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Module — 10
Numerical Solution of Navier-Stokes and Energy Equations
Lecture — 34
Solution of Navier-Stokes equations

Hello everyone, today we will consider unsteady three dimensional Navier-Stoke
equations for laminar incompressible flows. And we will discretize this equation using
finite difference method. In last class you have learnt how to discretize the first
derivative and second derivative of any variable, we will use a famous technique Marker
and Cell proposed by Harlow and Welch to discretize this Navier-Stoke equations using

finite difference method.
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So, let us consider these equations in Cartesian coordinate. So, for incompressible
Newtonian fluid flow with constant properties, this is the continuity equation. This is the
X component of momentum equation, and this is y component of momentum equation,
and this is the z component of momentum equation, and this is the energy equation. In
today’s class we will just discretize the Navier-Stoke equations and you can see how
many variables are there? u, v, w, p,. And if you solve for energy then will be

temperature.
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So; obviously, you can see we have u, v, w for the Navier-Stoke equations and continuity
equation. So, 4 equations and 4 unknowns u, v, w, and p. So, to find the pressure, there
are no obvious equation we need to derive equation per to determine the pressure from

the continuity equation.

(Refer Slide Time: 02:07)

Solution of Navier-Stokes Equations

# The markes-and-cell IMAC) tachnique was first proposed by Harlow and Welch
(1965) as @ method for solving free-surface problems.

» The staggered grid is used. , z

# The [u, v, W, p) system is known as the “primitive varlable” system

# The differencing scheme for the momentum equations is basically just the
forward-time and centered-space (FTCS) method.

# The pressura in the (u, v, w, p) system should be solved from a Poisson equation

We will use the marker and cell technique first proposed by Harlow and Welch, for
solving free-surface problems. And as we discussed in last class we will use staggered
grid; you know that in staggered grid pressured and temperature will solve at cell center
and velocities will solve in a staggered way, what is the advantage of using staggered

grid? Because we will get a strong coupling between pressure and velocity.

The differencing scheme for the momentum equations is basically just the forward time
and centered space FTCS method. And if you solve the system using u, v, w, p and
temperature, then these system known as primitive variable approach and here we will

solve equation for pressure separately.
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Solution of Navier-Stokes Equations

Representative grid of a three-dimensional domain
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So, you know that first we need to discretize the domain into grids so, that we can solve
the discretized equation in a discrete point. So, if you consider this three-dimensional
domain. And you can see this is divided into grid x direction is in these direction, this is
the y direction, and this is the z direction and the grid we are giving the index with i, j,
and k. So, you can see this is your j = 1 and it is varying in this direction and itisj=jim

and previous cell isj re.

Similarly, k = 1, this is k = 2 the last cell is k i m and here we will apply the boundary
condition at the last cell and previous cell is your k r e. Similarly, in x direction this is the

i=1i=2andthisisthei=ireandthisistheiim.

So, you can see your grid is varying iy toiim, j;tojimandk; to ki m. And boundary
conditions will be appliedati=1andiimandj=1andjim,k=1andkim. And the
discretized equation we will solve in the interior domain; discretized equation will be

solvedandi=2toire,j=2tojre,andk=2tokre.

And you can see that in x direction we have uniform spacing of Ax, and iny direction we
have uniform spacing with Ay, and in z direction we have uniform spacing Az. So, grid
size you can see this is Ax, A y and Az. So, this is the discretization of this domain.
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Now, we are considering unsteady equation. So, we need to march in time so, we will
march from n to n + 1, where n is the previous time, and n + 1 is the current time or

present time.

So, the variables at previous time n are already known from the previous solution and
n+1 we need to determine. So, in MAC algorithm we use explicit method; that means,
there will be only one unknown and all other terms will be known from the previous time
n. When we will go in time marching so, we will go from n to n +1 and your time step

will be At. So, here grid size is Ax, Ay, A z and your time step is At.
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Solution of Navier-Stokes Equations

Three-dimensional staggered grid showing the focations of the discretized variable
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So, now let us see the cell, where we need to discretize the continuity equation as well as
the energy equation. And the staggered grid where we need to solve the velocities. So,
we can see this is the main cell, where at center you will solve for P and this cell is i j k
index is i j k, and we need to solve for temperature, so, tjjx or 6;jk, where 6 is non-

dimensional temperature.

And velocities now you see we will solve in staggered way so, this is the point where we
need to solve for the velocity uijk, and this is the staggered grid, where we need to solve

for velocity vix, and you can see in other direction we need to solve for wi; .
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So, in that direction in inside you will solve for w;;x and this is the grid for w;;x.1. And
now if it is ujjk so; obviously, this will be your ui_1jx and if it is vi;x so, here you will get

Vij-1k- And in the other face the rear side you will solve for w;; and this is the w; 1.

