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Module - 02
Preliminary Concepts
Lecture - 03
Derivation of energy equation

Hello everyone. So, you know that there are three conservation laws; conservation of
mass, conservation of momentum and conservation of energy, all these three
conservation laws must be satisfied at a point in a moving fluid. So, today we will derive
the equation for conservation of energy which is known as energy, equation starting from

the Reynolds Transport Theorem.

Already you have learnt Reynolds transport theorem in fluid mechanics course. So, we
will use Reynolds transport theorem and we will conserve the energy and we will derive

the energy equation.
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So, what is Reynolds transport theorem? Reynolds transport theorem states that the rate

of change of an extensive property N for the system is equal to the time rate of change of
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N within the control volume and the net rate of flux of the property N through the control

.. DN 0 — "
surface. So, you can see we can write ﬁlsys = v pndV + J'CV pn(V,.n)dA

So, you consider any arbitrary control volume, where this is the control surface and if
you consider one elemental volume that we are denoting with dV and elemental surface
is dA. So, you can see that this N is your extensive property, here we will consider this
N= E which is your energy.

In this case we will consider total energy as summation of internal energy and kinetic
energy, we will not consider the potential energy here we will consider this potential
energy in the source term separately and all other energy we have neglected.

And this n= e which is your energy per unit mass. So, you can write energy per unit mass
=internal energy + Kinetic energy . So, now, you can see in this case N = E which is your

total energy summation of internal energy plus kinetic energy and n is your energy per

2
unit mass which is e=i+u?i and; obviously, rho is the density of the fluid and V. is

relative velocity and n is outward surface normal. So, n if you consider here so, always it
is outward normal.

So, now, we will assume stationary and non-deforming control volume, in that scenario
you can write the relative velocity as V. So, \7r =V and as your volume is not changing.
So, this time derivative you can take inside this integral of this control volume as you are

assuming non - deforming and stationary control volume.

So, g.[ pndV = | Aoy o, in this particular case it will be justa(pe) dV . So,
8": Ccv Ccv a‘t a‘t

this is the term we have we can write like this.
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So, now if you put the total energy and energy per unit mass in the Reynolds transport
equation then you will get this equation. So, ELyS —J.CV a(pe) dv +J pe(V. n)dA

where n is the outward surface normal.

Now, what we will do? We will change this surface integral to volume integral using
Gauss divergence theorem. So, what is Gauss divergence theorem? You can see if you

have ajcs F.ndA= J'CV VFdV . So, n is your surface normal you need surface normal.

So, you can write divergence form when you write in the integral inside the integral. So,
you can see now if you put it here. So, these term if you use Gauss divergence theorem

you can write Vpe\7dv. So, using Gauss divergence theorem this surface integral we

have converted to volume integral.

So, now we will do some numerical algebra. So, you can see just you simplify it. So, you

o(pe)
ot

can see you can write, +VpeV . So, this derivative you just write as

p%+ ei—/t)and this divergence you write eV(oV)+ pV.Ve. So, after writing this if you
rearrange then this term and this term you write together. So, what you can write,

p(% +V.Ve) and this term now you write together. So, e(aa—’f+V(p\7)) .

So, now, what it is you can see if you use this Reynolds transport equation and conserve

the mass then you will get the continuity equation and this is your aa—'f[)+V(p\7) =0. So,

this is the continuity equation in general, it is applicable for compressible flow as well as
incompressible flow. So, if you write this continuity equation. So, it is 0. So, this term

will become 0.

So, you can write this as p(%+\7.Ve)dV and in tensorial form if you write. So,

= . oe . . . . . .
V.Veyou can writeu; x So, this term in tensorial form we have written like this or

X;

. . De De . . —
this term together you can write as ICV Edv . So, Dt is material derivative.
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So, which contains the temporal term as well as the convection term and in our study we
are now considering only the Cartesian coordinate and you can see this is your X
direction where velocity is u and y direction velocity v and z direction velocity w and
when we will write the in tensorial form. So, you can write that u; X; is equivalent to u X,
similarly y is equivalent to x, and v is equivalent to u, and similarly ug is equivalent to w

and xs is equivalent to z.

