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Module - 10
Numerical Solution of Navier-Stokes and Energy Equations
Lecture — 35
Solution of energy equation

Hello everyone. So, in last class we discretized the Navier-Stokes equations using finite
difference method, also we have written the equation for pressure correction from the
continuity equation. Today we will discretize the energy equation using finite difference
method and then we will discuss about the boundary conditions, then we will discuss
about the solution algorithm. As you know that we are using staggered grid and MAC

algorithm to discretize the equations.

So, in staggered grid we solve pressure and temperature in the main cell and the
velocities in staggered way. So, you can see when we will discretize the energy equation
in the main cell the velocities will be available from their main control volume

respectively.
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So, you can see this is the energy equation, this is the temporal term this is the
convection terms and this is the diffusion terms. So, you can see temperature and

pressure is solved in the main control volume.

So, when you will discretize this equation you can see that the velocities are available at
this point because u we have already solved at this point and velocity v we have solved at
this point and similarly for w velocity. If you see at a particular k then in two- dimension
if you look then it will be easier to visualize. So, temperature we need to solve at T; j « at
this main control volume and when you will use central difference you can use
Ti+%,j,k _Ti—lvj,k

AX

So, but the velocities at this point you can see these are available right. So, you do not
need to interpolate the velocities at this point. So, this is your u;j this is your uj+ 1k and
similarly for the temperature these are the neighbours Tis 1,j, « , Ti, j+ 1.k Ti—1jk and Ti j-1x

and also you will find in k direction similarly.
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So, now, let us discuss the terms one by one first, let us consider the temporal term and

we will use forward time central space and explicit method. So, temporal term we can

. - . oT . : -
discretize like this pCpE. So, we are using forward time central space. So, this is

explicit method and we will solve for only T”*k s0; obviously, you know that when we
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are marching in time we are going from previous time n to the current time or present

time at n + 1 and the time step size is At.

n+1 n

So, here you can write pCp%=pCp%. Now, let us consider the diffusion

term, in diffusion term we have the second derivative of temperature. So, we will use

2 2 2
central difference. So, diffusion terms. So, we can have 5,T =K 0 -E + 9 12- 9 12' . S0,
ox® oy° oz
using central difference method if you discretize what you will get?

So, it will be,

Ti+1,j, i i i i

(Ax)° (ay)’ (Az)’

5d-|- _ K( k _2Ti,j,k +Ti—l,j,k +T',j+1,k _T',j,k +Ti,j—l,k +T',j,k+1 _T',j,k +Ti,j,k1].

So, when will you write 6,T at time level n then all these temperature will be at time

level n which is your previous time. Now when you write the convective term so, you

6(uT)+6(vT)+8(WT)}.

can write o.T convective terms. So, J,.T = pCp{ 5 Y 3
X /A
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So, now let us take the term one by one and discretize using weighted upwind difference

scheme. So, already we have discussed in last class in detail about this scheme, we will
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o : : : o(uT)
use to discretize the convective term in the energy equation. Now we havea—. So,
X

simply you can see you can use central difference and discretize using this.

So, here you we are discretizing this term. So, we can write u. So, you can see at this

. o(uT Ui T — YT . .
point we have the value of u. So, (8 ): Mk A MR Now using this
X X

weighted upwind difference scheme you can write this.. So, if you use central difference
then you will get like this, but as you are using weighted upwind difference scheme with

a factor y which varies between 0 and 1 and this is your for upwind.

So, if u > 0 it will return that positive value, if u < 0 then negative of that value then,

i Ui j (Ti,j,k +Ti+1,j,k)+7/|ui,j,k |(Ti,j,k _Ti+1,j,k)
2% _ui—l,j,k (Ti—l,j,k +Ti,j,k)_7|ui—1,j,k |(Ti—1,j,k _Ti,j,k)

So, this is the discretization of this convective term using weighted upwind difference
scheme and you know that if y=0 then it is central difference and if y=1 then upwind

scheme.
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G(WT).

