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Hello everyone. So, you know that there are three conservation laws; conservation of 

mass, conservation of momentum and conservation of energy, all these three 

conservation laws must be satisfied at a point in a moving fluid. So, today we will derive 

the equation for conservation of energy which is known as energy, equation starting from 

the Reynolds Transport Theorem.  

Already you have learnt Reynolds transport theorem in fluid mechanics course. So, we 

will use Reynolds transport theorem and we will conserve the energy and we will derive 

the energy equation. 
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So, what is Reynolds transport theorem? Reynolds transport theorem states that the rate 

of change of an extensive property N for the system is equal to the time rate of change of 
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N within the control volume and the net rate of flux of the property N through the control 

surface. So, you can see we can write ( . )sys r
CV CV

DN
dV V n dA

Dt t
 


  

    

So, you consider any arbitrary control volume, where this is the control surface and if 

you consider one elemental volume that we are denoting with dV and elemental surface 

is dA. So, you can see that this N is your extensive property, here we will consider this 

N= E which is your energy.  

In this case we will consider total energy as summation of internal energy and kinetic 

energy, we will not consider the potential energy here we will consider this potential 

energy in the source term separately and all other energy we have neglected. 

And this η= e which is your energy per unit mass. So, you can write energy per unit mass 

=internal energy + kinetic energy . So, now, you can see in this case N = E which is your 

total energy summation of internal energy plus kinetic energy and η is your energy per 

unit mass which is 
2

2

iu
e i   and; obviously, rho is the density of the fluid and Vr is 

relative velocity and n is outward surface normal. So, n if you consider here so, always it 

is outward normal.  

So, now, we will assume stationary and non-deforming control volume, in that scenario 

you can write the relative velocity as V. So,  rV V and as your volume is not changing. 

So, this time derivative you can take inside this integral of this control volume as you are 

assuming non - deforming and stationary control volume. 

So, 
( )

CV CV
dV dV

t t




 


   . So, in this particular case it will be just
( )e

dV
t




. So, 

this is the term we have we can write like this. 

(Refer Slide Time: 04:21) 
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So, now if you put the total energy and energy per unit mass in the Reynolds transport 

equation then you will get this equation. So, 
( )

( . )sys
CV CS

DE e
dV e V n dA

Dt t





  

  , 

where n is the outward surface normal.  

Now, what we will do? We will change this surface integral to volume integral using 

Gauss divergence theorem. So, what is Gauss divergence theorem? You can see if you 

have a .
CS CV

F ndA FdV


   . So, n is your surface normal you need surface normal.  

So, you can write divergence form when you write in the integral inside the integral. So, 

you can see now if you put it here. So, these term if you use Gauss divergence theorem 

you can write eVdV . So, using Gauss divergence theorem this surface integral we 

have converted to volume integral. 

So, now we will do some numerical algebra. So, you can see just you simplify it. So, you 

can see you can write,
( )e

eV
t








. So, this derivative you just write as 

e
e

t t



 


 

and this divergence you write ( ) .e V V e    . So, after writing this if you 

rearrange then this term and this term you write together. So, what you can write, 

( . )
e

V e
t




 


and this term now you write together. So, ( ( ))e V
t








. 

So, now, what it is you can see if you use this Reynolds transport equation and conserve 

the mass then you will get the continuity equation and this is your ( ) 0V
t





 


. So, 

this is the continuity equation in general, it is applicable for compressible flow as well as 

incompressible flow. So, if you write this continuity equation. So, it is 0. So, this term 

will become 0. 

So, you can write this as ( . )
e

V e dV
t




 


 and in tensorial form if you write. So, 

.V e you can write j

j

e
u

x




. So, this term in tensorial form we have written like this or 

this term together you can write as
CV

De
dV

Dt . So, 
De

Dt
is material derivative.  
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So, which contains the temporal term as well as the convection term and in our study we 

are now considering only the Cartesian coordinate and you can see this is your x 

direction where velocity is u and y direction velocity v and z direction velocity w and 

when we will write the in tensorial form. So, you can write that u1 x1 is equivalent to u x, 

similarly y is equivalent to x2 and v is equivalent to u2 and similarly u3 is equivalent to w 

and x3 is equivalent to z.  