So, now right hand side we have written in this form where left hand side still we need to

determine. So, whatever the energy acting on the system that we need to consider.

(Refer Slide Time: 08:17)
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Now we will use first law of thermodynamics, the change in energy of a system AE is
equal to the difference between the heat added to the system Q and the work done by the

system W. So, from the first law of thermodynamics you can write that AE =Q —W . So,

that you have already studied in thermodynamics. So, now, if you write in a rate of
. . . DE : -
change sense then you can write this equation as ELYS =Qq—Wss. So, now let us

discuss about the sign convention. So, in heat transfer now we will consider that rate of
heat transfer to the system is positive and rate of work done by the system is positive. So,
you can see this is the control volume, in the control volume if your rate of heat transfer
is to the system then we will consider as positive and rate of work done is by the system

then we will consider as positive.
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So, with this sense just will proceed the derivation and in the limit At —0, this system

and volume will coincide. So, whatever we have written that

%Lys = QSyS—Wsys = Q. —Wev . So, now you can see finally, if you put this %Lys this
S . : oe oe : -
expression in this equation then you can wrltej p(—+Uu;—)dV =Q, —Wecv. Now
v ot OX;
we need to derive the expression for this rate of heat transfer and rate of work done.

(Refer Slide Time: 10:51)
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So, first let us consider rate of heat transfer to the system and we will derive the

expression for ch . S0, you can see there are two types of heating; one is volumetric

heating and another is surface heating. So, you can see that if there is a volumetric heat
generation then it is a volumetric phenomena and that you consider the rate of internal

heat generation per unit volume.

So, if you consider this as a control volume and this is the control surface, in the control
volume if you consider one elemental volume dV then this rate of internal heat

generation is taking place in this elemental volume dV.

So, if Q™dV then you will get the rate of heat transfer inside this elemental volume and

if you integrate over the whole volume then you will get the total rate of heat transfer due
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to heat generation. So, you can see. So, rate of heat transfer due to internal heat

generation we can write J.CV Q"dv.

Now, there will be surface heating and surface heating will take place due to heat
conduction. So, you can see if you consider one elemental area dA on the surface. So, dA

and this is your normal unit normal n and your heat conduction is taking place in

outward direction. So, it is heat flux$ :

So, this g is the rate of thermal energy flow per unit area on a surface and it is heat flux

out of the surface. Now you see this heat flux is the surface phenomena and it is going
out of the surface, but we have considered that heat transfer to the system is positive so,

but here your heat flux is going out of the surface. So, there will be a negative sign.

So, if you see rate of heat transfer due to heat flux. So, this g is acting on this surface.
So, in the normal direction if you take then E.ndA. So, it is acting on this surface dA,

now if we integrate over the whole surface then you will get LS a ndA.
Now you use Gauss divergence theorem to convert this surface integral to volume

integral. So, you can write this _[CV VEdV and this if you write in tensorial form then you

. . 0 . .
can write this V Q you can wrltea—q‘, but this is negative, because Q dot cv we have
X

J
taken if it is heat transfer is taking place to the system then it is positive, but it is going

out.

So, when we will calculate Q&V so, we will write this rate of heat transfer due to internal

heat generation and minus because it is going out of the surface. So, this is the minus rate

oq.

of heat transfer due to heat flux. So, together you can write LV (Q"- a—q‘)dv .
X .
J

So, now, let us consider rate of work done. So, rate of work done is W.cv and there are

two types of forces acting on this fluid element. So, what are the forces, one is your body
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force which is your volumetric phenomena and you have surface force ok. So, that is

your surface phenomena.

(Refer Slide Time: 14:55)
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So, you can see the body force per unit volume we are writing as V and the surface force
what is acting on this elemental surface dA that we will denote with the traction vector.

So, this is denoted as T " the traction vector acting on the phase normal and it is force per

unit area on a surface.