0z

Similarly, now let us discretize the term and

So, you can

Viik (Ti,j,k +Ti,j+1,k)
. o(vT +7|Vi,', | Ti,', _Ti,'+,
ertegzi . ( Jk : 1k) . Similarly you can do the discretization
2Ay _Vi,j—l,k (Ti,j—l,k +Ti,j,k)

_7|Vi,j—1,k |(Ti,j—1,k _Ti,j,k)

Wik (Ti,j,k +Ti,j,k+1)

+ |Wi' |Ti' _Ti' +
oWwr)_ 1 ¥ (M=) , Where y varies between 0 and 1.
oz 2z _Wi,j,k—l(Ti,j,k—l+Ti,j,k)

_7/|VVi,j,k—l|(Ti,j,k—1 _Ti,j,k)
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So, now, we have discretized the each terms. So, now, we can write the discretized form
of the full energy equation temporal term we have discretized like this n + 1 and n then

the convection term o.T .

n+1 n

So, as you are using explicit method. So, it will bepCp%JrﬁcT” =5,T". So,

now, once you discretize all these terms you can put it here and you can find Tif‘jfﬁ
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because this is the unknown all are known from the previous time level n. So, this you

can find easily from this equation.

Now, if you have natural convection or heat generation in the energy equation so that
will come as a source term in the governing equation. Say, if you have a buoyancy term
so that is a source term you can put it in the x momentum equation, y momentum
equation depending on the orientation of your problem. So, that source term you can put

and you can solve the governing equation.

Similarly, in energy equation you if you have heat generation term per unit volume say

q™then you just add here g™. So, that is that will come as a source term. So, | am not

writing those equations, but easily you can put those source terms in these discretized

equations. Now let us discuss about the thermal and flow boundary conditions.

(Refer Slide Time: 15:08)
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So, you can see that in flow boundary conditions say at inlet we have prescribed
velocities or on the solid wall we can have no slip boundary conditions means velocities
will be 0. Outlet condition we can have where we can assume that fully developed

condition and the gradient we can make as 0, symmetry condition also we can have.

And in thermal conditions we can have prescribed temperature or prescribed flux or we
can have convection because from Newton’s law of cooling at the wall your whatever

heat is conducted that will be convected so that will be convection.
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Now, whatever we have discussed for this geometry that i = 1, j = 1 and k = 1 all these
are fictitious boundary cells. So, we are applying the boundary conditions through these
fictitious boundary cells. So, whatever has cells are shown those are boundary cells and
similarly i = i,i;m, j = j,i,m and k = k,i,m these are also boundary cells. So, we will use

these fictitious boundary cells and we will apply the boundary conditions at the wall .

So, actually we have the boundaries here right. So, we have boundaries here. So, we
have to apply the boundary conditions at wall and we will use these fictitious cells as
well as your interior cells. So, we are solving the discretized equation inside this domain
ok, but we need to apply the boundary conditions at the boundary fictitious cells, but at
the boundary we will apply the boundary conditions and we will find the suitable values

at the fictitious cells so that it will satisfy the boundary condition at the wall.

So, here you can see that i is in this direction; that means, that is your x direction, this is
your y direction and this is your z direction for this geometry and if you think that it is a

channel then at inlet where you have i = 1 there we can have a prescribed velocity.

And if you have a wall sidewalls then you can apply no slip boundary conditions, if you
have a symmetry boundary conditions then you can apply symmetry boundary condition
and at the outlet where i = i,i,m you can apply outflow boundary conditions. So, we will
consider few boundary conditions flow boundary conditions and we will discuss or

discretize that equations and we will find the value at the fictitious cells.

Now consider the bottom boundary consider the bottom boundary. So, if it is a bottom
boundary you can see. So, j = 1 and i will vary and k will also vary. So, if you apply no
slip condition, say no slip condition now what is no slip condition because the velocities
will be 0 at the wall or the velocity of the fluid particle sitting on this wall will be the
same will have the same velocity as the wall. So, that is your no slip conditions. So, if

you see that u will be 0 at this particular point.

So, when we apply no slip condition; that means, velocities at the wall will be 0. So,
now, you have u velocity, v velocity and w velocities will be 0 at the wall, but we are
solving the velocities in staggered way. So, we have to find where we are solving the
velocities u, v and w, from this figure you can see that your v velocity v velocity in j

direction.
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So, v velocity we are solving in staggered way right this is your v velocity. So, now, we
can see v velocity is falling at the wall itself. And this is your v velocity in the interior
points because we are solving in staggered way. So, this is your y direction. So, v
velocity so, you can write v;; = 1, k = 0 because v is falling at the boundary itself.