So, now right hand side we have written in this form where left hand side still we need to 

determine. So, whatever the energy acting on the system that we need to consider. 

(Refer Slide Time: 08:17) 

 

Now we will use first law of thermodynamics, the change in energy of a system E is 

equal to the difference between the heat added to the system Q and the work done by the 

system W. So, from the first law of thermodynamics you can write that E Q W   . So, 

that you have already studied in thermodynamics. So, now, if you write in a rate of 

change sense then you can write this equation as 
. .

syssys sys

DE
Q W

Dt
   . So, now let us 

discuss about the sign convention. So, in heat transfer now we will consider that rate of 

heat transfer to the system is positive and rate of work done by the system is positive. So, 

you can see this is the control volume, in the control volume if your rate of heat transfer 

is to the system then we will consider as positive and rate of work done is by the system 

then we will consider as positive.  
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So, with this sense just will proceed the derivation and in the limit Δt →0, this system 

and volume will coincide. So, whatever we have written that 

. .

syssys sys

DE
Q W

Dt
  

. .

CVCV
Q W  . So, now you can see finally, if you put this sys

DE

Dt
 this 

expression in this equation then you can write
. .

( ) CVj CV
CV

j

e e
u dV Q W

t x

 

  
  . Now 

we need to derive the expression for this rate of heat transfer and rate of work done.  

(Refer Slide Time: 10:51) 

 

So, first let us consider rate of heat transfer to the system and we will derive the 

expression for 
.

CV
Q . So, you can see there are two types of heating; one is volumetric 

heating and another is surface heating. So, you can see that if there is a volumetric heat 

generation then it is a volumetric phenomena and that you consider the rate of internal 

heat generation per unit volume. 

So, if you consider this as a control volume and this is the control surface, in the control 

volume if you consider one elemental volume dV then this rate of internal heat 

generation is taking place in this elemental volume dV.  

So, if '''Q dV  then you will get the rate of heat transfer inside this elemental volume and 

if you integrate over the whole volume then you will get the total rate of heat transfer due 
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to heat generation. So, you can see. So, rate of heat transfer due to internal heat 

generation we can write '''
CV

Q dV . 

Now, there will be surface heating and surface heating will take place due to heat 

conduction. So, you can see if you consider one elemental area dA on the surface. So, dA 

and this is your normal unit normal n and your heat conduction is taking place in 

outward direction. So, it is heat flux ''q . 

So, this ''q is the rate of thermal energy flow per unit area on a surface and it is heat flux 

out of the surface. Now you see this heat flux is the surface phenomena and it is going 

out of the surface, but we have considered that heat transfer to the system is positive so, 

but here your heat flux is going out of the surface. So, there will be a negative sign. 

So, if you see rate of heat transfer due to heat flux. So, this ''q is acting on this surface. 

So, in the normal direction if you take then ''.q ndA


. So, it is acting on this surface dA, 

now if we integrate over the whole surface then you will get ''.
CS

q ndA


 .  

Now you use Gauss divergence theorem to convert this surface integral to volume 

integral. So, you can write this ''.
CV

q dV and this if you write in tensorial form then you 

can write this Q you can write

''

j

j

q

x




, but this is negative, because Q dot cv we have 

taken if it is heat transfer is taking place to the system then it is positive, but it is going 

out. 

So, when we will calculate 
.

CVQ so, we will write this rate of heat transfer due to internal 

heat generation and minus because it is going out of the surface. So, this is the minus rate 

of heat transfer due to heat flux. So, together you can write

''

( ''' )
j

CV
j

q
Q dV

x



 .  

So, now, let us consider rate of work done. So, rate of work done is 
.

CVW and there are 

two types of forces acting on this fluid element. So, what are the forces, one is your body 
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force which is your volumetric phenomena and you have surface force ok. So, that is 

your surface phenomena.  

(Refer Slide Time: 14:55) 

 

So, you can see the body force per unit volume we are writing as V and the surface force 

what is acting on this elemental surface dA that we will denote with the traction vector. 

So, this is denoted as nT


the traction vector acting on the phase normal and it is force per 

unit area on a surface.  

So, these are the forces acting on the volume as well as in the surface we need to 

calculate the work done right. So, work done is the dot product of this force and the 

velocity. So, rate of work done is the dot product of force and velocity. So, you can see 

rate of work done by the body force you can write.  