So, these are the forces acting on the volume as well as in the surface we need to
calculate the work done right. So, work done is the dot product of this force and the
velocity. So, rate of work done is the dot product of force and velocity. So, you can see

rate of work done by the body force you can write.

So, V is the body force and you take the dot product of the velocity and if you consider

this elemental volume dV. So, the rate of work done by the body force in this elemental

volume is bVdV and if you integrate over the control volume then you can get the total

rate of work done by the body force.

And this you can write in tensorial form as b; u; and rate of work done by the surface

force. So, this is your normal direction to the elemental surface dA and this is the traction
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vector acting on this normal. So, you can see that rate of work done by the surface force

you can write J'CS'F "VdAand this in tensorial form also you can write LS T."u.dA.

So, now this traction vector we will relate with the stress tensor and we will use

Cauchy’s law. So, Cauchy’s law states that there exists a Cauchy stress tensor tau which

A

maps the normal to the surface to the T acting on the surface according to thisT =7.n,

n is the unit normal outward of the surface and tensorial form you can write

T." =z;n; and Cauchy stress tensor is symmetric. So, you can write z; =z and now this

integral now you consider. So, this fnyou substitute this expression.

Then you can write (?.\T).rA\dA, now this surface integral you convert to the volume

integral using Gauss divergence theorem and you write V.(?.\7)dv and in tensorial form

a(Tijui)
OX

i

we can write V.(zV)as because this 7V you can write r,u;and this a there is a

a(Tijui)

OX i

divergence. So, that if you write then you can write . So, this is the volume

integral we have converted you have a rate of work done by the body force and you have
rate of work done by the surface force, if you add together then you will get the work
done by the force.

So, you can see in thermodynamics we have calculated this work done by the body force
and work done by the surface force, but when we considered the sign convention in
today’s class that work done by the system is positive, but here whatever we have
derived these are work done by the force so; that means, there is a change in sign

convention.

So, work done by the system we have considered as positive, but here we have calculated

work done by the force so; obviously, work done by the system if we consider then there

will be a negative sign. So, we have written —W(':\, because this is the sign convention we
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have taken, because chv work done by the system is positive, but whatever we have

considered those are rate of work done by the force.

So, now, if you see. So, if there is a negative sign. So, actually you should write W.cv §

equal to negative of this, but as simplification we are

writing—W,,, = I bu,dV +I il ')dV .[ (bu; +7; Zl+u —)dV So, this is your
X
J

J J
W, .
(Refer Slide Time: 20:11)
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We are interested in thermal energy in beat transfer o get conzenation of thermal energy, we need to subtract
kinetic ensrgy |mechanica enecgy| from the sbove equation.

So, you can see we had this expression, now you substitute this ch expression in
~W,, expression here then you can get. So, left hand side will be as it is in the right

hand side this is the Q, and this is the -W.,, .

So, we can see both side you have volume integral. So, this is also volume integral this is

also volume integral. So, for any arbitrary control volume so, you can write as
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oe 'i ou. or;: .
p(=+u —)=Q ——L+bu +7, —-+u —=. Let us substitute the total energy at
ot i j OX; OX;
u?
summation of internal energy plus Kinetic energy ok. So, that ise =i+ ?' :

So, if you put it in this expression. So, what you will get, you can see

i o o5 o) | | -
p(—+u;—)+p( +U; ) and write tensor terms will be as it is. Now you
ot oX. ot X,

see in heat transfer we are interested in your internal energy, but we are having in this
expression internal energy plus mechanical energy; that means, your Kinetic energy.

So, now we have to subtract somehow this kinetic energy. So, that we can get the
equation for conservation of thermal energy; that means, only internal energy will be
present. So, to do that, now we will consider the Navier’s equation.

So, from the Navier’s equation if you multiply with the velocity u ; then you can write
the equation for kinetic energy and once we get the equation for kinetic energy and if
you subtract that equation from this equation then you will get the equation for
conservation of thermal energy.