Now if you see w velocity. So, you are solving in z direction. So, this is your z direction.
So, for this you can see that this is your interior point w velocity, this is your u velocity

at the fictitious cell. So, it is not falling at the boundary. So, what would happen?

So, you have to take the average of these velocities such that the velocity at the wall will

o Wiy W i
become 0 so; that means, you can write T =0; that means, you are satisfying

w at bottom wall is 0. So, at this wall you are putting the velocity 0, but you are solving

w in staggered way. So, you are solving in these two points.

So, that is your average velocity you are taking 0. So, thatw,,, =-w;,, . So, if you use

this then essentially you will get w = 0 on the wall. Similarly, you will get for u velocity

U, =—U,, because u velocity you are solving in staggered way. So, it will not fall on

the wall ok. So, you have this boundary condition.

So, now from the boundary condition you can see for no slip condition on the bottom

wall if you have applied then you will get u;,, =—U;,, ,Vi1k=0, W, =-W,, . So, these

you are varying the i and k. So, for i = 2 to ire and k = 2 to kre.

Now, another boundary condition let us take let us consider the left boundary as free slip

boundary condition; that means, shear stress will be 0 on this wall.
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So, for free slip boundary condition on left wall . So, this is your boundary this is your
boundary on the left wall now you are having on the left wall you see k = 1 and j is
varying and i is varying . So, at this wall if you use the free slip boundary condition; that
means, vanishing shear. There will be no shear on this wall. So, normal velocity will be 0
is 0.

So, what is normal velocity at this wall, you see in k direction. So, this is the normal
velocity; that means, w will be 0 on this wall and tangential velocities have no normal

gradient tangential velocities have no normal gradient.
So, you can see for velocity u and v this normal gradient will be 0; that means, you have

ou . . . -
wy = 0 and you have o 0 because that is your normal gradient in z direction, this is
z

your X, this is your y and this is your z direction. So, and you have also % =0.

So, now, if you satisfy these conditions on this wall then you can find the velocities at

the fictitious cells in terms of the interior cells. So, if you do that you will getu, ;, =u, ,.

ou . . . . . U ., —U
So, you can see Ewhat you can do. So, if you discretize it will be"'lA—"'2 =0.
z

So, distance is Az = 0. So, if it is so, now, u; ;, =U; ;,. Similarly, v, ;, =v;;, and wjj; = 0.
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And if it is adiabatic wall so, normal gradient of temperature also will be 0. So,aa—Tz 0.
z

e . oT N .
So, if it is so, then you can write T, ;, =T, because I normal gradient is O adiabatic
g = i, S

wall no heat flux across the wall. So, for this you can see you are varying for i = 2 to ire
and j = 2 to jre and for the bottom wall if you consider that it is a constant wall

temperature.

So, you can see here, you have temperature and this is your temperature. So, for a special
you if you consider that bottom wall you have isothermal wall; that means, Ty = Ty . So,
now, you can see this is your interior point and this is your fictitious point, but you need
to satisfy Tpw = Tp at this point.

Tiax

. . . +T.
So, if you satisfy that then you can write, —** 22X T So, from here you can see
2

T, =2T,—T,,, and this you need to vary i = 2 to ire and k = 2 to kre. So, this is for

constant wall temperature boundary condition if you know the temperature on the wall

To and it is for adiabatic wall where q" at left wall is O or left boundary.

. . .. oT . . .
So, it is symmetric condition also you can see thata—:o. So, this also will be valid.
z

Now similarly for other boundary conditions also you can write say if you have an inlet.
So, velocity inlet so, you can have constant velocity or you can have a parabolic profile.
So, that you can write for this particular domain if at i = 1 you have a inflow condition

then we can write as front boundary.
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So, this is the front boundary so, you have inflow. So, if it is so, far front boundary in
flow you can see itis i =1 and j and k will vary. So, uyjx you can see uyjx will fall at the
boundary itself. So, if it is so, then you can specify the parabolic profile for uyx and if it
is some constant value that also you can specify U, let us say and for v velocity and w

velocity it will be in staggered way.