So, V is the body force and you take the dot product of the velocity and if you consider 

this elemental volume dV. So, the rate of work done by the body force in this elemental 

volume is .bVdV and if you integrate over the control volume then you can get the total 

rate of work done by the body force. 

And this you can write in tensorial form as bi ui and rate of work done by the surface 

force. So, this is your normal direction to the elemental surface dA and this is the traction 
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vector acting on this normal. So, you can see that rate of work done by the surface force 

you can write .n

CS
T VdA



 and this in tensorial form also you can write n

i i
CS

T u dA . 

So, now this traction vector we will relate with the stress tensor and we will use 

Cauchy’s law. So, Cauchy’s law states that there exists a Cauchy stress tensor tau which 

maps the normal to the surface to the 
n

T



acting on the surface according to this .
n

T n




 , 

n is the unit normal outward of the surface and tensorial form you can write 

n

i ij jT n and Cauchy stress tensor is symmetric. So, you can write 
ij ji  and now this 

integral now you consider. So, this 
n

T



you substitute this expression. 

Then you can write ( . ).V ndA


, now this surface integral you convert to the volume 

integral using Gauss divergence theorem and you write .( . )V dV and in tensorial form 

we can write .( . )V as 
( )ij i

j

u

x




 because this .V you can write i iu and this a there is a 

divergence. So, that if you write then you can write 
( )ij i

j

u

x




. So, this is the volume 

integral we have converted you have a rate of work done by the body force and you have 

rate of work done by the surface force, if you add together then you will get the work 

done by the force.  

So, you can see in thermodynamics we have calculated this work done by the body force 

and work done by the surface force, but when we considered the sign convention in 

today’s class that work done by the system is positive, but here whatever we have 

derived these are work done by the force so; that means, there is a change in sign 

convention.  

So, work done by the system we have considered as positive, but here we have calculated 

work done by the force so; obviously, work done by the system if we consider then there 

will be a negative sign. So, we have written 
.

CVW because this is the sign convention we 
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have taken, because 
.

CVW work done by the system is positive, but whatever we have 

considered those are rate of work done by the force.  

So, now, if you see. So, if there is a negative sign. So, actually you should write 
.

CVW is 

equal to negative of this, but as simplification we are 

writing
.

)(
( )

ij i iji
CV i i i i ij i

CV CV CV
j j j

u u
W bu dV dV bu u dV

x x x

 


 
     

     . So, this is your 

.

CVW .  

(Refer Slide Time: 20:11) 

 

So, you can see we had this expression, now you substitute this 
.

CV
Q expression in 

.

CVW expression here then you can get. So, left hand side will be as it is in the right 

hand side this is the 
.

CV
Q and this is the

.

CVW . 

So, we can see both side you have volume integral. So, this is also volume integral this is 

also volume integral. So, for any arbitrary control volume so, you can write as 
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''

'''( )
j iji

j i i ij i

j j j j

q ue e
u Q bu u

t x x x x


 

  
     

    
. Let us substitute the total energy at 

summation of internal energy plus kinetic energy ok. So, that is
2

2

iu
e i  . 

So, if you put it in this expression. So, what you will get, you can see 

2 2

( ) ( )
2 2( ) ( )

i i

j j

j j

u u
i i

u u
t x t x

 
  

  
   

and write tensor terms will be as it is. Now you 

see in heat transfer we are interested in your internal energy, but we are having in this 

expression internal energy plus mechanical energy; that means, your kinetic energy. 

So, now we have to subtract somehow this kinetic energy. So, that we can get the 

equation for conservation of thermal energy; that means, only internal energy will be 

present. So, to do that, now we will consider the Navier’s equation.  

So, from the Navier’s equation if you multiply with the velocity u i then you can write 

the equation for kinetic energy and once we get the equation for kinetic energy and if 

you subtract that equation from this equation then you will get the equation for 

conservation of thermal energy.  