(Refer Slide Time: 22:34)
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So, this is the equation we have derived now Navier’s equation, you can see in general
. . ot

we can write like this ,1)(%+uj %) =b +—, where b; is the body force term and
ot OX. OX;

7; s your stress tensor and this is temporal term and this is your convective term.
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So, we have considered Navier equation. So, it is valid in general for compressible and
incompressible fluid Newtonian and non - Newtonian fluid flow. So, multiply both sides

with u; and convert the above equation to equation of mechanical energy. So, if you

2
o “/
multiply u; here and if you take in the inside these derivative then you can write %

OX;

and here also u; if you take inside these derivative then you can write u, and

or;
here bu, +u, —* .
i
So, now, subtract these equation from this equation. So, what you will get now you are

subtracting the kinetic energy from this equation so that you can get the equation for

internal or thermal energy. So, you can see if you subtract.

So, this term and this term will get cancel b; u; will get cancel. So, you can see you can

- - i a )
write p(@+uj ﬂ) =Q —i+rij %. So, this term also will get cancel with this. So,
ot OX, OX, OX.

]

. ou, . . o . o
we will have only +z; a—' . So, this term if you write in terms of material derivative then
X .
]

—

VA%

you can write pzithis is the left hand side and right hand side will be same as this

Xk
equation.

So, now you can see the left hand side you have time rate of change of total internal
energy right and in the right hand side the first term Q" . So, this is your volumetric heat

generation, the second term it is due to surface heat transfer and the third term you can
see the conversion of kinetic energy into internal energy by work done against the

viscous stresses.

Thus so, in the fluid flow will occur and there will be friction between the two fluid
layers and that friction will be converted to thermal energy. And due to stresses that you
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see there will be a generation of internal energy and that is the conversion of kinetic

S . ou,
energy into internal energy. Now you can see this is the term we need to expand z; a—'
X .
J

So, now, first let us see the constitutive equation.

(Refer Slide Time: 25:41)
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The constitutive equation gives the expression for the Cauchy’s stress tensor. So, you
will get the expression for ;. So, before that now let us assume that we have Newtonian
fluid and Stokesian fluid. So, now, we are assuming that we have the fluid flow for
Newtonian and Stokesian fluid. What is Newtonian fluid? The relationship between the

stress and the rate of strain is linear and Stokesian fluid the fluid is homogenous and

isotropic.

What is homogenous? The relationship between stress and rate of strain is the same
everywhere and isotropic means it does not have any preferred direction. So, assuming

this Newtonian fluid and Stokesian fluid we can write z;as —pg;, where p is your

thermodynamic pressure, &;is your Kronecker delta where &;=1, when i = j and g; is

=0 wheni #]j.
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. Ou.
And + 16; QM , Where A is your second coefficient of viscosity +,u(%+—'). So, you
OX, oX; 0%

can see we have written this z;in terms of thermodynamic pressure and the velocity

gradient and where g is your dynamic viscosity.

: o, . -
So, now we need to determine the term gz G—'rlght. So, this is the term we want to
X .
J

derive. So rij%. So, you multiply %with these terms. So, what you will get,
i i

+ A48 %% + with this term you multiply%. This you can see that if you

X; OX, i

ou.
—ps. —L
POy X,

operate these g, on ujthen you will get u;.

. ou, I .
So, ¢, ui you will get uj. So, here now ¢; a—' So, this is the term this is the same term
X .
]

. 0(o;u.
we want to write 5a,- % = M

OX i OX i

. So, | have taken this & here. So, you can see &; u; if

. L ou; . : . ou
you operate this g; on u; it will get u;. So, a—‘and it is equivalent to write 6_k
X. X.

] ]

because

both are same j. So, this j we have replaced with k. So, Zﬁ
Xk

So, you can see this term will become —pziand this term will become (%)2. So, it

Xk k

will be A(%)z,now we will use Stoke’s hypothesis. So, in Stoke’s hypothesis we can
Xk

write the second coefficient of viscosity in terms of the dynamic viscosity as -3 . SO,

if you put it here.