—W.

So, similarly way you can write v, ;, =-V,; and w, ik

K= and for temperature. So,
temperature if you do so, for temperature you will get Tq let us say at the inflow your
in Tinfinity 1S prescribed Tinsinity O let us say let us say at the inlet you have T, is

prescribed.

So, if it is so, you can write T, ;, =2T, —T,;, and here j will vary j = 2 to jre and k =2 to

Jk
kre ok. So, prescribed temperature you have Tj, at the inlet and you can find the T, it is

at the boundary. So, at the fictitious cell you will have the this temperature

Tl,j,k = 2Tin _Tz,j,k k.
Let us say that at i = iim which is your outlet. So, there you have outflow boundary

condition. So, if you have outflow boundary condition. So, outflow boundary condition
generally we say that normal gradients are 0. So, in general you can write n = 0 and

accordingly you can write and discretize the gradient and write in terms of T jim, jk. SO,
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you can just do as homework and for temperature also the normal gradient will be 0 ok.

So, VT.rA1 = 0 at the outflow boundary condition.

So, now we have the discretized equations for Navier-Stokes equations, we have
pressure correction equations we have pressure correction equation and also we have
discretized energy equation. So, now, let us discuss about the solution algorithm. So, we

have already discretized these Navier-Stokes equations.

(Refer Slide Time: 32:13)
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So, first you initialize the velocities at T = 0 and or previous time level you can find the
values from the solution and first we initialize the values at T =0 then you predict the
provisional velocities, you have seen that in the discretized equation the pressure at n +1
level is not available. So, we have used the previous pressure value previous time level

pressure value and we have found the provisional velocities from these equations.

So, these are the equations taking the pressure value from the time level n ok. So, u tilde,
v tilde and w tilde you find, then update the boundary conditions then you calculate the

pressure equation. So, from this expression already we have derived from the continuity

equation. So, you can see this is the equation. So, Pi:j,k you can find, omega naught is

your overall relaxation factor and; obviously, this is theV,u .
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So, this equation you can use to find P', once you know the P'and the provisional
velocities you can update the velocities and pressure from these equations. So, you can

see u tilde and the pressure corrections are known. So, you can use these equations to

update the velocities and pressure you can update as P™* =P"+P", once you calculate
this then you solve for the temperature because you can see in the temperature velocity is

adequate.

So, these are the velocities at that time level. So, you can use those velocities and solve
this equation to find T" * 1. Then again you update the boundary values then check for
convergence, for the velocities you can check as well as for energy equation also
similarly you can check, then if converged then go to the next time step. So, when you
will go to the next time step you put these n plus 1 values at u n so that you can use these

values.

So, all u v w your and for pressure you are taking from the p n value you are putting
P". So, that it will be your initial in the initial values in the next time step. So, this way
you will continue for the unsteady problem, but if it is a steady problem then repeat 2 to
9 till convergence.

For steady problem you can use a unsteady solver and you can merge in a pseudo tangent
way and till convergence you can repeat 2 to 8 and you can find the converged solution
for velocities and temperature, but if it is an unsteady problem then; obviously, you see
that it will you have to go to the next time step and it depends on you that how much

time you want to march.

If you have mixed convection problem or natural convection problem then; obviously,
you can see temperature and velocities are coupled because when you will solve the
momentum equations you have the temperature there and anyway in that energy equation

you have the velocities so; obviously, you have to solve in a coupled way.

So, that is why you are solving the temperature after just after the velocity solution in
each time step, but if it is only forced convection where both coupling is not there; that
means, in when you solve the momentum equations you do not need the temperature
then you first converged for a steady state problem, first you converge the velocities then
separately you just solve energy equation. So, that is known as segregated method.
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For forced convection problem you can use segregated method because after solution of
the velocities separately you can solve the energy equation, but if it is buoyancy driven
flow means natural or mixed convection then; obviously, you need to solve the energy

equation along with the velocities because these are both way coupled.

So, we have discretized the Navier-Stokes equations and energy equations using finite
difference method and we have used MAC algorithm to solve these equations you can
solve these equations numerically when you cannot have the analytical or exact solutions

of the governing equations.