(Refer Slide Time: 22:34) 

 

So, this is the equation we have derived now Navier’s equation, you can see in general 

we can write like this ( )
iji i

j i

j j

u u
u b

t x x




 
  

  
, where bi is the body force term and 

ij is your stress tensor and this is temporal term and this is your convective term.  
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So, we have considered Navier equation. So, it is valid in general for compressible and 

incompressible fluid Newtonian and non - Newtonian fluid flow. So, multiply both sides 

with ui and convert the above equation to equation of mechanical energy. So, if you 

multiply ui here and if you take in the inside these derivative then you can write 

2

( )
2

iu

t




 

and here also ui if you take inside these derivative then you can write 

2

( )
2

i

j

j

u

u
x




and 

here 
ij

i i i

j

bu u
x





.  

So, now, subtract these equation from this equation. So, what you will get now you are 

subtracting the kinetic energy from this equation so that you can get the equation for 

internal or thermal energy. So, you can see if you subtract.  

So, this term and this term will get cancel bi ui will get cancel. So, you can see you can 

write 

''

'''( )
j i

j ij

j j j

q ui i
u Q

t x x x
 

  
   

   
. So, this term also will get cancel with this. So, 

we will have only i
ij

j

u

x






. So, this term if you write in terms of material derivative then 

you can write 

.

k

k

V

u
p

x






this is the left hand side and right hand side will be same as this 

equation. 

So, now you can see the left hand side you have time rate of change of total internal 

energy right and in the right hand side the first term '''Q . So, this is your volumetric heat 

generation, the second term it is due to surface heat transfer and the third term you can 

see the conversion of kinetic energy into internal energy by work done against the 

viscous stresses. 

Thus so, in the fluid flow will occur and there will be friction between the two fluid 

layers and that friction will be converted to thermal energy. And due to stresses that you 
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see there will be a generation of internal energy and that is the conversion of kinetic 

energy into internal energy. Now you can see this is the term we need to expand i
ij

j

u

x





.  

So, now, first let us see the constitutive equation. 

(Refer Slide Time: 25:41) 

 

The constitutive equation gives the expression for the Cauchy’s stress tensor. So, you 

will get the expression for 
ij . So, before that now let us assume that we have Newtonian 

fluid and Stokesian fluid. So, now, we are assuming that we have the fluid flow for 

Newtonian and Stokesian fluid. What is Newtonian fluid? The relationship between the 

stress and the rate of strain is linear and Stokesian fluid the fluid is homogenous and 

isotropic. 

What is homogenous? The relationship between stress and rate of strain is the same 

everywhere and isotropic means it does not have any preferred direction. So, assuming 

this Newtonian fluid and Stokesian fluid we can write 
ij as 

ijp , where p is your 

thermodynamic pressure, 
ij is your Kronecker delta where 

ij = 1, when i = j and 
ij is 

=0 when i  j. 
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And + k
ij

k

u

x





, where  is your second coefficient of viscosity ( )

ji

j i

uu

x x



 

 
. So, you 

can see we have written this 
ij in terms of thermodynamic pressure and the velocity 

gradient and where  is your dynamic viscosity. 

So, now we need to determine the term i
ij

j

u

x





right. So, this is the term we want to 

derive. So i
ij

j

u

x





. So, you multiply i

j

u

x




with these terms. So, what you will get, 

i i k
ij ij

j j k

u u u
p

x x x
 

  
 

  
+ with this term you multiply i

j

u

x




. This you can see that if you 

operate these 
ij on ui then you will get uj.  

So, 
ij ui you will get uj. So, here now i

ij

j

u

x





. So, this is the term this is the same term 

we want to write
( )ij ii

ij

j j

uu

x x







 
. So, I have taken this 

ij here. So, you can see 
ij ui if 

you operate this 
ij  on ui it will get uj. So, 

j

j

u

x




and it is equivalent to write k

j

u

x




because 

both are same j. So, this j we have replaced with k. So, k

k

u

x




. 

So, you can see this term will become k

k

u
p

x





and this term will become 2( )k

k

u

x




. So, it 

will be 2( )k

k

u

x




,now we will use Stoke’s hypothesis. So, in Stoke’s hypothesis we can 

write the second coefficient of viscosity in terms of the dynamic viscosity as 
2

3
 . So, 

if you put it here.  

