaging of y momentum and z momentum equation
similar way then we can write the Reynolds average Navier stokes equation as. So, this is
your continuity equation this is the x component momentum equation and these are the
three additional terms in y component momentum equation these are the three additional

terms, in z component momentum equation these are the three additional terms.

So, now, these three equations you can write in tensor form

au 8uu ap u o (— .. ..
aspl —+—=|= —p—1 uu. ). So, you can see this is the additional
Plat " ox ox ”axz pax('l) y

i i i

term and energy equation also you can see these are the additional terms.
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Reynolds Stress
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So, if you see you can rewrite the momentum equation in tensor form as these where

0 ou. —_
— we have taken. So, u—— pluu. ).
X, 'uéxj '0( ‘)

. . L or;: )
So, these right hand side quantity if we put as the total stress—=, then this stress term

OX j

this is known as Reynolds stress or turbulent stress. So, we can

u'u' u'v' u'w'

writert=—p(ui'u'j)=—p u'v' v'u' v'w'|. So, this is the Reynolds stress tensor and

u'w' viw' ow'w'
here you can see how many unknowns are there because it is a symmetric tensor.

So, there are six unknowns there are six unknowns. So, 1, 2, 3, 4, 5 then 6. So, these six
unknowns now we have to model to find these unknowns. So, we can use Boussinesq

eddy viscosity approximation where this Reynolds stress is written in this way

- _ ou,
—pu.u. :—gpkd- + 4, %+—‘ where K is the turbulent kinetic energy and g is the
X

j OX;

Kronecker delta.

Kronecker delta you know that if i = j then its value is 1 otherwise O +u; which is your

turbulent viscosity or eddy viscosity it is known as eddy viscosity it is known as eddy
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viscosity and in terms of your the gradient of the mean velocity. So, you can write these
Reynolds stress in terms of the gradient of the mean velocity with a unknown parameter

eddy viscosity.

So, you can see now this py is unknown. So, that you need to model. So, here turbulent
Kinetic energy is given by this expression and if you see the total stress, then total stress
will be your laminar stress plus the turbulent stress we already know from the

constitutive relation and this is the additional stress. So, that is your turbulent stress.

So, this expression if you put it here and rearrange, then you will get in terms of the time

average velocity gradient and mu t is unknown.

(Refer Slide Time: 43:28)

Reynolds Stress

o Bl da;  dij
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So, if you rearrange it. So, you can seez; = — p+§pk S +( 4+ 1) > T |
X . )
j i

So, you can see here only unknown is p;. So, we have expressed the Reynolds stress in

. . . .= - 2 .
terms of the gradient of a time average velocity. So, this p = p +§pk you can write as

and s which is your dynamic viscosity molecular viscosity and this is your turbulent

viscosity.

669



So, these two together you can write as z, . So, if you invoke in the tensor equation. So,
you will get in this form where g, = 1+ x4 and this p; is unknown. So, this p is to be

modelled in this regard we will discuss about the turbulence intensity.

(Refer Slide Time: 44:45)

Turbulence Intensity

The intensity of turbulence in a flow Is described by the relative magnitude of the root mean square
value of the fluctuating components with respect to the time averaged mean velocity

e
\jé{(“(<l: + (') + (w))

1= ;
: (1]

For an isotropic turbulent Flow this reduces to
P
JOr

1=1=
o]

High turbulence case, 51 < 20
Medium turbulence case, 1 €1 €5 ~

Low turhulence case [ < |
For laminar flow, | =0 -

So, it is a some measure about the turbulence and you can see it is defined as the
intensity of turbulence in a flow is described by the relative magnitude of the root mean
square value of the fluctuating components with respect to the time average mean
velocity. So, if | is the turbulent intensity, then it is root mean square value of this

fluctuating component.

1 N2 N2 N2
(7 s wy) N
So, | = ‘U‘ . So, if you have a flow over flat plate then it will

become u, and if you consider isotropic turbulent flow. So, it is not having any

directional preference. So, u'=v'=w'.

(v)
Yl

and 20, then you can say that it is a high turbulent case if it is in between 1 and 5, then it

So, you will get this intensity | = . S0, you can see if this intensity is between 5

C

is medium turbulence case and if it is > 1 then it is low turbulence case and; obviously,
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you can see for laminar flow these fluctuating components will be 0 then your turbulent

intensity will be 0.

So, when you numerically solve this Reynolds average Navier stokes equations then you
need to give the turbulence intensity at the inlet so, that you can impose some turbulence

at the entry.

So, in today’s class we started with the characteristic of the turbulent flows then we have
discussed about two main characteristic of the turbulent flows one is a homogeneous
turbulence, another is isotropic turbulence, then we discuss about the Reynolds
decomposition and we started with the continuity equation and using the Reynolds
decomposition we have shown that mean velocity satisfy the continuity equation as well
as the fluctuating components also satisfy the continuity equation.

When we used the Reynolds decomposition for x momentum equation and taking the
time average of this equation there are three additional unknowns appear.

So, these three unknowns are coming from the fluctuating components of the velocity
and if you have these three momentum equations u, v and w momentum equations then
obviously, you will get nine additional terms out of which six are unknowns and you can
write in as a Reynolds stress or the apparent stress.

We have also cut out the time averaging of the energy equation and using Reynolds
decomposition we have written the time average energy equation there also we have seen

there are additional three unknowns.

Later we use the constitutive relation and the Boussinesq approximation for the Reynolds
stress and we have written the Reynolds average Navier stokes equation in tensor form in
terms of the eddy viscosity. So, you can see that here it resembles with the laminar flow

Navier stokes equations except one additional term in the viscous term.

So, that is your Reynold stress and from the Reynold stress using this Boussinesq
approximation and the constitutive relation we have shown that you will get the effective
viscosity as the as a summation of molecular viscosity and the turbulent or eddy
viscosity and here you can see only one unknown term is there that is your eddy

viscosity w. So, in later classes we will try to find these unknown eddy viscosity.

Thank you.
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