So, it will be _Eﬂ(%)z_ So, now, if you expand O what it is, % So, now, k u
3 " X, X,
vary 1 2 3. So, it will be %+%+%. So, now, u; is equivalent to u. So, you can
OX, OX, OX,

writeg—i , X1 1S equivalent to x similarly +?+éﬂ at which is nothing, but VV.
y 0oz
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So, what is VV? VVis the volumetric change of the fluid element right, for
incompressible fluid VV = 0 right, but in general we are writing. So, there will be a

volumetric change in the fluid element and that is represented by VYV and these p VV is

nothing, but the pdV work in thermodynamics.

So, you can see whatever we have written pziwhich is your p V.V and that is nothing,
Xk

but your pdV work in thermodynamics. So, now, let us expand this term.

(Refer Slide Time: 30:52)
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So, we will write this term a—' +§‘ as symmetric tensor S;; and it is equal to S;; because
X . g
j i

it will remain same. So, it is a symmetric tensor Sj; is equal to S;. So, this term we can

, ou, : . ou,
write as S a—' because this term we have written as S;;. So, S; —.
X .

i 6XJ’

So, now you can see S; % first you vary j =1, 2 and 3. So, if you vary 1, 2, 3 so what
j

will be there? So, it will be Sil%+si2%+si3%, because j we have varied 1, 2 and
ox X O

3. Now you vary i =1, 2 and 3 so, in each term. So, if you take the these term.
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So, i you vary 1 2 3. So, it will be Sn%+821%+831%.
ox 0 X,
ou, au, ou,
Similarly here also you vary i=1,2,3. So, if you put i=2 S, —X+S,, —*+S,, —>and for
2 2 2
i=3, 5, M y5, Moy g s
0X, OX, OX,

So, now, you see this term you can write as summation of these three. So, there will be
nine components. So, we have written just these nine components in the expression
ou. . .
of S, a—' So, now, we have to find what is these Si1, Sy; all these terms and S;; already
X .
J

we have represented as this one.

(Refer Slide Time: 33:05)
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So, you can see. So, this is the term we have derived S;; is the expression this one. So,

now, you see the red colored terms. So, S, — A, . Now S;; we have to find from this

expression. So, if you put i and j both 1; that means, % +% because i and j are 1 and
X X,

you havea— So, this will become 26— So, it will be 2( )
%, X, %
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Similarly the other two terms in the red colored you can write Szz%as 2(%)2and
X2 X2
5, M a5 2 (Pay,
OX, OX,

Now rest other terms let us find. So, you see this term and this term you consider,
because you know that it is a symmetric tensor S;; is equal to Sji. So, S»1=S12. So, these

two terms we are considering together and we are writing. So, Si, you can take it outside

and you can write %+%and Si2 how i=1, j=2.
oX, O

So, you put it here i=1, j =2. So, %andj =2. So,%. So, now, you can see these two
X, X

terms are same. So, it will be (%+%)2. Similarly you consider rest of the term. So,
2

ou L
you can see S, 8_3 and S,, %you are considering these two terms together because we
X2 X3
know Ss; is equal to Sps.
ou,

So, if you consider this you can write (%+%)Zand similarly SSl%and S;—. So,
3 X2 X:L 3

Si13 is equal to Ss;. So, we can write 831(%+%) and this Sz; you can find here i=3 and
X 0%

j =1. So, you can see (% +%)2 _
aXS

So, now, all these terms we have retained in terms of velocity gradients right. So, now,

. , ou, o . .
substitute all these terms in S 6—' So, it will be you see this is one term, second, third.

X;

So, we have written here then we have these terms. So, we have written here. So, now,

you look into this expression.