So, it will be 22
( )

3

k

k

u

x






. So, now, if you expand k

k

u

x




 what it is, k

k

u

x




. So, now, k u 

vary 1 2 3. So, it will be 31 2

1 2 3

uu u

x x x

 
 

  
. So, now, u1 is equivalent to u. So, you can 

write
u

x




, x1 is equivalent to x similarly 

v w

y z

 
 
 

at which is nothing, but .V . 
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So, what is .V ? .V is the volumetric change of the fluid element right, for 

incompressible fluid .V = 0 right, but in general we are writing. So, there will be a 

volumetric change in the fluid element and that is represented by .V and these  p .V is 

nothing, but the pdV work in thermodynamics.  

So, you can see whatever we have written k

k

u
p

x




which is your p .V and that is nothing, 

but your pdV work in thermodynamics. So, now, let us expand this term. 

(Refer Slide Time: 30:52) 

 

So, we will write this term 
ji

j i

uu

x x




 
as symmetric tensor Sij and it is equal to Sji because 

it will remain same. So, it is a symmetric tensor Sij is equal to Sji. So, this term we can 

write as i
ij

j

u
S

x




because this term we have written as Sij. So, i

ij

j

u
S

x




. 

So, now you can see i
ij

j

u
S

x




, first you vary j =1, 2 and 3. So, if you vary 1, 2, 3 so what 

will be there? So, it will be
1 2 3

1 2 3

i i i
i i i

u u u
S S S

x x x

  
 

  
, because j we have varied 1, 2 and 

3. Now you vary i = 1, 2 and 3 so, in each term. So, if you take the these term.  
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So, i you vary 1 2 3. So, it will be 31 2
11 21 31

1 1 1

uu u
S S S

x x x

 
 

  
.  

Similarly here also you vary i=1,2,3. So, if you put i=2 31 2
12 22 32

2 2 2

uu u
S S S

x x x

 
 

  
and for 

i=3, 31 2
13 23 33

3 3 3

uu u
S S S

x x x

 
 

  
.  

So, now, you see this term you can write as summation of these three. So, there will be 

nine components. So, we have written just these nine components in the expression 

of i
ij

j

u
S

x




. So, now, we have to find what is these S11, S21 all these terms and Sij already 

we have represented as this one. 
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So, you can see. So, this is the term we have derived Sij is the expression this one. So, 

now, you see the red colored terms. So, 1
11

1

u
S

x




. Now S11 we have to find from this 

expression. So, if you put i and j both 1; that means, 1

1

u

x




 + 1

1

u

x




 because i and j are 1 and 

you have 1

1

u

x




. So, this will become 2 1

1

u

x




. So, it will be 2 21

1

( )
u

x




.  

55



Similarly the other two terms in the red colored you can write 2
22

2

u
S

x




as 2 22

2

( )
u

x




and 

3
33

3

u
S

x




as 2 23

3

( )
u

x




.  

Now rest other terms let us find. So, you see this term and this term you consider, 

because you know that it is a symmetric tensor Sij is equal to Sji. So, S21=S12. So, these 

two terms we are considering together and we are writing. So, S12 you can take it outside 

and you can write 1 2

2 1

u u

x x

 


 
and S12 now i=1, j=2. 

So, you put it here i=1, j =2. So, 1

2

u

x




and j =2. So, 2

1

u

x




. So, now, you can see these two 

terms are same. So, it will be 21 2

2 1

( )
u u

x x

 


 
. Similarly you consider rest of the term. So, 

you can see 3
32

2

u
S

x




and 2

23

3

u
S

x




you are considering these two terms together because we 

know S32 is equal to S23.  

So, if you consider this you can write 232

3 2

( )
uu

x x




 
and similarly 3

31

1

u
S

x




and 1

13

3

u
S

x




. So, 

S13 is equal to S31. So, we can write 3 1
31

1 3

( )
u u

S
x x

 


 
and this S31 you can find here i=3 and 

j =1. So, you can see 23 1

1 3

( )
u u

x x

 


 
.  

So, now, all these terms we have retained in terms of velocity gradients right. So, now, 

substitute all these terms in i
ij

j

u
S

x




. So, it will be you see this is one term, second, third. 

So, we have written here then we have these terms. So, we have written here. So, now, 

you look into this expression.  