So, you see that if you consider a channel flow, in channel flow when it is developing
both thermal and hydrodynamic boundary layers are developing then; obviously, it is
very difficult to study analytically, but you can use numerical techniques and find the
velocity distribution as well as you can find the heat transfer parameters like heat transfer

coefficient and Nusselt number easily.

You can find local Nusselt number as well as average Nusselt number in the developing
region and if you have a complicated geometry or where you cannot have a simplified
form of the governing equations then you cannot have the analytical solutions. So, it is

more convenient to use numerical techniques for these kind of problems.

Now, | will show some solutions of heat transfer problems which are solved using CFD
using numerical techniques; however, the results whatever | will be showing we have

used in house solver AnuPravaha which is actually finite volume based solver.
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AnuPravaha: A General Purpose Multiphysics CFD Solver
This project was funded by a grant from the DAE-BRNS, Gowt. of India,

sApplicable to three-dimensional problems and complicated gecmetries
cHybrid unstructured grids

Muiti-block solver

<Provision for writing UDF

cVariable thermaphysical proparties

sMutiphysics |

sFast Linear Solvers

cGraphics User Interface (GUI)

So, you can see AnuPravaha we have this in house solver which is a general purpose
multi physics CFD solver and this project was funded by a grant from the DAE- BRNS,
Government of India and we have these features it is applicable to three- dimensional
problems and complicated geometry we have used unstructured grids, we have multi

block solvers and it is multi physics ok. We can solve different kinds of problem.

So, you can see these are the some results of natural convection and lid driven cavity or
unsteady flow, you can see flow over square cylinder, circular cylinder, mixed

convection over a square cylinder.
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Numerical Methods

o Finite volume method ~

a Collocated grid formulation .

& Momentum interpolation due to Rhie and Chow

a Convective terms with blend of FOU and CD, CUBISTA

> Gradlents are caiculated using Gauss's theorem or léast square
methaod

o Diffusion terms with CD -

o Nen-orthogonality Is taken care using normal and cross diffusion
« SIMPLE like Pressure equation

o Segregated and coupled solver

o Semi-implicit and full-impdicit solver

> Relative/ Absolute convergence criteria

o Gauss-Seidel/ In-house Linear Solver/ Library of Iterative Solvers
(LIS)/

Convective-Diffusive Equation; BIOGStab with ILU precondtioner
Pressure Possson Equation: GMRES with ILU preconditoner

So, we have used actually finite volume method here and collocated grid formulation we

have used and as collocated grid you know that there is a problem of velocity and

pressure decoupling and we have used momentum interpolation, and diffusion terms

with central difference we have discretized.

(Refer Slide Time: 39:41)
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And we have used simple algorithm simple like algorithm. So, you can see these are

some unsteady flows these simulations are carried out using AnuPravaha solver and you

can see the animation. So, flow over a triangular cylinder, this is flow over a triangular
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cylinder with a splitter plate. So, here you can see one splitter plate is there and how the
von Karman vortex streets are formed behind the cylinder and it is seated behind the

cylinder.

So, you can see these are vorticity contours and how it is transporting behind the cylinder
and this is your kind of armoured body problem. So, behind this body it is moving in the
negative x direction so; obviously, you can see the flow physics behind this body and

interacting with the wall.

(Refer Slide Time: 40:27)

Laminar flow through a 90" square bend (3D)
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So, this is your wall. So, you can see this is laminar flow through a 90° square bend. So,
this is your inlet, this is your outlet, you have Reynolds number 790. So, normalized

(r_ro)
(=)

velocities in distance this is your solid line is our result and these square is your

Yeo et. al.
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(Refer Slide Time: 40:55)

Laminar flow through a 90° square bend (3D)
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And if you see the flow physics at 90° plane left side inner wall right side outer wall and

bottom plane is symmetry.

(Refer Slide Time: 41:09)

Unconfined Flow over Square Cylinder

— B

So, you can see how the flow physics is looking. So, this is your present simulation and
this is your Yeo et al simulation. Now you consider the convective flow over a square
cylinder and you know that after a certain Reynolds number it will become unsteady
flow. So, you can see this is Reynolds number 20, this is your symmetry vertices are

formed this is in steady region and for Reynolds number 100 this is an unsteady region.
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Unconfined Flow over Square Cylinder
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And these are some drag coefficients 12 number for the unsteady flows and the Nusselt
number on the cylinder you can see. So, we have calculated for different Reynolds
number 20 and 40 are steady flows and Reynolds number 100, 120 unsteady flows. So,
and these are also compared with some literature. Now, you can see 2-D mixed

convection over a squared cylinder.