So, we can see when we are solving for u;;k. So, its neighbors are uj.1jx and Ui+ 1« and
for vij this is the vjj.1 and this is vjj1x. And you can see now in this main cell we will

satisfy the continuity equation. And when we satisfy the continuity equation so,

velocities just difference will be just Z— in X direction.
X

So, you can see your continuity equation is@_u+@+8_wz 0. So, this equation we need
ox oy oz
e ou o Ui ik —Uisyjx
to satisfy in this cell, where now a—you can see that it will be — X —— , because that
X X

is the first derivative discretization.

Vi,j,k - Vi,j—l,k

Similar way you see this is
Ay

so, you will getg—v. Similarly, you will can
y

find z_vzv and; obviously, you can see this is the grid size Ax this is your Ay and this is the

Az.

Here you notice that when you have u;jx and this is your u; +1j« and at the center. If you
need to find the uij so, that will be u, , ; and this is unknown. So, this unknown will be
just solved using the average velocity, using the neighbor points ujjx and uj +1jx and

similarly for v and w.

So, we have now discussed about the staggered grid and how the variables are stored in
the grid. Now, let us consider the x momentum equation and discretize term by term

using finite difference method.
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Solution of Navier-Stokes Equations
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So, this is the x component momentum equation. So, first let us discretize temporal term

so, we will use forward time central space and you know that it is explicit method. So,
. . : . _ u
first let us discretize temporal term. So, what is temporal term? This ISpaa—t. So, now we

will use forward time so, this is first order accurate scheme if we use then you will can

n+l

write u'j, —u’; . So, we are discretizing with respect to time. So, that is why we are

n+1 n
ik Uik

At

writing pa—u — e
ot

Next, let us discretize the pressure term so, pressure term if you discretize or pressure

. . op P ik T P ik . . .
gradient term. So, that |sa— = A— . Now, let us consider the viscous term in the
X X

right hand side. So, if you consider that term viscous terms so, this is the viscous term.

So, we can write this will denote as J,u so, when you will write the discretize equation

o’u du
2 + 2 + 2
ox® oy® oz

we will use these notation. So, this iso,u :/J( ] So, you can see this is

the second derivative of u, with respect to x, y and z.
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So, you know the central difference scheme. So, this is the second order accurate so, we
can use the second order central difference approximation for this second derivative. So,

you can write,

Sl = L ui+l,j,k _2ui,j,k +ui—1,j,k i ui,j+l,k _zui,j,k +ui,j—1,k n ui,j,k+1 _Zui,j,k +ui,j,k—1 So

d : )
(Ax)° (Ay)’ (Az)

this is the discretized from of this equation, and when we will use the explicit scheme,

we will write 5,u"; that means, all these terms velocities will be from the n time level.

So, those will be known right.

Now, let us consider the convection terms. So, in the conversation terms you can see you

d(uu) d(uv) and o (uw)
OX oy oz

have

, similarly you have

. So, here 2 velocities are coming. So,

one velocity is convected velocity so, by the velocities u,v,w here u is convected right,
because this is the X momentum equation so, your we are solving for the velocity u, but
velocity u is convected by velocity u in x direction by velocity v in y direction and by

velocity w in the z direction.

(Refer Slide Time: 16:15)

Solution of Navier-Stokes Equations

X — component momentum equation
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So, you can see this term, if you see o so, one is your convected velocity. So, here
X

all these u are convected velocities and another u is just velocities, which actually
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convecting this variable convected velocity. So, if you use central difference then how

you can use for this cell.

So, this is your u k. So, this we will learn how to discretize this equation so, here we will
use some convection schemes, because you have 2 velocities. So, one velocity we will
calculate just at this phase centered, where it will be just average of the neighboring

cells, but other velocity we will calculate using some convective schemes.

So, there are different convective schemes are available like first order accurate; first
order upwind, second order upwind, third order upwind like quick even you have central
difference, which is your second order accurate and you can have the combination of
these within with some weighted function. So, here we will use convective scheme

proposed by Hirt et. al.

(Refer Slide Time: 18:03)
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So, this is the scheme we will use weighted upwind difference scheme, which is known

d(uu
as WUDS due to Hirt et. al. So, you can see we have%. So, what we will see so,
X

this is to be discretized for the wvelocity here 1ijk. So, we will

* *

O ) e YT U i e U ST
ox AX
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So, here you see here at this point we are discretizing this u u term and we are
discretizing so, you can see this is the midpoint between i, j, k and i +1, j k. So, this point

we are considering and this point, which is youri—%, j,k . So, you can see so, the

distance between these two points is Ax , but here we are velocity the velocities we are

writing u,,, ; , and another is stared quantity u*.