So, what is this? This is the generation of internal energy due to friction right, because 

you are converting this kinetic energy to thermal energy right. And all these gradients are 

having square, you see, 22

2

( )
u

x




, 23

3

( )
u

x




and all these are having square. 
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So, whether velocity gradient is positive or negative always this term i
ij

j

u
S

x




will be 

positive term, you will get always heating inside the fluid element. So, because due to 

the friction between two fluid elements it will generate heat and it will be always 

positive; that means, it will be heat, heating will be there. So, you can see from this 

expression.  
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You see k

k

u

x




already we have written in this expression i

ij

j

u
S

x




we have written in this 

expression and we have i
ij

j

u

x





these expression now you put all these values right. So, 

k

k

u

x




this expression and this expression you write from here and you can write i

ij

j

u

x





as 

this term + µ I am taking outside 
2

3
 then k

k

u

x




is this one. So, it is whole square plus this 

terms plus these three terms. 

So, you can see we have written i
ij

j

u

x





in terms of velocity gradients. So, now, we can 

see this you can write µ into all these terms you can write as Φ. So, this Φ is known as 

57



dissipation function and µΦ is the rate of viscous dissipation per unit volume. So, you 

can see this expression you can write as i k
ij

j k

u u
p

x x
 

 
  

 
. 

So, Φ is the dissipation function and µΦ is the rate of viscous dissipation. So, you can 

see now Φ will be this term. So, this we have written and in terms of u v w and x y z if 

you write then you will get this expression. And if you consider incompressible fluid 

flow then you can see this will be your 0 because this is your continuity equation .V . 
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In other way also you can express this dissipation function. So, you can see now this is 

the expression we have, you take µ outside and 
2

3
 we have taken common. Now if you 

express these 2( )k

k

u

x




; that means, this is square.  

So, we can write 2 2 231 2

1 2 3

( ) ( ) ( ) 2 2 2
uu u

ab bc ca
x x x

 
    

  
 right 2( )a b c  . So, this we 

have written. So, it is
2 2 2 2 2 2a b c ab bc ca     . 

So, this expression we have written and we have this term. So, we have written here and 

now we are taking 
2

3
 outside. So, this terms we are writing here. So, as 

2

3
 we have 
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taken outside. So, it will be 2 2 231 2

1 2 3

3( ) 3( ) 3( )
uu u

x x x

 
 

  
and 

2

3
is there and negative of 

these term you have to write. So, negative of this term we have written like this.  

So, now, let us rearrange this. So, we can see you have 21

1

3( )
u

x




and here 1 if you subtract 

then you will get 21

1

2( )
u

x




. Similarly for this term we will get 2 factor 2 as a coefficient. 
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So, now you rearrange it like this. So, you have one you have written here, another you 

have written here, here you have written, one here, another so here one, here another. So, 

these you have written then 1 2

1 2

2
u u

x x

 


 
is there. So, now, what is this? It is a 2( )b right. 

So, if you write in this form. So, it will become. So, 21 2

1 2

( )
u u

x x

 


 
. 

Similarly, these term together you can write 232

2 3

( )
uu

x x




 
and these three terms together 

you can write + 23 1

3 1

3( )
u u

x x

 


 
and all these 3 terms will be there. So, all these terms we 

have written in terms of dissipation function and this i k
ij

j k

u u
p

x x
 

 
  

 
, where phi is 

the dissipation function and µΦ is the rate of viscous dissipation per unit volume. 
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So, Φ now this full expression you can write in terms of velocity u v w and coordinate x 

y z if you write then it will be  

2 2 2 2 2 22
[ {( ) ( ) ( ) } ( ) ( ) ( ) ]
3

u v v w w u u v v w w u

x y y z z x y x z y x z

           
          

           
. 

So, this is your dissipation function. So, now, we had this one. So, now, we have derived 

this term as this. So, if you substitute in this equation. So, you can get this equation. So, 

this is the two terms whatever we have derived and phi is the dissipation function, it is a 

big expression in terms of velocity gradient.  

So, we have considered Cartesian coordinates. So, this is the expression for dissipation 

function in Cartesian coordinate, but if you consider cylindrical coordinate or spherical 

coordinate then this expression for this dissipation function will be different. 