(Refer Slide Time: 41:52)

2D Mixed Convection Over Square Cavity

Mﬁm 1 * Three cases are tested with different
Rrichardson numbers (Ri= 1, .15, -1).
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So, we have a mixed convection you have already studied it, for Richardson number 1,
0.15 and -1 these are simulated for Reynolds number 100.
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2D Mixed Convection Over Square Cavity
Isotherms near the cylinder

So, you can see the isotherms near the cylinder. So, Ri = 1, Ri= 0.15, Ri=- 1.
So, Ri=- 1lyou can see it becomes unsteady.

(Refer Slide Time: 42:19)

2D Mixed Convection Over Square Cavity
Streamlines near the cylinder

These are streamlines and from streamline plot you can see for Ri= - 1these vortices are
seated behind the square cylinder.
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2D Mixed Convection Over Square Cavity

Table!l: Comparison of different pazamesers with Sharma et al,
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These are some comparison of drag coefficient with the literature and the Nusselt

number at the square cylinder.

(Refer Slide Time: 42:38)

2D Mixed Convection Over Square Enclosure
* Two cases are tested with different parameters
* Re=1000, Pr=0.1,Ri= 1.0
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Then, we have 2-D mixed convection over a square enclosure. So, you can see this is
your cavity the upper lid is moving in the x direction and temperature is T, and bottom
wall is Ty and these are also maintained at T, sidewalls. So, Reynolds number 1000 and

500 for different Prandtl number, Richardson number these are simulated.
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2D Mixed Convection Over Square Enclosure

Re=1000, Pr=0.1,Ri=1.0.

Seambines Bothenm

And you can see for these non-dimensional numbers, this is the streamlines and this is

the isotherms. So, here the at the sidewalls you have the temperature not T = 0 this is

your adiabatic wall. So, 2—1:0 and this right wall also you have adiabatic wall.

Gl

So,— =
OX

0.

Now, for these boundary conditions you can see the stream lines for this non-
dimensional numbers. So, in the stream lines you can see there are vortices near to the

corners and these are the isotherms and you can see sidewalls are adiabatic. So,
. . . . oT

temperature contour is cutting this walls normally then you will get because e 0. So,
X

you can see from the simulations and top wall is actually 0 and bottom wall is 1. So, we

can see how the isotherms are varying.
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2D Mixed Convection Over Square Enclosure
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And this is the local Nusselt number, on the bottom and top wall. So, you can see red
colour is your bottom wall this is the present simulation from the literature and top wall
is this green colour and this is your from literature, you can see there is a good match for

these non- dimensional numbers.

(Refer Slide Time: 44:26)

2D Mixed Convection Over Square Enclosure
Re=500, Pr=1.0.Ri=4.0 ~
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So, this is for another set of parameters this is a streamlines and this is the isotherms.
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2D Mixed Convection Over Square Enclosure

Comparion of local N soog the ot (hottoes) med cobd {top) walls

And these are the local Nusselt number variation. Then, we have a Rayleigh-Benard

condition in 2-dimensional cavity.

(Refer Slide Time: 44:37)

Rayleigh-Benard convection in a 2-D cavity

-
=
-

1L

7

L1~ :
- 1] —

Botioon well T+1
Topwall T-0
Left asd gt wall adichsse
0 end <0 all s

So, Rayleigh-Benard convection you know that bottom wall is maintained at Ty, , this is

your higher temperature than the top wall temperature and sidewalls are adiabatic.
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Rayleigh-Benard convection in a 2-D cavity

Streamlines

1sotherms

And these are the streamlines and isotherms for different Rayleigh number 10* and 10°.

So, right walls are adiabatic. So, the isotherms are cutting the wall normally.