So, for the u * quantity we will use some convection scheme and for u;,, ;, we will just

take the average of velocities at i, j, kand i + 1 J, k. So, you can see in this case. So, these

velocities u_, ; , just we will use the average value, at this point taking the value from i,

jkandi+1j k.

. 1 - 1
So, you can writeu,,, ;, = §<“i+1,1,k U, ;) Similarly,u, |, = E(u”'k +U_, ;4 ). So, you
can see it is just average value at this point we have considered.

Now, this convected variable u*, we will use some convection scheme and we are going

to use this weighted upwind difference scheme. So, you can write this equation

2 2
|ik66(uu) :i (ui,j,k +ui+1,j,k) +7|Ui,j,k Uik |(Ui,j,k _ui+1,j,k)_(ui—l,j,k +ui,j,k)

OX 4AX _}/luiilyj'k Uy |(Ui,1,j,k _Ui,j,k)

So, you see this factor gamma it varies between 0 and 1. So, if you put y=0 what you are
going to get. So, if you put y=0 so, this term and this term we will get 0. So, you are
going to get actually central difference, because if you use central difference you will get

this value for this convected variable.

So, if you use that one then it will be 2 and another 2 is there from this value. So, it will

1 . . .
beK . So, this square minus this square so, these values. So, for y=0 . so, 0<y<l.
X
So, if y=0 you will get central difference method, this is your convection scheme. And if

you put y= 1, so, y=1 you will get upwind scheme, first order upwind you will get what

is upwind scheme let us discuss.
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So, if you see this value at i+, j,k you want to find, let us say u . So, now if at this

point if velocity is greater than 0 u > 0, then you consider the value of u. as u;;, and

i+3,j.k

if u <0 then you consideru ; that means, if it is less than 0.

i+3,jk?

So, velocity is coming from right to left. So, you take the value of u at this point as same

as this pointu,,, ;,; so, it will beu,,, ;. So, this is known as upwind. So, we are taking

i+1, j,k

the upwind point from the direction in which the velocities are coming.

So, you can see u > 0 so, U, ;i YOU are taking u, ;  value and if it is u < 0 so, you are

considering this value. So, similarly here if u > 0 these value you consider as these

valueu, , ;. And if it u <0, then you consider u at this pointas u; ;

So, this is known as upwind and if you put y=1 you can see that you will get first order
upwind and if y is small then; obviously, you can see it will be towards central
difference. So, the discretized equation tends to centered in space. Now, similarly you

d(uv) and (uw)

discretize the other convection terms,
oy oz
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(Vi,j,k +Vi+l,j,k)(ui,j,k +ui,j+1,k)+
}/lV-. +V.., . |u4. —Uu. .

So, similarly you can writewzi SR COTR ety . And this

4Ay _(Vi,j—l,k +Vi+1,j—l,k)(ui,j—1,k +ui,j,k)

_7|Vi,j—1,k Vi 1k |(ui,j—1,k _ui,j,k)

is the modulus you know that if these value is > 0 then it will return this value, otherwise

if it is <0, then it will return the negative value.

(Wi,jyk T Wi jx )(ui,j,k +ui,j,k+1)+

.. . 8(UW) 1 7|Wi,j,k + Wik |(ui,j,k _ui,j,k+1)
Similarly, you can write ———~ = —
oz A4Az _(W

ks T W

i+1,j,k—1)(ui,j,k—l + ui,j,k)

_7/|Wi,j,k—1 +Wi+l,j,k—1|(ui,j,k—1 _ui,j,k)

So, you can see that using weighted upwind difference scheme, we have discretized the
convection terms, we can write considering all the convection terms as,

8(uu)+8(uv)+8(uw)].

OX oy 0z

o.u :p[

And all these discretized equation we have already written so, that you can write and if
you write 5,u” ; that means, we will consider u from the previous time level n, and in this

discretized equation you can see whatever velocities are coming you consider from the

known values at previous time level.

So, now we have already discretized the temporal term, convection terms, pressure
gradient term, and the viscous terms. So, if you write down for the x component of

momentum equations, this discretized equation then you can write like.
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Solution of Navier-Stokes Equations
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So, we are using forward time so, it is explicit method. So, this is the temporal term, now

we have convection term, at time level n.