(Refer Slide Time: 43:02) 

 

So, we have already derived this now what will do, we will just add this 

term
( )

( )
j

j

u
i

t x

 


 
. So, if you add this term it is actually conservation of mass 

( )j

j

u

t x

 


 
=0 in general, it is applicable for both compressible and incompressible 

flow.  
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So, if you add this term then together if you write. So, you can write in a conservative 

form, because this 
i

i
t t



 


 
you can write as 

( )i

t




and 

( )j

j

j j

ui
u i

x x







 
you can 

write as
( )j

j

iu

x




.  

So, now, this is the equation we have derived in terms of internal energy, but now we 

need to write in terms of some measurable quantity. So, that is temperature. So, first we 

will write this equation in terms of enthalpy, then we will write in terms of temperature. 

So, you know that enthalpy from thermodynamics, you can know that enthalpy, 

p
h i


  , where p is the thermodynamic pressure and ρ is the fluid density. So, you can 

write i h p   . Now this i you substitute here.  

So, if you substitute here you will get this equation, 

''

'''
( )( ) j j j k

j j j k

hu u q uh
p Q p

t x t x x x

 


    
      

     
. 
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So, now you can write. So, this is in conservative form we have written 

''

'''
( )( ) j j

j j

hu qh Dp
Q

t x x Dt




 
    

  
 and now if you write these two terms. So, 
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h
h

t t



 


 

and here if you write 
( )j

j

j j

uh
u h

x x







 
then you can write in terms of non 

conservative form.  

And here you can see this is your conservation of mass 
( )j

j

u

t x

 


 
= 0. So, this is your 

0 right. So, we have written this term. So, this is your generalized thermal energy 

conservation equation we have written in terms of enthalpy. 

So, this enthalpy now we have to write in terms of temperature and we have this heat 

flux ''q and that we need to write in terms of temperature. So, first let us write this heat 

flux using Fourier’s law of heat conduction. So, from Fourier’s law of heat conduction 

you know ''

j ij

j

T
q k

x


 


and if you write 

''

( )
j

ij

j j j

q T
k

x x x

  
 

  
.  

So, now, you assume isotropic heat conduction so; that means, this thermal conductivity 

will be independent of the directions. So, kij=k we can write. So, if you write k then in 

this expression if you put then you can write
''' ( )

j j

Dh T D
Q k

Dt x x Dt


 

 
   

 
. 
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So, now let us write the enthalpy in terms of temperature. So, for that we will use some 

thermodynamic relations which we have already studied in your thermodynamics course, 
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for simple compressible pure substance with no phase change entropy you can 

write ( , )s s T p .  

So, we can write s as a function of two variable. So, we can write 

p T

s s
ds dT dp

T p

 
   
 

. So, now, you can see that you know
p

p

cs

T T


 


. So, this is your 

specific heat at constant pressure. 

And from Maxwell relations you can see T p

s v

p T

 
   

 
where v is your specific volume. 

So, if you put these p

s

T





.  

So, 
pc

dT
T

and 
s

p




you put this expression. So, p

v

T
dp


 


 and now you use the coefficient 

of thermal expansion expression. So, β you know that
1

p
v

v

T





. So, you can see p

v

T





you 

can write vβ and this expression p

dT
ds c v dp

T
  . 

Now again you can write the enthalpy, . So, now, 
pdh c T Tv dp vdp   . So, it will be 

cpT and v if you take outside. So, (1- βT)dp. So, now, if you write in terms of material 

derivative so, (1 )p

Dh DT Dp
c T

Dt Dt Dt
     . 

So, this is your material derivative 
Dp

Dt
and ρv=1 because v is specific volume. So, ρ v 

will be 1. So, this I have put 1. So, now, we can see this 
Dh

Dt
 now if you put in this 

expression then you can write. So, 
''' ( )

j j

Dh T Dp
Q k

Dt x x Dt
 

 
   

 
, this we have 

already derived. So, if you put this expression in the left hand side then you can get 

these.  

Now you see in left hand side you have 
Dp

Dt
, right hand side also you have 

Dp

Dt
. So, 

these you can cancel. So, if you now simplify it you will get  
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''' ( )p

j j

DT T Dp
c Q k T

Dt x x Dt
  

 
   

 
. 