(Refer Slide Time: 45:07)

Rayleigh-Benard convection in a 2-D cavity
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So, these are some velocities u and v. So, u velocity profile in vertical mid-plane and y

velocity profile in horizontal mid-plane compared with the literature.
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Heat transfer from a cylinder enclosed by a square duct

This is a heat transfer from a cylinder enclosed by a square. So, half of the geometry is
shown here because due to symmetry we have solved only half of the domain and this is
your symmetry plane and top and bottom walls are adiabatic, this cylinder circular
cylinder is maintained at hot temperature T, and sidewall is maintained at temperature
To.

(Refer Slide Time: 45:43)

Heat transfer from a cylinder enclosed by a square duct
For Pr=0.1 (Ra=10" )
Isotherms Streamlines

So, you can see for this setup non dimensional parameters, this is the isotherms and these

are the streamlines.
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Heat transfer from a cylinder enclosed by a square duct
For P=10{Ra=10") «

Isotherms Streamlines

And for Pr = 10 and Ra= 10° these are the isotherms and streamlines.

(Refer Slide Time: 45:58)

Heat transfer from a cylinder enclosed by a square duct
Comparison
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And this is some comparison, local average Nusselt number and at sidewall what is the
maximum Nusselt number and on the cylinder what is the maximum Nusselt number. So,

a is our result and b is from this literature and the percentage difference in the result you
can see for two different Prandtl numbers.
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Heat transfer from a cylinder enclosed by a square duct
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So, this is some local Nusselt number variation along the cold wall for two different
Prandtl numbers and it matches well with the Demirci et al. These differentially heated
cavity so, now, 3-D problem. So, these two walls are differentially heated you can see
thisis your T=1and T = 0 and other 4 walls are adiabatic.

(Refer Slide Time: 46:29)

Heat transfer from a cylinder enclosed by a square duct

3-D Differentially Heated Caviry
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Heat transfer from a cylinder enclosed by a square duct
Isotherms (for cube with 91125 hexahedral cells)

Feotherms s¢ mid phine of the cubical cavity (20.5)

So, for this you can see the isotherms at mid-plane of the cubical cavity at z = 0.5.

(Refer Slide Time: 46:48)

Heat transfer from a cylinder enclosed by a square duct
Temperature profile along x at =0.3 and different y
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And temperature profile along x at z = 0.5 at different y Ra= 10°. So, you can see y =0.1,
0.5, 0.9 how the temperature is varying along x with the and this results are compared
with Fusegi et al.
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Heat transfer from a cylinder enclosed by a square duct
Comparison of Average Nusselt number
(On the isothermal cold wall)
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These are some comparison of average Nusselt number at different Rayleigh number. So,

this is our solution using different types of grid and these are from literature and you can

see there is a good match.

(Refer Slide Time: 47:26)

Conjugate Heat Transfer
n H ] i : o

Also we can solve conjugate heat transfer, what is conjugate heat transfer? In conjugate
heat transfer we solve the heat conduction equation in the solid domain and in the fluid

domain we solve the fluid flow equations and the energy equation. So, like in heat
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exchanger. So, parallel or cross fluid heat exchanger you can see that it will be separated

by solid walls. And in the solid walls we calculate the heat transfer.

So, you can see this is your solid in the middle and this is your fluid domain fluid is
flowing from left to right and this is the fluid two domain where fluid flow is taking
place from right to left and temperature are maintained at T = 300 K on the bottom 800

K at the top and this is the inlet temperature here and this is the inlet temperature here.

So, you can see how the isotherms are varying, in the solid also you can see how the
isotherms are varying. So, here you can see. So, this is your solid and these are the fluid

domains and you can see the temperature along y so how it is varying.

In today’s class first we solved the energy equation using finite difference method, then
we have discussed about the thermal and flow boundary conditions. We have used
fictitious cell method and found the velocities and the temperature at the fictitious cell.
Then we discussed the solution algorithm where you are solving Navier-Stokes equations
as well as the energy equation. Then we have shown some heat transfer results use for

the problems solving from the in house solver AnuPravaha.

So, we have shown for forced convection and mixed convection, results in terms of
isotherms, streamlines as well as local Nusselt number and average Nusselt number. So,
you can use these numerical simulations for the problems where you cannot have the
analytical solutions and if you have a complicated geometry also you can use numerical
technique because you cannot have the analytical solution available.

Thank you.
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