So, we have already  discretized this  term and  we have

n+l n n+l n+l
pui,j,k _ui,j,k LUt =— Pi+1,j,k _Pi,j,k
At ¢ AX

n

+o4u".

Similarly, you can write the discretized equation for y component and z component of

n+l _y\,n n+l _Pn+l
i,j,k i,j i i, j+Lk i,j,k

S sV =
Ay

n

momentum equation. So, we can write, p +5,V".

And for z component of momentum equation you can  write,

n+1 n n+l n+l

W — W L — P
) i,j,k 1,k +5Wn=— i,jk+ i,jk

X +5,W". We need to solve these equations the
At Az

pressure at current time level n +1 unknown, right.

So, you cannot solve this equation unless you know the value of pressure. So, what we
will do we will assume the pressure, some value. So, with this gas pressure field;
obviously, you will get the some provisional velocity. So, let us say that we are taking
the pressure value from the previous time level n and whatever velocity we will get that
is not the correct velocity field, but we will get some predicted or provisional velocity

from the previous time level pressure values.
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So, now consider p at n level n time level and find provisional or predicted velocity. So,

for u momentum equation, if you write then you can write as p and whatever predicted

_un Pn _Pn

T . Ui,jk — U . W -
velocity is there so, we will denote as, pT""k+§cu” = —%
X

n

+o4u".

So, let us say this is equation 1, and this is equation 2. Now, you subtract this equation 2

from equation 1. And you see that youru,v,w if you write for other momentum
equations so, these are provisional velocities .
1 n+1 n n+1 n
Uirj;,k_uiyj,k (Pi+1,j,k_ i+l,j,k)_(Rjk_R,j,k

So, if we subtract you see this, p =— — ) .
At AX

So, finally, if you subtract equation 2 from the equation 1, you will get this expression.
Now, let us tell that your corrected pressure so, the difference between the pressure at
time level n plus 1 and time level n will denote as a pressure correction and this pressure

correction you can denote asP'=P™ —P".

S . o . At
So, at i, j, k if you write then it will be just, u"\ = ui,jx ——( ik~ i,j,k)'

Now, similarly you can write this equation for wvelocity v and w,

~ At /. - o At . .
n+l n+1
Viik =Viik _E(R'H‘k - Pi'j]k). And similarly, w7, = Wi« _E(Pi'j'm - Pi,j,k).

So, you can see that we have found the velocities at time level n +1 at point i, j, k in
terms of the provisional velocity and the pressure correction term. So, you can see these

Uijkx You can write also in other grid point u; 1, jk and Vi1 and w;j 1.

Let us write the continuity equation and satisfy it in the main cell, and from there we will
substitute these velocities and we will find the equation for pressure correction because

that is unknown, right.

So, once we know the pressure correction value, then we can correct the

pressure P =P" + P'. So, we can correct the value of pressure.
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Solutuon of Navier-Stokes Equatlons
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So, now you can see the continuity equation, we will satisfy in this main cell, here . We

will satisfy the continuity equation in this main cell. So, when you will satisfy when you

n+1 n+1
OX AX
. vyt S ow W' —wpt
Similarly, — = 3% 17X “Ang in z direction now — :—"‘ Pkt
Ay oz Az

So, you can see here u velocity we have found at this point; at this point v and in the rear
surface here w and similarly you have u;_ 1 jx and Uis 1, jx here vi j +1x and Vij.1x and

similarly wijx-1. So, now, satisfy this continuity equation at this main cell. So, your

.. . .. ou ov ow
continuity equation is—+—+—=0.
OX OX o0z
- u_n-f—l _u_r1+1_ V_m_—l _V_m_-i Wn'f'l Wn+l
So, now, you write as, —:bik bk itk CBRk LIk g
AX Ay Az

So, the value of u, v, w at n + 1, we have found from this relation you can see. So, the

value of u, v, w at n + 1 you can write in terms of provisional velocity and the pressure

n+l

correction. And similarly you can write foru;;,, just you put here ui.; and here,

similarly you just change the pressure.
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n+1 n+1

Similarly, v;';”,, you can find. Andw'/, ;. Similarly, you can write similar expression

n+l

and if you; and if you substitute it here, u; j x andu;’;; , , you are going to get.

So, in terms  of  provisional  velocity now we are  writing

un+1 un+1 \7n+l \7n+l Wn+l Wn+l

i,j,k —Ui-1j,k i,j,k — Vi, j-1k i,j,k — Wi jk-1 - .

L L 21X~ and you will have the pressure correction
AX Ay Az

terms ok.