So, now you can see that we have written the energy equation in terms of temperature 

and left hand side we have written in terms of material derivative
DT

Dt
. 
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So, now if you write this material derivative of T as j

j

DT T T
u

Dt t x

 
 
 

then you can 

see
'''( ) ( )p j

j j j

T T T Dp
c u Q k T

t x x x Dt
  

   
    

   
. So, this is the equation for 

conservation of energy.  

So, you see left hand side term, ρ is density, cp is the specific heat this is the temporal 

variation of this temperature 
T

t




and this is the convective term j

j

T
u

x




, because your 

these scalar temperature is convicted by this velocity uj right and right hand side this 

term is internal heat generation per unit volume and this is the term you can see this is 

coming from your heat conduction. 
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So, in the energy equation this is the term while deriving this equation you have seen it is 

coming from the heat conduction right, but in general if k is constant you can take it 

outside and you can write 
j

T

x




whole you can write 2( )

j

T

x




.  

So, this is the term which is coming from the Fourier’s law of heat conduction right and 

substituting that in the expression we have got this term which is known as diffusion 

term, it is due to the heat conduction right plus beta T
Dp

Dt
. So, 

Dp

Dt
 which is your 

material derivative of p. So, these term having the significance at high velocity. So, 

above the sonic velocity if you have the flow then this term will have significant 

contribution. 

And µΦ, what is µΦ? µΦ is the viscous dissipation rate right per unit volume. So, and 

phi is the dissipation function that we have written in terms of velocity gradient.  

So, you can see when µ is having very high value then this term will have the 

significance and if you have a high velocity then due to high velocity there will be 

contribution from the velocity gradient in the dissipation function Φ then also this term 

will have some significance. So, you can see this is for high viscosity or high velocity 

you can consider this term and this term you can consider when you have very high 

velocity above sonic velocity. 

So, in vector form this equation now if you write 

'''( . ) .( )p

T Dp
c V T Q k T T

t Dt
  


      


 and these if you assume that your 

thermal conductivity is constant then you can take it outside otherwise you keep it inside. 

So, most of the gases you know for gases you know that β=
1

T
; that means, βT=1. 

So, if you put βT=1 then this expression here it will be just 
Dp

Dt
and this the work of 

compression 
Dp

Dt
is usually negligible except above sonic velocities and for liquids open 

you will get µΦ = 0 and 
Dp

Dt
= 0. Then you can express this equation in the right hand 
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side only two terms will be there ''' .( )Q k T  , but if there is a significant contribution 

from µΦ then you can consider in this equation.  

So, today we have started with the Reynolds transport equation to derive the equation for 

conservation of energy. So, for a control volume we have written the total energy as 

internal energy plus kinetic energy because potential energy we consider in the body 

force term from first law of thermodynamics we have written
. .

CVsys CV

DE
Q W

Dt
   , where 

we are taking that rate of heat transfer to the system 
.

CV
Q is positive and rate of work 

done by the system 
.

CVW  is positive. 

Then we have expressed this 
.

CV
Q and 

.

CVW considering the volumetric volume heating as 

well as surface heating, for the rate of heat transfer calculation and for the rate of work 

done calculation we have considered two different forces body force as well as surface 

force. Then we have expressed these terms and finally, we have got one term i
ij

j

u

x





 

which is your the term which is contributing from the friction because you have a shear 

stress between the two fluid elements and these frictional force is converting to internal 

energy. 

Then that we have expressed in terms of velocity gradients and finally, these total energy 

we have written in terms of internal energy plus kinetic energy. So, to get the equation 

for thermal energy we have subtracted the kinetic energy considering the Navier’s 

equation. Then we have written the energy equation in terms of internal energy and later 

we have converted this internal energy in terms of enthalpy then in terms of a measurable 

quantity temperature. 

And using some thermodynamics relations we have written the equation for this internal 

energy in terms of temperature which is your equation for conservation of energy. We 

have also discussed that the viscous dissipation term µΦ is significant when you have 

high viscosity fluid or you have high velocities.  
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And 
Dp

Dt
 is significant above the sonic velocities and finally, we have written this 

equation in terms of vectorial form for gases assuming 
1

T
  and finally, we have 

written for liquids where most of the time we consider negligible viscous heating and 

Dp

Dt
as 0. 

Thank you.  
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