So, what is this? This is the generation of internal energy due to friction right, because
you are converting this kinetic energy to thermal energy right. And all these gradients are
u3

having square, you see, (%)2, (a—)zand all these are having square.
0X, 0X,
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. . . . . . ou, .
So, whether velocity gradient is positive or negative always this term S; — will be

6xj

positive term, you will get always heating inside the fluid element. So, because due to
the friction between two fluid elements it will generate heat and it will be always
positive; that means, it will be heat, heating will be there. So, you can see from this

expression.
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You see a—kalready we have written in this expression S a—'we have written in this
X, X

. ou, . .
expression and we have z; a—'these expression now you put all these values right. So,
X .
]
au, . . . : : : . ou,
—this expression and this expression you write from here and you can write z; a—as

X, i

this term + p | am taking outside —%then %is this one. So, it is whole square plus this
Xk

terms plus these three terms.
. ou; . . .
So, you can see we have written z; a—'ln terms of velocity gradients. So, now, we can
X .
]

see this you can write p into all these terms you can write as ®. So, this @ is known as
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dissipation function and u® is the rate of viscous dissipation per unit volume. So, you

ou,

+
ox, 1.

. . . ou,
can see this expression you can write as z; = p—=
X .
J
So, @ is the dissipation function and p® is the rate of viscous dissipation. So, you can
see now @ will be this term. So, this we have written and in terms of u vw and x y z if

you write then you will get this expression. And if you consider incompressible fluid

flow then you can see this will be your 0 because this is your continuity equation VV.
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In other way also you can express this dissipation function. So, you can see now this is

. : 2 .
the expression we have, you take p outside and —gwe have taken common. Now if you

express these(axk)2 that means, this is square.
k

So, Wecanwrlte( 1) +( 2) +( 3) +2ab+2bc+2ca right (a+b+c)?. So, this we

have written. So, it isa® + b? +c¢* +2ab + 2bc + 2ca..

So, this expression we have written and we have this term. So, we have written here and

.2 . . .. 2
now we are taking 3 outside. So, this terms we are writing here. So, as 3 we have
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taken outside. So, it will be 3(8x1) ( ) ( 3) and — 3 |s there and negative of
3

these term you have to write. So, negative of this term we have written like this.

So, now, let us rearrange this. So, we can see you have 3( 1) and here 1 if you subtract
X

then you will get 2( l) Similarly for this term we will get 2 factor 2 as a coefficient.
24
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Derivation of the term r,

M, (o) duduy S\ S\ dwdug e\ (et dey )

> 2 . 5

p—t M [ | === .|AA1,',,| 2 — 41 I“ . 2 — ) |
\ }[‘.1, Pt &) LU, WA, | ax, ) 4 WLy '

Iy . 5

t—=—p—+ b 7. © : Dissipation function
&y, [ -V -

wd - Tee rate of viscouws [or frictional) dbsipation per urit volume

;‘{y" (Quy G\ fBuy BuY fouy dw fduy By

b=l ——— I I e A e —1 4 -—_ $
]H\,‘Jr! \dx; .':,| \itry (h" l'r .u." \dxy, ;) ] }

du WY (e MY
) ] o= 4
! 0 ay/

% (e oWy fdw d))
P=ql - - - | 4 [ - e I
[\éx ay) \dy 0z \dz ) ) \dy &/

[l ar L
TR T e LA
3 < 3 '
So, now you rearrange it like this. So, you have one you have written here, another you
have written here, here you have written, one here, another so here one, here another. So,

these you have written then Za—ails there. So, now, what is this? It is a (—b)’right.
X, OX,

So, if you write in this form. So, it will become. So, (ZL——) :

- . ou
Similarly, these term together you can write (%—a—3)zand these three terms together
X2 X3

. ou .
you can write +3(a—3—%)2and all these 3 terms will be there. So, all these terms we
X3

: : o . . u, U,
have written in terms of dissipation function and this z; a—' = —p2—+,u¢ where phi is
X X
j Kk

the dissipation function and u® is the rate of viscous dissipation per unit volume.
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So, ® now this full expression you can write in terms of velocity u v w and coordinate x
y z if you write then it will be

2 ..0u o ow,, ,OW OJu,, av OW,, 8W ou,,

[3{(a ay) (ayﬁ) ( )}( ) ( ) ( )]
So, this is your dissipation function. So, now, we had this one. So, now, we have derived
this term as this. So, if you substitute in this equation. So, you can get this equation. So,
this is the two terms whatever we have derived and phi is the dissipation function, it is a

big expression in terms of velocity gradient.