ﬁ«ﬂ;m,k - Pi:j,k)_(Pi:i’k a Pi"l""k)}

So, that will be —2t =
Pl (&)

gy (=) (PRl

(Pi:j+1,k - Puk)_(Pqu - Pi:j—l,k)} :

So, you can see the first three terms, this term this term and this term this is actually the
continuity equation for the velocity for the provisional velocity, but; obviously, when
you are starting the solution provisional velocity will not satisfy the continuity equation.

. . . n+l . ~n+l
But when the solution will converge then u™*will be your u , v"will be v and

w" will be WM, because the provisional velocities will be same as the velocities at time
level n +1 so, it will satisfy the continuity equation. So, you can write these three terms

as a divergence form so, if you rewrite it.
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(Refer Slide Time: 47:51)

Solution of Navier-Stokes Equations
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And you can write after

rearranging

V.l]—g Pi;-l,j,k_zpi:j,k_'_Pil—l,j,k+Pi:j+lk 2P1k+P|11k+Pi:j,k+l 2ij+P|Jk1 _0.

p (ax) (Ai)z (az)

So, now in right hand side it will be 0 so, you can see here we will assume that pressure
correction in the neighboring cells are 0. So, in MAC algorithm, it is assumed that the
pressure correction in the neighboring cells are 0. So, under this approximation, so, you
can see so, all these terms you can make it 0. So, this term is 0, this term because
neighboring cell pressure correction we are just taking 0 for simple calculation and that
is your MAC algorithm.

So, if you put O then you can write the equation for pressure. So,

TR B P

pL(&X)° (ay) (a2 |
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So, you can see now this is the equation for pressure. So, you will get the pressure value

from this equation so, you can WritePi:j‘k. So, you can find it

so,P,lk Vu .
2At| 1 1 1

2+ 2+ 2

P((AX) (4y) (AZ)J

So, you can see that we have already discretize the equations for the momentum and

substituting those in the continuity equation in the main cell, we have found the equation
for pressure using MAC algorithm; so, in the MAC algorithm we are neglecting or
assuming the neighboring cell value of the pressure correction as 0 and following that
you can write the equation for pressure as this.

So, once you find p prime then; obviously, you can correct it. So, you can

correct "', =P" +P., . So, this if you solve then; obviously, you will be able to find.

(Refer Slide Time: 53:49)

Solution of Navier-Stokes Equations
u'\:;‘ = "J,Lv. :t‘x ( ""L" '\Z;{,")
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The values for the velocity u,”jlk , once you know the pressure correction value then you

. . . . At [ . .

can find from the provisional velocity u,”Jlk =Ui,jk ——(F’M,j,k - Pi,j'k)then
n+1 5 At ' n+1 At ' '

Viijk =Viik _E(Pi,jﬂ,k - P. )andwl ik = Wi jk _E(Pi,j,kﬂ_ F)I]k)
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So, once you know the pressure correction values and from the known provisional

velocities, you will be able to calculate the velocities at n + 1 level in the pressure

equation to accelerate the calculation P, ; x Some over relaxation factor is used.

o, (V.G)

i,jk

So, you can write Pi:j,k =— . S0, here this a@,is known as

ZAt[ 111 }
P (Ay) (A2)

over relaxation factor.

So, to accelerate the calculation, over relaxation factor may be used and «,value

generally of the; obviously, it will be > 1. So, you can write of the order of 1.5 or 1.6 in

that range.

So, in today’s class we have used finite difference method to discretize the Navier-Stoke
equations using a MAC algorithm, we have actually used staggered grid to discretize
these unsteady Navier-Stoke equations. We have used finite difference method and
written the difference equation for first derivative and second derivative using Taylor

series expansion.

And we have used forward time and central space which is your explicit method after
discretizing the each terms temporal term, pressure gradient term, viscous term and the
convection term, we have written the governing equations, but pressure at n +1 level is
unknown so, we have assume the pressure from the previous time level and we have

solved for the provisional velocities first.

Then once you know the provisional velocities then you substitute it in the continuity
equation in the main cell. Once you substitute it you can get the pressure Poisson
equation, but if you neglect the pressure correction of neighboring cells. Then you will

get the equation for pressure.

Once you can find the equation for pressure correction, then you can find the pressure at
n + 1 time level after correcting the values from the previous time level p value and you
can find the velocities at n + 1 time level from the provisional velocities, and the pressure

correction terms. Sometime, this pressure correction equation you can use the over

618



relaxation factor to accelerate the solution and these over relaxation factor generally or

commonly, it is used as 1.5 to 1.8.

Thank you.
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