So, we have considered Cartesian coordinates. So, this is the expression for dissipation
function in Cartesian coordinate, but if you consider cylindrical coordinate or spherical

coordinate then this expression for this dissipation function will be different.
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So, we have already derived this now what will do, we will just add this

o(pu;)

termi(%’o P —). So, if you add this term it is actually conservation of mass
i

ap 6(,DUJ) A L. . . . .
E+a—_0 in general, it is applicable for both compressible and incompressible
X .
]
flow.
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So, if you add this term then together if you write. So, you can write in a conservative

d(pu;)

form, because this pg+ia—pyou can write as Mand pU-ﬂ+i 1~ you can
ot o Yox; o
o(piu,
write asﬂ.
OX:

J
So, now, this is the equation we have derived in terms of internal energy, but now we
need to write in terms of some measurable quantity. So, that is temperature. So, first we
will write this equation in terms of enthalpy, then we will write in terms of temperature.

So, you know that enthalpy from thermodynamics, you can know that enthalpy,

h=i+2 , Where p is the thermodynamic pressure and p is the fluid density. So, you can
Yo

write pi = ph— p. Now this pi you substitute here.

So, if you substitute here you will get this equation,
o,

oph) , olehuy) dp  ou; o | g
ot OX; ot OX; OX; OX,

]
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So, now you can write. So, this is in conservative form we have written
_ 24  Dp

o(phu;
5(ph)+ (phu;) =Q +—+u¢ and now if you write these two terms. So,
ot OX, ox. Dt

] ]
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o(pu.
pﬁ—h+ ha—p and here if you write pu; @+ hﬂthen you can write in terms of non
ot ot X, X,

conservative form.

o(pu.
And here you can see this is your conservation of mass %0+ (5 )
X

= 0. So, this is your
i
0 right. So, we have written this term. So, this is your generalized thermal energy

conservation equation we have written in terms of enthalpy.

So, this enthalpy now we have to write in terms of temperature and we have this heat
flux g and that we need to write in terms of temperature. So, first let us write this heat

flux using Fourier’s law of heat conduction. So, from Fourier’s law of heat conduction

.. o’
you know q; = —k; STT and if you write a—j’ = —_(

]
i ]

ua)

So, now, you assume isotropic heat conduction so; that means, this thermal conductivity
will be independent of the directions. So, kjj=k we can write. So, if you write k then in

this expression if you put then you can writepB—T +Q + —( —) + L .
J
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So, now let us write the enthalpy in terms of temperature. So, for that we will use some

thermodynamic relations which we have already studied in your thermodynamics course,
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for simple compressible pure substance with no phase change entropy you can

writes =s(T, p).

So, we can write s as a function of two variable. So, we can write
asl 0S oS c ..
a7+ 2| d . S0, now, you can see that you know — | =—2_ So, this is your
T’ p P Y Y TP T y

specific heat at constant pressure.
: 0s ov . -
And from Maxwell relations you can see a_lT = —6—T|pwhere v is your specific volume.
p
. 0s
So, if you put these —|_ .
youp or '’
So, T —LdT and %you put this expression. So, —8—|p dp and now you use the coefficient

of thermal expansion expression. So,  you know that%§—¥|p. So, you can see %L) you

can write v and this expressionds =c, dT—T —vpdp.

Now again you can write the enthalpy, . So, now, dh=c T —Tvgdp+vdp. So, it will be

c,T and v if you take outside. So, (1- BT)dp. So, now, if you write in terms of material

" Dh
derivative so, p— = pcC

Dt pDt (1ﬂT)

So, this is your material derivative Frt)and pv=1 because v is specific volume. So, p v

. . . Dh . .
will be 1. So, this I have put 1. So, now, we can see this panow if you put in this

. ) Dh oT Dp .
expression then you can write. So, p—=Q +—(k—)+—/+ u¢, this we have
p y P o Q ax.( ax.) Dt ug

already derived. So, if you put this expression in the left hand side then you can get

these.

Now you see in left hand side you have % right hand side also you have % So,

these you can cancel. So, if you now simplify it you will get
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DT

o, oT Dp
+—(k—)+ T —+ug.
P = o Ko T o

So, now you can see that we have written the energy equation in terms of temperature

] ; ] ] . .. DT
and left hand side we have written in terms of material derlvatlveﬁ )
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So, now if you write this material derivative of T as %:%+ J ST then you can
oT oT L :
see,ocp(awj 87) =Q —(k—) ,HT +/l¢ So, this is the equation for

j

conservation of energy.

So, you see left hand side term, p is density, c, is the specific heat this is the temporal
oT oT

variation of this temperature Eand this is the convective termu; — i3 , because your
X
j

these scalar temperature is convicted by this velocity u; right and right hand side this

term is internal heat generation per unit volume and this is the term you can see this is

coming from your heat conduction.
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So, in the energy equation this is the term while deriving this equation you have seen it is
coming from the heat conduction right, but in general if k is constant you can take it

. . T . T
outside and you can write a—whole you can write (8_)2 .
OX; OX;

So, this is the term which is coming from the Fourier’s law of heat conduction right and

substituting that in the expression we have got this term which is known as diffusion

term, it is due to the heat conduction right plus beta T%. So, % which is your

material derivative of p. So, these term having the significance at high velocity. So,
above the sonic velocity if you have the flow then this term will have significant

contribution.

And pd, what is p®? pd is the viscous dissipation rate right per unit volume. So, and

phi is the dissipation function that we have written in terms of velocity gradient.

So, you can see when p is having very high value then this term will have the
significance and if you have a high velocity then due to high velocity there will be
contribution from the velocity gradient in the dissipation function ® then also this term
will have some significance. So, you can see this is for high viscosity or high velocity
you can consider this term and this term you can consider when you have very high

velocity above sonic velocity.

So, in vector form this equation now if you write
orT Dp :

pcp(E+V.VT):Q +V.(kVT)+ T E+“¢ and these if you assume that your

thermal conductivity is constant then you can take it outside otherwise you keep it inside.

So, most of the gases you know for gases you know that Bz% ; that means, BT=1.

So, if you put BT=I1 then this expression here it will be just %and this the work of

compression Fi) is usually negligible except above sonic velocities and for liquids open

Dp

you will get u® = 0 and Bt = 0. Then you can express this equation in the right hand
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side only two terms will be there Q" + V.(kVT), but if there is a significant contribution

from p® then you can consider in this equation.

So, today we have started with the Reynolds transport equation to derive the equation for
conservation of energy. So, for a control volume we have written the total energy as

internal energy plus kinetic energy because potential energy we consider in the body

. . . DE - -
force term from first law of thermodynamics we have written ELYS =Q. —Wev, where

we are taking that rate of heat transfer to the system ch is positive and rate of work

done by the system Wey is positive.

Then we have expressed this ch and W ey considering the volumetric volume heating as

well as surface heating, for the rate of heat transfer calculation and for the rate of work
done calculation we have considered two different forces body force as well as surface
. Ou.

force. Then we have expressed these terms and finally, we have got one term z; a—'
X .

J
which is your the term which is contributing from the friction because you have a shear
stress between the two fluid elements and these frictional force is converting to internal

energy.

Then that we have expressed in terms of velocity gradients and finally, these total energy
we have written in terms of internal energy plus Kinetic energy. So, to get the equation
for thermal energy we have subtracted the kinetic energy considering the Navier’s
equation. Then we have written the energy equation in terms of internal energy and later
we have converted this internal energy in terms of enthalpy then in terms of a measurable

quantity temperature.

And using some thermodynamics relations we have written the equation for this internal
energy in terms of temperature which is your equation for conservation of energy. We
have also discussed that the viscous dissipation term p® is significant when you have

high viscosity fluid or you have high velocities.
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And Ff is significant above the sonic velocities and finally, we have written this

. . . 1 .
equation in terms of vectorial form for gases assuming ﬂz?and finally, we have
written for liquids where most of the time we consider negligible viscous heating and
Dp

—as 0.
Dt

Thank you.
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